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Abstract. This paper presents computational results of incompressible steady flows 

simulations by solving the Navier-Stokes equations using a finite element method combined 

with the characteristic based split scheme (CBS). The classical finite element method called 

Bubnov-Galerkin or Galerkin Method (FEM) is considered the best method for solving purely 

diffusion problems, however, in case of problems with convection dominant as in many 

problems of fluid flows, the FEM produces oscillating solutions for high Reynolds numbers. 

The main goal of this work is to highlight the simulation method and the results of some 

common tridimensional problems used for code validation and verification. The results show 

great agreement with literature. 
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1  INTRODUCTION 

The standard Galerkin finite element method (FEM) gives the minimum error in the L2 

norm for self-adjoint problems and results in a symmetric algebraic system of equations. 

However, the main equations that rule the fluid dynamics are non-self-adjoint equations and if 

the FEM is used to solve them, without any stabilization, it may result in several oscillations. 

The instabilities in the solution, generally, originate if some care is not taken in the 

discretization of the non-linear convective acceleration terms. The convective terms, also, 

make the equations non-self-adjoint, and after discretization the resulting algebraic system of 

equations isn’t symmetric (Liu, 2005).  

One way to remedy or reduce this kind of instabilities of the solution is to apply upwind 

discretization techniques to the convective terms, which are the main source of oscillations 

when solving this kind of problem. For stabilization via transient formulations, there is the 

Characteristic-Galerkin, (Nithiarasu et al., 2005), (Zienkiewicz et al., 1999) and (Zienkiewicz 

e Taylor, 2000) which is the category that the CBS scheme belongs to. 

Also, instabilities can appear if in the incompressible limit, the Ladyshenskaya-Babuska-

Brezzi (LBB) condition is not respected. The violation of this condition often results in 

numerically unphysical oscillations and it is related to the order of the interpolation functions 

used for velocity and pressure fields (Liu, 2005). In the FEM, generally, the pressure field is 

interpolated by functions one order bellow the order of the interpolation functions to the 

velocity field. 

In order to apply the Characteristic-Galerkin approach to the momentum equations, 

firstly, the pressure term is dropped out and a moving coordinate system is assumed, like in a 

Lagrangian fluid dynamics approach. Although this approach eliminates the convection term 

responsible for spatial oscillation when discretized in space, it introduces the complication of 

a moving coordinate system. However, a simple expansion in Taylor series in space avoids 

such a moving coordinate approach. So, we are able to calculate an intermediate velocity field 

and this is the first step of CBS scheme. In a second step, the pressure field is calculated with 

an artificial compressibility method. Then, in a third step, the intermediate velocities will be 

corrected. With the corrected velocities in hand, in the last step we can calculate any 

additional scalar variables with the appropriate governing equation. Owing to the split 

introduced in the equations, the method is referred as the Characteristic Based Split (CBS) 

scheme, (Lewis et al., 2004). 

The CBS scheme for compressible and incompressible flow problems was first 

introduced into the finite element literature in 1995 by Zienkiewicz and Codina and co-

workers. Since its introduction to the computational and numerical methods community, the 

CBS scheme has received great interest and has been subject of study for several researchers 

for both incompressible and compressible flows (Liu, 2005). 

In this work, we use a fully explicit AC-CBS scheme to solve a tridimensional 

incompressible steady flow in a cubic cavity, flow around a cylinder and flow around a 

sphere. Another objective of the work is to learning some aspects of implementation of the 

FEM-CBS in order to simulate transient flow problems. The Reynolds numbers considered 

are from low to moderate range in order to keep within the laminar flow range, because no 

turbulence model is used and thereby ensure that the results obtained will have a physically 

expected behavior. 
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2  GOVERNING EQUATIONS 

The governing equations of the problem are the continuity equation, the tridimensional 

Navier-Stokes equations. For forced convection problems, these equations are commonly 

non-dimensionalized and they form the following set of equations. 

