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Abstract: Inverse problem techniques have been used in different engineering application aiming to convert 

observed measurements or data acquired together to the prior knowledge of the system into information about 

material properties, geometry, locations of anomalies, e.g. cracks and structural damage, excitation force, among 

others. The present papers aim to estimate parameters of a dynamic system with the inverse problem using 

Bayesian Inference technique. Multiples studies are presented to analyse the statistical significance of the catches 

for the settings, making a critical analysis between a solution via Bayesian Inference linked to minimising the 

objective function with stochastic methods. It applied through stochastic strategies as the Maximum Likelihood 

(MLE), Least Squares (LSE) and Markov Chains Monte Carlo (MCMC), implemented with the Metropolis-Hastings 

algorithm (MH). In the estimation, the random parameters assumed distribution inference of Gaussian and Uniform 

types for different standard deviations. The results demonstrated the efficacy of Bayesian inference to estimates 

parameter of the oscillator systems from its dynamic response and the statistical parameter information. 

Keywords: Bayesian Inference; Maximum Likelihood; Markov Chain Monte Carlo (MCMC); Inverse problem; 

Parameters estimation; Dynamic system. 

 

1. Introduction  

There is a growing demand for more realistic system analyses covering structures from all engineering sector. 

There is an increasing availability of highly accurate measuring tools suitable for the most varied types of mechanical 

systems. In this context, several scientific challenges arise with a focus on the construction of computational models 

and development of algorithms (Hatch, 2001), which considers both the current state of the structure and the 

uncertainties associated to the system. An inverse problem basically is as a general structure that converts the 

observed measures and prior knowledge into information about a physical system. In this context, a wide field of 

research stands out aiming to develop techniques to estimate parameters, calibrate the numerical models, and 

quantify the system uncertainties. The scientific challenges are gaining visibility due to the growing popularity of 

intelligent data exploration methods and the computational techniques available to solve them (Rouchier, 2018).  

The inverse problem theory offers a framework for solving parameter estimation and model calibration 

desirable. Several types of estimators are described in the literature. Widespread probabilistic methodologies that 

allow estimating the value of a set of parameters based on measurements observed for inference on inverse problems 

are the Maximum Likelihood, Least Squares and the MCMC. In the Bayesian approach, the inverse problem is 

reformulated into a search for information using statistical tools. The purpose of Bayesian Inference is to report all 

available information about a problem, with information from the observed data, through probabilistic statements 

through Bayes' Theorem (Mohammad-Djafar, 1998; Albuquerque,2018). In this method, all parameters and 

measurements are considered random variables, with the uncertainties associated with the variables described by a 

probability density function (PDF)(Dashti and Stuart, 2016). Castello and Ritto (2015) in their book, presented an 

introduction about stochastic modelling, quantification of uncertainties applied to parameters estimation via Bayesian 
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Inference. Fox (2010) published a book covering a complete treatment of Bayesian response modelling applied in a 

variety of applications. 

The Maximum Likelihood Estimation (MLE), a method to estimate the parameters of a given posterior PDF, 

maximises observed data from the prior PDF, which follow a given distribution (Myung, 2003). Kaipio and Somersalo 

(2006) presented in their textbook basic and classic concepts of inverse problems such as Maximum Likelihood 

estimation and the Conjugate Gradient method. Oliveira et al. (2018) performed the parameter estimation by the 

MCMC, as well as the Maximum Likelihood approach. The Least Squares (LSE) does not require maximum or minimum 

distributive assumptions, it is useful to obtain a descriptive measure to minimise observed data, but there is no 

possibility to build confidence intervals of the analysis. The LSE estimator can be independent according to the type of 

noise probability distribution. Song et al. (2018) proposed a methodology for Bayesian model updating model for 

systems with geometric singularities based on their normal nonlinear modes extracted from broadband vibration 

data. The estimation was performed by the LSE and the Monte Carlo transitional Markov chain.  

One of the methods applied associated with the Bayesian strategy is the Monte Carlo via Markov chain (MCMC). 

