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Abstract. In this paper is presented a new hybridized continuous /adisouous Galerkin
formulation via continuous trace space for the Stokes nobl The method possesses unique
features which distinguish itself from other methods. Onnese features is that all the dis-
continuous variables are eliminated at element level astfan of continuous trace variable,
reducing thus the number of degrees of freedom and constbytien global system. Continu-
ity and weak coercivity are presented in a suitable norm lfer proposed formulation. Error
estimates are also well established for velocity and presshumerical experiments with the
problem having smooth solution confirm the error estimatesvall as the robustness of the
formulation presented in this paper. Also, the numericgdeziments with the classical cav-
ity problem showed that the method presented here posseggexl ability for capturing the
singularities of the pressure on the corners.
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A hybridized continuous/discontinuous Galerkin formiglafor Stokes problem with continuous trace space

1 INTRODUCTION

Discontinuous Galerkin (DG) methods have been used to solide variety of problems,
including structural mechanics, fluid mechanics, elecagnetic, among others. Discontinuous
Galerkin methods are closely related for using broken foncpaces. Important contributions,
mainly involving fluids, have shown advantages over comtusuGalerkin (CG) methods are
presented in Arnold et al. (2001); Baumann & Oden (1999); dm® & Duarte (2000); Reed
& Hill (1973). The main property of DG methods is to allow a teetcompatibility between
the spaces of velocity and pressure, but this is only pasgilthe problem is formulated in the
element level and the continuity is being weakly imposedveen the elements. However, it
Is important to mention that the DG methods are more costy the usual CG formulation,
because they introduce a significant increase in the degfde=edom of the problem.

Based on the better properties of classical discontinualerdn methods, new discon-
tinuous Galerkin formulations have been developed to predbe main properties of classical
Galerkin discontinuous methods, as well as, through apjai@pstatic condensation at the ele-
ment level, reduce the number of degrees of freedom to the sader as the usual continuous
Galerkin formulations. Hughes et al. (2006) is the pionagwork in the construction of a new
discontinuous Galerkin formulation with these properti€ésis formulation is based on a kind
of continuous / discontinuous formulation, with the distionous component being eliminated
at the element level in terms of the continuous componenkridized discontinuous Galerkin
(HDG) methods presented in Cockburn et al. (2005); Nguyeal.gf2010); Cockburn et al.
(2011); Egger & Waluga (2013) also preserve these progetiiethese formulations, the trace
spaces are continuous in the interior of edges or faces,iscortinuous on the boundary of
edges or faces.

Recently, motivated by do Carmo et al. (2014), a new hybedlizontinuous / discontinu-
ous Galerkin formulation with the trace space being comtirsuwas developed for the Stokes
problem. In the proposed formulation, all the discontirueariables are eliminated at element
level as function of continuous trace variable. Therebg, nbhmber of degrees of freedom is
reduced, which generates a smaller global system than tiaé lugbridized formulation and the
CG formulation.

The paper is organized as follows. In Section 2, we introdheeStokes problem. The
hybridized continuous / discontinuous formulation asatsd to the model problem is presented
in Section 3. Consistency analysis and an analysis of thenzoty and weak coercivity in an
adequate norm are presented in Section 4. Moreover, anestiorates are also well established
for velocity and pressure. Numerical results are present&eaction 5 in order to to verify the
robustness and accuracy of the proposed formulation. lizinalSection 6 we present some
conclusions and remarks.

2 THE STOKES PROBLEM

Let @ ¢ RY(N € {2,3}) be an open bounded domain having Lipschitz continuous
smooth piecewise boundary denotedIhy The model problem consists of findirig, p) €
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(IHL (1Y x (H(©) 1 L3(©))) such that

—div(GVu)+Vp = f and div(u)=0 a.e. in{,

1)
u =g onl,
where[H}, ()Y = {u € [H'(Q)]Y; div(GVu) € L2( )}, £ € [L3(Q)]Y, u denotes the
velocity field,p denotes the pressure.c [HY/2(I)]Y N [CY(T)]V, the spaceﬂl/Z( ), CO(T),
L*(Q), H*(Q) as well as the respective product spapfééﬂ(l“)] [CO(D)]N, [L2(Q)]N and

[H'(Q)]™ are as defined in Adams (1975) and the spai€) = {v € L*(Q?); [, vdQ = 0}.