 
** *

*2 * * *

1 i

i

Up

c t t x

  
 

  
 

 (1) 

 

 * ** **

* * * * *

1

Re

j ii i

j i j j

u UU up

t x x x x

    
             

 (2) 

 

2.1 The Characteristic Galerkin. 

 

Now, the Characteristic Galerkin (CG) procedure will be described for a simple 1D 

convection-diffusion equation for simplicity. Consider the following transport equation for a 

scalar variable: 
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The Characteristic Galerkin is based on evaluation of the time derivative along the 

characteristic that eliminate the convective term in the transport equation (as in a Lagrangian 

fluid dynamics approach). So, the Eq. (3) is now: 
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Here, although this approach eliminates the convection term responsible for spatial 

oscillation when discretized in space, the complication of a moving coordinate system is 

introduced. It is worth to say that Eq. (4) is a self-adjoint equation. 

In order to solve the problem of a moving coordinate system, a simple expansion in 

Taylor series is used and the Eq. (4), in the semi-discrete form, turns to Eq. (5). 
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At this point, we get to the end of the Characteristic Galerkin procedure and the Eq. (5) is 

ready for spatial discretization. In this work, the FEM is used to spatial discretization. Once 

FEM is used, before proceed with the integration, we must apply Green’s lemma to some of 
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the integrals in order to get the weak formulation. For a 3D convection-diffusion equation, 

after the Characteristic Galerkin and the FEM procedures have been applied, we get the Eq. 

(6). 
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Where ni is the direction cosines of the outward normal n, Ω is the domain and Γ is the 

contour of the domain. The Characteristic Galerkin procedure and the FEM discretization are 

described with more details in Zienkiewicz et al., (2014). 

 

2.2 The Characteristic Based Split. 

 

The application of the CBS scheme for flow equations involves the discretization of the 

time derivative in steps. Just for remember, as shown in the previous section, the CG 

procedure is the first step of CBS and we are able to calculating an intermediary velocity 

field, since the pressure terms be removed from N-S equations, fact that leads to the need of 

an ‘adjust’, which happens in the following steps of CBS scheme. In the second step, the 

pressure field is calculated from a Poisson equation in a scheme known as semi-implicit 

(Nithiarasu et. al., 2005). However, the semi-implicit method leads us to the need of a linear 

system solution in each time step and it has an expensive computational cost for 

tridimensional cases. It can be avoided with a fully explicit scheme using an artificial 

compressibility method. 

With the pressure field in hands, the third step of the CBS scheme is to correct the 

intermediary velocity field calculated in the first step. 

 

2.3 Artificial Compressibility. 

 

The artificial compressibility method can be employed to eliminate the restrictions posed 

by the speed of sound at pressure calculation by taking an artificial value for the speed of 

sound which is sufficiently low. This is only possible if steady state condition exists. 
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where β is an artificial parameter with velocity dimension. This parameter may be either given 

as a constant or determined based on diffusive (udiff) or convective (uconv) time step 

restrictions. So, the value of β may be locally calculated using the following relation: 
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where C0 is a small constant, h is the element size and ν is the kinematic viscosity of the fluid. 

The following summarizes the main steps for the time discretization of the equations that 

make up the CBS scheme with artificial compressibility: 

 

Step 1: Intermediate velocity field 
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Step 2: Pressure Calculation 
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Step 3: Velocity Correction 
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Now, applying the Galerkin method for spatial discretization, the 3 steps of CBS scheme 

in matrix form become: 
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Step 1: Intermediate velocity field 
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Step 2: Pressure Calculation 
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Step 3: Velocity Correction 
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2.4 Lumped Mass Matrix 

 

The mass matrix [M] used in the above steps may be ‘lumped’ to simplify the solution 

procedure. This is an approximation, but a worthwhile and time-saving approximation. Mass 

lumping will eliminate the need for the matrix solution procedure necessary for consistent 

mass matrices.  

The matrix [M] in Eq. (17) is the same in left side or of Eq. (6) and here is written to help 

us to define it. 
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In the Eq. (18), the integral must be performed to finally get the mass matrix. For linear 

elements, one integration formula can be written as shown in Eq. (19) (Zienkiewicz et al., 

2014). 
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The lumped mass matrix for a linear tetraedral element is constructed by summing the 

columns and placing the sum on the diagonals. The elemental original and lumped mass 

matrix of a linear tetrahedral element are described in the following equations. 
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If the above mass lumping procedure is introduced into the CBS steps, some small errors 

will occur in the transient solution but an accurate solution still can be obtained by 

appropriate mesh refinement. For steady state solutions, however, no errors are introduced 

(Lewis et al., 2004). 