The MCMC algorithms provide flexible and robust solutions for estimating the later probability density. From this 

technique, it is possible to generate a high-dimensional posterior PDF, without the need to do a high-dimension 

integration to calculate the normalisation constant of the distribution (Jin et al.,2019). There are several methods in 

the literature to improve the efficiency of the estimators resulting from the MCMC, among which the 

Metropolis-Hastings (MH), Adaptive Metropolis algorithm (AM) (Haario,2006), Hamiltonian Monte Carlo (Green, 2015) 

and the Delayed Rejection method (DR) (Green,2015; Haario,2006). Vrugt (2016) described a basic theory review of 

Monte Carlo simulation of the Markov chain and Differential Evolution Adaptive Metropolis (DREAM) algorithm. Besag 

et al. (1995) performed the basic MCMC methodology, emphasising the Bayesian paradigm, conditional probability 

and the intimate relationship with Markov's random fields in spatial statistics. Dahlin (2015) provided an introduction 

to the Metropolis-Hastings (MH) algorithm for parameter inference in nonlinear state-space models together with 

software implementation in the statistical programming R language. Khalil et al. (2015) studied a nonlinear inverse 

problem displaying a noisy disturbance to estimate time-invariant parameters via MCMC.  

The present work aims to demonstrate how to use the theory of inverse problems based on the Bayesian 

inference combined with the MLE, LSE and MCMC-MH to estimate the stiffness of the oscillator systems from its 

dynamic response, and the statistical parameter information. The mathematical formulation of the oscillator physical 

problem is developed under the framework a single degree of freedom composed by a mass-spring-damper. The 

direct problem is solved analytically, and the obtained resonance frequency used as an input system response 

information in the inverse problem procedure.   

2. Inverse problem  

All parameters and measurements are considered random variables in an inverse problem via a Bayesian 

approach, and the uncertainties associated with these variables are described by a chosen PDF (Kaipio and Somersalo, 

2006). The objective of the method is to extract information and evaluate uncertainties about the variables based on 

the available knowledge of the measurement process, as well as data and models of the unknowns variables before 

the measurement process.  

 

2.1. Bayesian Inference 

 

The process of building up a given computational model ( ) is considered to describe the physical system ( ). 

Also, a set of measurements ( ) is known, and the structuring process will take place from the identification of the 

parameters vector of interest ( ). The   and   are random variables, so the model response is given by    

  ( ). The posterior probability distribution function, which relates the PDFs of the experimental data to the vector 

of parameters of interest  ( | ), which follows the Bayes theorem expressed in terms of probability distributions 

takes the form (Lynch 2008) 

 

 (    )   
 (    )  ( )

 ( )
   (1) 

 

where  (    )  represents the system's likelihood function,  ( ) prior probability density function, and  ( ) the 

probability density function associated with the experimental data, the information about the likelihood PDF can be 
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obtained by using a particular model of observation of the system. By considering the relationship between the 

observed data ( ) and the predictions of the model ( ( ) ), it can be described from an observation model with 

additive error ( ) as follows 

 

       ( )   , 
(2) 

 

where the   is an additive noise that describes the difference between experimental observation and the prediction 

of the model, represented by a random vector, therefore, given that  ,  , and,   are random variables will be 

related to a joint PDF  (     ) (Castello and Ritto, 2015). By considering that the noise is stationary, Gaussian with 

known variance   
 , the likelihood function can be represented by 

 

 (       )  
 

(  )     
 
   ( 

 

 

(        (  ))
 
(        (  ))

  
 

)    (3) 

 

The likelihood PDF,  (       ), corresponds to the probability of having measured data      given a specific 

model  ( ) , defined by the parameter set  . To obtain information about the unknown parameters may be 

obtained via Statistical Inversion Theory or other techniques as the Maximum Likelihood (MLE) and Least Squares 

Estimation (LSE). 

 

2.2. Maximum Likelihood and Least Squares Estimation 

 

To determine the target estimator of the parameter of interest  ̂, the expected value of the posterior PDF 

expressed by 

 

 ̂  ∫   (      )    (4) 

 

The estimator that results aim the maximum value of the likelihood is denominated Maximum Likelihood 

Estimator (MLE),  ̂   . For a problem with Gaussian additive noise and prior uniform PDF for the parameter of 

interest, the MLE will have the same numerical result as that of Least Squares (Oliveira et al. 2018). Therefore, the 

MLE is defined as 

 

 ̂               (      ) (5) 

 

The Least Squares Estimator (LSE) assumed the residual rule of the ‖           ‖ the system, which can 

be obtained by  

 

 ̂              ‖         ‖  

 

  (6) 

 

2.3. Markov Chain Monte Carlo  Metropolis-Hastings algorithm 

 

Markov chain Monte Carlo (MCMC) develops sequences that converge from a distribution to a target, in this 

case, the posterior distribution. Then, the mean value of the sample is calculated to obtain the best value inferred 

from the posterior PDF. The MCMC methods are conceptually simple, and the algorithms are easy to be represented 