ConsiderG' € HY(2) N C°( UT) and satisfying) < Gy < G < G in Q, whereG
andG are positive real constants. Hef&js the dynamic viscosity. Moreover, it is assunged
satisfying the compatibility conditiofi. g - ndI’ = 0, wheren is the outward normal unit vector
defined almost everywhere dh

Henceforth, we consider - y as being the usual scalar product between two vestarsd
y belonging toR™ (m > 1 being an integer) as well as - B the usual scalar product between
two arbitrary matrices\ andB of ordern x m (n > 1 being an integer) anfib|| the Euclidean
norm.

3 THEHYBRIDIZED CONTINUOUS /DISCONTINUOUS GALERKIN
FORMULATION VIA TRACE SPACE

In this section we will obtain a hybridized continuous / distinuous Galerkin formulation
via trace space for the problem presented in (1). Howevstlyfiive need to introduce the set
M" = {Q,..., Q. } formed by non degenerate finite elemefisi = 1,..., N.), with M"
being a partition of domaife c RY (N € {2,3}), satisfying the conditions imposed by the
finite element methods. As defined in Ern & Guermond (2004 plairtition is quasi regular,
such that the constants of inverse estimates only depenlgeopmolynomial degree, i.e. being
independent of the mesh parameters. We also consider thdiaimeter of; and its boundary
are denoted by:; andI';, respectively. Also, for any functiof’, defined in{2, we denote by
F; its restriction to2;. Moreover, we assume that, € C>~(Q; U T';), whereG; is the usual
restriction ofG to €2;. We define the following sets

= {e¢;eis an face of elemem?; ; V), € M"}, &£"0 = {ec &M e O},
Fi,e = Fz MNe, Ve € gh’ ant - UFZ int and Fz int — U Fz e: (2)

ecEh0

For each paif; and(); such thaf"; N T'; = e wheree € £"° , we define the new mesh
parameters associated to the faces of the elentgpts= h; . = inf{h;, h;}. Also, for each
I > 0 being an integer, considé?'(();) as being the space of polynomials of degree less or
equal tal in the local coordinates that define the standard elemeatia$sd tof?;.

For eachp € L*(2) we consider that its restriction o, is decomposed by; = p; + p;,
wherep; denotes the null average componenpaindp, the constant component of pressure.

With the goal of stabilizing the constant component of thespure at the element level,
a continuous space of approximation of the velocity muselshape functions which assume
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non-zero value at the center of one face and zero in the abesf This should happen for all
faces, as mentioned in Fortin (1981). For example, the ¢immds satisfied using polynomial
functions withl > 2 for the caseV = 2. Thus, we can introduce the local space, for the case
(N =2)andl > [} = 2 asP"*(Q;) = PY(;). The local space folN = 3 can be found in

do Carmo et al. (submitted).

Our next step is to define the approximation spaces for treeirgland pressure fields and
the trace space as follow

Hthv,N _ {V c [LQ(Q)]N; [ka,*( )]N} (kv > l:;),

Ptk = {qe B g € Pkﬂ(Q )} (kp > 0),

Eé’p = {qe Lj(Q);q € H' ()}, (3)
TN — Ly e [CO(T UTy)]Y withr inT; being the trace

of an element of[P**(Q,)]Y onT,}  (k, > 1).

The spaces defined in (3) will be used to define the bilineansdo stabilize the component
of null mean. One of the main differences of our formulatiomelation to the usual hybridized
methods is the definition of the spa@&-*-", which is formed by continuous functions on
(TUTim).

Now, we need to introduce the appropriate bilinear formsstabilizing the null average
component, for any value &f, > 0, for any degree of refinement and independent of the mesh
be affine or not. With this goal, we consider the projectiorraforQ’,.,. (o), which is defined
from P (Q;) into [P*(€;)]" and given by the variational problem: Find, for each P (),
the elemenQ)},.,;(p) € [P*(2)]" that satisfies the following variational equation

/ mej VdQ:/ Vp-vdQ Vv e [P ()", (4)
Q

i

If the mesh is affine and, > (k, — 1), thenme]( ) = Vp, Vp € P¥(Q;), therefore,
the null average component of the pressure is stabilizededer, we lose the property above
if the mesh is not affine or, < (k, — 1).