 

3  RESULTS 

3.1 Flow in a Cubic Cavity 

 

The flow in the cavity is a widely discussed issue in order to validate the results of 

computer codes. The geometry and the boundary conditions of this case are well-known but it 

can be found in Lewis et al. (2004). Despite the simple geometry, the cavity can present the 

most complex phenomena of a flow such as recirculation. The irregular mesh contains 19379 

nodes and 97599 tetrahedral elements. These problems have been simulated by Baggio, 

(2015). The Figures 1 to 3 shows the results for Reynolds number equal to 100, 400 and 1000, 

respectively. For each one, the velocity component in x direction, in the center of the cavity 

(y=0,5 and z=0,5) is compared with results from Wong and Baker, (2011). We can observe a 

good agreement between the results for low Reynolds number, but to Reynolds number equal 

1000, the differences between the may due to a lack of mesh refinement. 
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Figure 1. Results for Reynolds number equal to 100. 

 

 
Figure 2. Results for Reynolds number equal to 400. 

 

 
Figure 3. Results for Reynolds number equal to 1000. 
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3.2 Flow around a Cylinder. 

 

This case is widely studied for computational codes validation. It can be find in many 

literature of computational analysis and also there are many experimental studies. Although it 

is a 2D case, here we are presenting a study regarding this case. The objective here is to 

analyze the pressure coefficient over the cylinder surface for Reynolds number equal to 40. 

The mesh contains 219358 nodes and 1206656 elements. 

 

 
Figure 4. Geometry details and boundary conditions.  

 

The pressure coefficient is calculated with the equation below, where p0 is the stagnation 

pressure measured in front of the cylinder (θ = 0º). The pressure coefficient is calculated 

using the Eq. (22) and is the non-dimensional form of pressure used on governing equations. 
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The results are normalized like in the following Eq. (23) and they are plotted in Figure 5, 

where is presented the pressure coefficient value varying the angle θ, which is measured from 

the stagnation point to the rear of the cylinder. By inspection of the results, it is possible to 

observe the excellent agreement of them. In Figure 5 is shown the result predicted using the 

theory of potential flow by the continuous line. 
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Figure 5. Pressure coefficient over the cylinder for Re= 40. 

 

In Figure 6 is shown a detail of velocity magnitude around the cylinder. It is possible to 

observe the laminar behavior of the flow. 

 

 

 
Figure 6. Velocity magnitude field for Re=40. 
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3.3 Flow around a Sphere. 

 

As in previous cases, this is also a case widely studied for the computational code 

validation. One can find in literature many computational studies and also many experimental 

studies because it is a relatively easy problem to reproduce in the laboratory. Here we are 

presenting some studies regarding this case. This geometry is in according with the studies 

presented by Le Clair et al., (1970) and Campregher et al., (2009) and the objective is to 

compare the results of the pressure coefficient over the sphere surface and the bubble length 

for Reynolds number equal to 100 and 200. The mesh contains 68521 nodes and 369928 

elements. 

Results to the L/D ratio are presented in Table 1. Where L is the bubble length and D is 

the sphere diameter, see Figure 7. 
 

 

Table 1. Results for bubble length. 

 

 

 

 

Figure 7. Flow over the sphere sketch. 

 

Figures 8 and 9 presents the results for pressure coefficient over the sphere surface such 

as in the case of cylinder, see Eq. (22), but they are not normalized with Eq. (23). 
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Figure 8. Pressure coefficient over the sphere surface for Re=100. 

 

 

Figure 9. Pressure coefficient over the sphere surface for Re=200. 

 

The results shown in Figures 8 and 9 are in good agreement with results from Le Clair et 

al. (1970). 
 

4  CONCLUSIONS 

In this work, a fully-explicit FEM-CBS was applied to simulate tridimensional 

incompressible flows and the obtained results are good in agreement with results from the 

literature for the benchmark problems with the expected behavior. All the results shown in 

this work were simulated to low and moderate Reynolds numbers, since no turbulence model 
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was applied. This work also served as a step for learning more about this numerical method 

for flow simulations and then to enable an expansion of this 3D code for more complex 

problems. 
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