(Albuquerque et al., 2018). Any method capable of producing samples { ( )    ( ) }  and has a stationary 

probability distribution of  ( ) is considered a Monte Carlo method via the Markov chain for a simulation of a 

probability density distribution. The main feature of this technique is that the samples are performed sequentially so 

that the distribution of the      sample,  ( )  depends on the previous sample,  (   )  with the course of 

iterations. 
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2.3.1. Metropolis-Hastings algorithm 

 

The Metropolis-Hastings (MH) algorithm is a common technique for sampling the posterior PDF created from the 

MCMC (Green and Worden, 2015). There are other types of algorithms, e.g.  Adaptative Metropolis, Hamiltonian 

Monte Carlo and Hybrid Monte Carlo, which aim to obtain a sequence of random samples from a probabilistic 

distribution for the which direct sampling are complex. The algorithm works by starting with the likelihood function in 

each Markov chain is proposed a sample candidate with j-repetitions evaluated of the iteration  ( ) and its 

predecessor  (   )as follows: 

 

 ( ( )  (   ))  
                ( )

                (   )
 (7) 

 

 

The transition function will be a Gaussian distribution centred on   associated with the standard deviation 

     ,           ( )  ( (   )     ). By considering the symmetry of this distribution, the probability of acceptance 

is reduced to the ratio between the generated posterior PDFs and does not depend on the transition density function. 

Thus, the new probability value in the  ( ) acceptance process proposed by the MH algorithm with a related 

Gaussian transition function can be described as (Kaipio and Somersalo, 2006): 

 

     [  
 ( ( )|    )

 ( ( )     )
]  (8) 

 

3. Single degree of freedom oscillator dynamic system 

This section presents a brief formulation of the dynamic oscillator analysed in this paper. The mechanical 

vibration of structures with a single degree of freedom is considered the simplest case to describe the movement of a 

system subject to some initial condition. These are ideal systems, capable of representing a small part of the existing 

real systems. On the other hand, systems with a single degree of freedom have characteristics that support the 

understanding of most of the fundamental aspects existent in more complex systems. The purpose of physical 

modelling is to represent all the important aspects existing in the system for the determination of the mathematical 

equations of motion of the system. Figure 1 presents a schematic drawing of the physical model used for the next 

studies. It is a linear oscillator composed of an inertial, elastic element and a dissipating element. 

  

 

Figure 1. Linear single degree of freedom oscillator system composed by a mass-spring-damper. 

The governing equation of motion expressed in equation (9), obtained from the forces acting on the specimen, is 

described by an ordinary differential equation with constant coefficients that relates the displacement,  ( ) and the 

acting force,  ( ). Therefore, the dynamical system equation of motion is given as 

 

  ̈( )    ̇( )    ( )   ( )    (9) 
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where,  ̈( )          is the mass ( ) acceleration and  ̇        the velocity (Meirovitch, 2000),   is the 

mass,   the damper, and   the spring. It is also a common practice to work in terms of the system's descriptive 

coefficients. By dividing the equation (9) by the mass ( ), we obtain the relation 

 

 ̈       ̇    
    ( )    (10) 

 

where    is the natural frequency defined by relating the mass to the spring as    √   ,  and damping 

coefficient ( ) expressed as         . The dynamic mechanical systems are also considered for the free vibration 

case when the dissipative element in not take into account. Therefore, to obtain the time response of a system 

subject to an initial condition is necessary to solve the simplified homogeneous ordinary differential equation that 

describes the movement, given by: 

 

  ̈( )    ( )                     ̈( )    
  ( )    (11) 

 

and the natural frequency is also obtained as    √   .  

4. Numerical results  

To verify the methodology, the spring-stiffness parameter of the mechanical oscillator systems is estimated, and 

some simulation results presented in this section. The Bayesian Inference method is applied to formulate the problem, 

and the Maximum Likelihood (MLE), Least Squares (LSE) and Markov chain Monte Carlo (MCMC) used to optimise the 

estimation. MCMC-HM has been implemented in MATLAB, and the MCMC of the UQLAB toolbox used in the 

estimation process (Lataniotis, Marelli, and Sudret 2019). The oscillator stiffness ( ) is regarded as unknown, and will 

be estimated from the synthetic measured force and resonance frequency   
   

.  In the following problem, 

equation 12 is the object of study to estimate the stiffness. It is noteworthy that the data sample is generated 

randomly following Gaussian probability distribution. By considering an additive error   with Gaussian distribution so 

that the relationship between the observed data (  
(   )