To obtain a bilinear form to stabilize the null average comgrt of the pressure at element
level, it is necessary to use the inequality

HVpZH <2 [HQPTOJ H + HQPT’OJ - Vpin] , V. (5)

The second term of the inequality given in (5) suggests thtaei variational formulation
has the bilinear form of projection defined by

i Pi, i
Qo (D, 4) = é(hi)Q /Q (Qpro(P) = VD) - (Qproj (@) — V@)dQ,  ¥(p,q) € [P"*]?, (6)
then this bilinear form, together with the variational piesh given in (4), can stabilize the null

average component of the pressure if the mesh is affine oronatrfyk, > 0. In Eq. (6),
pi1 > 0is areal constant and; is the average value @f; in €.

i

Note that, to introduce this bilinear form we need to introeldhe term not consistent
Jo, 1Qp0;(p) VpHQdQ. Following that, an error estimate for this term must be @nésd.
This error estimate is given by the following proposition.
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Proposition 1. Considerk,, = inf{k,, k,}. If the mesh satisfies the shape-regular condition
according to Ern & Guermond (2004), then for ea@f(: € {1,..., N.}), there exists a real
constantCZ.P Y > 0 that is independent of the mesh parameters but possiblyndepé ofk,,,
such thatyp € P"*» we have the following inequality

N
Z/Q /%1 Qe () Vle g0 < ZNCPolg_l(h) (kup+1)
=1 7S i
X (sz‘”H%vwl)(Qi))z- (7)

Proof. Let p be an arbitrary element aP**», For anys € P*(Q);), the elementy; =
'oi(8) — Vs + Vs — v, is also an element dgiP**(Q,)|V, Vv; e [P"*(Q;)]". Using

this fact and the variational Eq. (4) together with the CauSbhwartz inequality, we obtain
Vv; € [P (Q,)]V the inequality

Ne
pll pzl v
> [ B0 Qh ) - Vel a0 2 3 [ v vl ®)

Based on the usual inverse estimates and using the fachthaptice”*»»(Q;) has finite
dimension, we can obtai- € P*»(();) the inequality

2 nv,kyp 2
() (19 e ) < CF (Il ) ¥ € P7(2). ©)

From the properties of approximation &f** we can findv"* ¢ H"*N such that

Z/ /%1 }sz th dQ<ZCP00Pz1 2(hy) 2ot

(valH[Hkvp‘H(Q ) < Z NCPO OCmv kvppcgl (hi)g(kvarl) (10)

7

2
< (Ip sy -

By defining the constartt™" = C**0C"** the result follows immediately from (8) and
(10). 0

Our formulation possesses another unique property whichiredtes the discontinuous
components in function of the trace variable that are cotappleontinuous. As a consequence,
we have a full static condensation of pressure at the eleleealt We now define a penalty
bilinear form, at element level, only for the constant comgat of pressure as follows

7 )‘*(hz)A_ _ . _ fQ deQ
b,(q,7) = ——q,7,dQ) with 7, = —* , 11
(4:7) /Q el q I a0 (11)

i
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whereg, r belong toL?(€2), \* and are given by
A = sup{2k,,2(k, +1),2k;+ 1}, X" € {0,1} U Sy,
(dimensional unit of;;)~* if h; has dimension

Sy = (12)
0 if h; is dimensionless

Due to the choice of the parametgrin the penalty bilinear form, the usual convergence
rates will be maintained.

It is necessary to define the bilinear forms associated totbgrals on faces of elements.
So, now we consider the parameters of stabilization defised a

gl = gir gy fri hi [(GVv) niH2 dl’
- P17 /o (GVY) - (V)

; Vv #£0;

ﬁi,l

. 3
6@,* ’ (l )

v E ([Hl(Qz)]N N [Pl’*(Qi)]N)}’ 5i,l,t _ ﬁz*t
Bt e (0,87, B = B> 0,V

with n; being the outward normal unit vector defined almost everywbel;, 3°* andj, are

dimensionless constants and the constahis independent of mesh parametgrsbut depends
onl.

Also, associated with a fixed faeec £°, we consider for eac; € M", the parameter

- 0 if  meas(I';.) =0,
gl = (14)

sup{B", '} if (IyNDy =e),
wheremeas(o) denotes the Lebesgue positive measure.
Still, we consider the spac(I" U T';,,;) and the broken spadé™*(2)]"¥ defined by