) and the predictions of the model (   √   ) , the 

ressoannce frequency can be described as  

  
   

 √
 

 
    (12) 

 

for   
   

,   is assumed as random variables. Those variable associated with their probabilities distribution when 

correlated generates a joint PDF,  (  ,  ), as 

 (    )      (       )   (    )      (13) 

 

for      such that    (    ).  Since it is an appropriate approximation of the covariance matrix associated 

with errors,      
     . Therefore, the likelihood equation is expressed by 

 

 (    )  
 

(  )     
 
   (

  

 

(  
(   )

 [√   ])
 

(  
(   )

 [√    ])

  
 

)  (14) 

 

The posterior PDF is related to the likelihood function defined in Eq. (14) with the prior assumed as uniform 

distribution in a limit between 1 to 30,   UNIF(1,30). In this analysis, we  considered as a reference value for the 

stiffness equal to     = 15 N / m.  Two sets of observations {  
   

,   
   

} have been generated and were used to 

parameter identification. The two sets of data were carried out to verify the change in the estimation results for 

different sets of samples (Kruschke, 2010). 
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4.1.1. Estimation via Least Square and Maximum Likelihood   

 Figure 2 presents the estimation results obtained with the MLE in figure 2(a) and LSE in figure 2(c). Each 

posterior sample parameters were generated by multiply the likelihood and the prior and stiffness evaluated by the 

calculation of the posterior function maximum value. And by the posterior function minimum value in the case of LSE. 

The graphic in figure 2(a) shows the PDFs a posteriori of the data sets generated close to the reference value (    ). 

For both sets of samples, the resulting functions were close to the stiffness reference number. Figure 2(b) is the error 

function in logarithmic scale, which displays the likelihood on a logarithmic scale versus the function of the error norm 

(r). It presented a descending line whose maximum point goes to zero. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 2: MVE results: (a) Priori and posterior probability density functions and the reference value for constant stiffness 

analysis for two sets of experimental data {   
   

    
   

}; (b) Logarithmic scale analysis of the residual function norm; (c) Residue 

function and likelihood function for each method. 

 

Figure 2(c) shows the likelihood functions and least-squares (  ‖  
    √   ‖

 
) for the two sets of 

observations. It is clear that the maximum and minimum points of the dashed and continuous graphs, in blue and 

black, again coincided, thus demonstrating the theory regarding the Maximum Likelihood and Least Squares 

strategies. The arbitrary parameters used for this case study, for the two data sets, the values of      and     

generated by the computational model, together with the results estimated by the MLE and LSE, are shown in Table 1. 

 

  
Table 1. Observed results for Maximum Likelihood and Least Squares methods      = 5 %. 

   
    rad/s]    

    rad/s]    
    rad/s] Mass [kg]  ̂   [N/m]  ̂   [N/m] 

1
st

 set 1.963 0.113 0.185 1 14.18 14.18 
2

nd
 set 3.873 1.696 1.951 4 16.23 16.23 
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The results obtained by the Maximum Likelihood and Least Squares strategies were coincident. The reference 

value for stiffness was 15 N/m. Because of this, it was possible to corroborate the correct application of these 

methods, since they satisfied the theory of equality between the estimated points for the asymmetric distribution of 

probabilities of the function a posteriori. 

 

4.1.2. Estimation via MCMC-MH 

Next, the estimation of equivalent stiffness of the system from   
   

as input will be solved by Markov Chain 

Monte Carlo – Metropolis-Hastings (MCMC-MH) algorithm. Equation (15) represents the numerical model used to 

generate the sample points and possible candidates in the Markov chain to generate the posterior PDF. It was 
assumed a variability of           bias on Gaussian distribution. Therefore, the probability of acceptance of a 

new candidate for the rigidity of the system ( ( )) occurs from the application of the MH algorithm, so that the 

probability of acceptance of possible candidates ( ( ))  in the chain with a current status (j) can be described as 

follows 

 

 ( ( )| (   ))   
 ( ( )|  

   
)

 ( (   )|  
   

)
 (15) 

 

Figure 3(a) shows the evolution of the chain generated by MCMC-MH of the posterior PDF for 10000 iterations, 

the reference value, and the estimated stiffness. There is a stationary trend in the simulations created around the 

estimation point over the Monte Carlo (MC) iterations (Christen, J Andrés and Fox, 2005). It demonstrates that 

posterior PDF provides a mean value associated with a standard deviation. Besides, figure 3(b) shows the histogram of 

the probability density corresponding to the generated chain. A good symmetry in the histogram was achieved, which 

allowed a Gaussian adjustment and a heuristic convergence indicator leads to the stiffness estimation. 

 

 
 

 

(a) (b) 
Figure 3: Bayesian Inference Results via MCMC-MH: (a) a posteriori generated by MCMC, a reference value and the expected 

value of the stiffness; (b) histogram of the probability density, with a Gaussian fitting distribution for k values 

 

A summary of the pre-processing conditions of the input data and the results obtained by MCMC-MH algorithm 
are presented in Table 2. The results presented in Tables 1 and 2 demonstrate that, for the same variance      

assumed in the MLE and LSE techniques, the point result obtained by MCMC-MH for stiffness was the closest to the 

reference value. 

Table 2. MCMC- MH estimation result for an error of     = 5 \%. 

Prior PDF 
     MCMC 

iterations 
    [N/m]     [N/m] 

Gaussian 5% 10000 15 13.99 
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4.1.3. Estimation using MCMC UQLab toolbox 

The use of the MATLAB-UQLab toolbox aimed to improve the MCMC estimation algorithm. The sampling points 

obtained from a Gaussian probability distribution, and six random sampling points generated from the computational 

model with an associated additive error (Eq. 15). The parameter of interest was assigned as a Log-Normal distribution 

(Schevenels, Lombaert, and Degrande, 2004) with a mean value centred on the reference point. The standard 
deviation     , was considered unknown and, as initial information, a Uniform distribution is imposed, so that 

      UNIF (0 , 0.5). Figure 4 shows the evolution of the MCMC chain and its respective Kernel density. 

 
 

Figure 4. trace graph and corresponding KDE during the execution of the MCMC-MH 

 

The generated MCMC immediately converged to the stiffness reference value. The Kernel graph that Kernel 

density (KDE) is well defined, with a symmetrical curve as a Gaussian probability distribution, which indicates a good 

convergence of the MCMC to the estimated value. Figure 5 (a-b) presents the predictive prior and posterior 

distributions estimated with the MCMC chain generated sample data and the histograms with of the mean point. The 
undefined      was estimated from the experimental data, whose prior information of the error components 

previews defined. 

 

 
(a) 

 
(b) 

Figure 5. Histograms of the prior and posterior predictive distributions with the empirical mean  [ |    ] estimated 

from the MCMC sample data and dispersion graphs of the prior and posterior samples: (a) Histograms prior to the 

sampling points; (b) Histograms a posteriori of the sampling points  
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From the histograms of figure 5(a), on top it is the initial Log-Normal distribution attributed to the parameter  , 
the sample cloud followed by a uniform prior distribution from 0 to 0.5 associated with     .  Figure 5(b) shows how 

the candidates behaved in the generation of the posterior distribution of the stiffness with the prior distribution. The 
mean values points for both parameters   and      are represented in red. 

 
Figure 6. Variation of the expected value of the stiffness to 10.000 iterations. 

 

Convergence graphic showed in Figure 6 demonstrated that around 2500 step up a good stabilisation of the 

parameter estimation close to the stiffness reference value. It indicates that the number of iterations adopted was 

sufficient to obtain a good convergence of the results. Table 3 presents the estimated results by using the UQLab 

toolbox compared to the reference value. 

Table 3. MCMC- UQLab estimation result using    data 

Parameter     [N/m]     [N/m] 

k 15 15 
     - 0.24 

 

By comparing the MCMC obtained using the toolbox, with those results obtained with MCMC-MH, Table 2, a 

considerable improvement in the parameter was achieved by using the UQLab. It because UQLab toolbox(Lataniotis, 

Marelli, and Sudret 2019) run a few simultaneous chains at the same time, which improves the estimation 

performance. While the MCMC-MH implemented code used a single chain each time in the estimation procedure. 

However, both techniques aim the MCMC-MH algorithm presented in section 2.  

5. Conclusions 

The analysis of inverse problems using stochastic strategies has proved to be an efficient tool to obtain accurate 
information about models in different areas of knowledge. This papers sought to apply the Maximum Likelihood (MLE) 
and Least Squares (LSE) estimators, with a focus on Bayesian inference in mechanical systems, where initial data about 
the problem was known and demonstrates an overview of the steps and tools to explore the target information from 
the experimental data.  The use of MCMC-MH it was possible to obtain results from the posterior PDF. The UQLab 
Bayesian inference toolbox was used to evaluate the estimation. The results obtained with MLE, LS and MCMC 
performed an excellent estimation. However, the MCMC and MCMC-UQLab were the best methodologies to run the 
optimisation process. 
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