T(TUTg) = {re[L*TUl,)]" suchthatthereis
w e [H'(Q)Y andw =1 onT UT,}, (15)
(H™ Q)Y = {v e [L2Q)Y vi e [H™(Q)]"}, (m € {1,2}),
and together with the stabilization parameters defined &), (it is possible to introduce the

bilinear forms defined on the boundary@f. For each(w, ¢, w') € [H**(Q)]N x Ey? x T(T'U
Ti) and(v, r,v') € [H*P(Q)]N x Ey? x T(I' UT;,) we define the following bilinear forms

zel
Qé((wa% ) VTV Z/ ﬁ ‘—W) (Vi_Vf)dF

ecEM0
ﬁz‘,l
+/ (w-v)dl' (16)
r;,nr hl
. ﬁi,l,t
waw) o) = [ Pt wl) - (v < v (17)
r;nr hi
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Qzl((w7 q, W V r, V / GVWZ Ili) —+ qn) . VZdF
+ Z / GVwW;) 1)+ qn;) - (v — vH)dl. (18)
ecEh0

The bilinear formQ}'((w, ¢, w'), (v, 7, v*)), shownin Eq. (17), was presented in do Carmo
et al. (2014). However, in the context of hybridized methisd$e first time. It is important to
mention that our formulation do not use the concepts of jyropse the trace space is composed
by continuous functions off' UT';). Soon, for(2; and<2; such thal’; NT'; = e, wheree emo,
we must havav; = w’ ine.

In this manner, we can deduce the bilinear form associatitiae process of hybridization
via trace space continuo$w, ¢, w') € [H**(Q)]N x Ey? x T(Iine UT) and¥(v,r, v') €
[H>Y(Q)N x EY? x T(T;,, UT) as

athib((w’ q, Wt), (V, r, Vt)) = Z (Qé((wa q, Wt)? (Vv T, Vt))
+Q5" ((w,q. W), (v, 7,v)) + Qi((w, g, W), (v, 7. V")) (19)

—in((V, T, Vt)? (W7 q, Wt))) ’

wherein the negative sign indicates a hybridized contisualiscontinuous Galerkin formula-
tion via trace space continuous with antisymmetric flux. é\ibiat the Dirichlet conditions has
been weakly imposed. This deduction is based on the lastdéthe equation (16), the first
term of the equation (18) and from (19).

Now, for (w,q) € [HY(Q)]N x E,* and(v,r) € [HY(Q)]N x E,*, the local bilinear
forms associated to the differential operator are defined as

a;(w,v) = / G(Vw;) - (Vv;)dQY  and bi(q,w) = / qdiv(w;)dSQ, (20)
Qi Qi
thus, the global bilinear form is given by
Ne
a’h((W7 q)7 <V7 I')) = Z(ai(wv V) - bl(Q7 V) + bi<T7 W)) (21)

i=1

The bilinear form, for(w, ¢, w') € [H**(Q)]N x E}§ x T(I';,, UT) and (v,r,v!) €
[H>Y(Q)]Y x B, x T(T;, UT), is given by
ANCEPE (W g, W), (v, V) =t ((w,q), (v, 7))
+ a"M((w,q, W), (v, 7, v1), (22)

where “C; — DG” denotes the hybridized continuous / discontinuous Galemkéthod via
continuous trace space.
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Now, the linear functionals of our formulation are definedalow

e (vorv) = 3 [ (i (V) + (GVv) in)

— rnﬂg)dr,
Ne
bo(f, (v,r,v")) = Z/ £-vd(, #3)
i=1 7/
bh’ctiDG<V, T, Vt>) = bD(g, (V, T, Vt)> + bO(f7 (V7 T, Vt))'

Finally, our hybridized continuous / discontinuous Gaierformulation via trace space
continuous, consists of finding", p", ut) € HMkN x phke 5 ThkN gatisfying the varia-
tional equation

APCEDE (P phoah) (v g V) +al (0 6" + b(p” )

— bh,Ct—DG(Vh’ (]h, Vh’t), V(Vh, qh,Vh’t) c Hh,kU,N % Ph,kp % Th,lct,N’ (24)
with
Ne A Ne
apo; (0", q") = ani (0".q") and b,(p",¢") => b,0" ¢"), (25)
=1 i=1
hyi h R\ : . . =i ho R\ . .
wherea,,..(p",¢") is as givenin (6) and, (p", ¢") is as given in (11).

4 NUMERICAL ANALYSIS OF THE FORMULATION

In this section, we describe some important results for tiadyais of the proposed method.
The complete demonstrations can be found in do Carmo etud(gted).

4.1 Consistence

We say that a method is consistent if it can replace the exdetien in the variational
problem. Then, letu, p) € [H%(Q)]Y x E}” be the exact solution of the problem model given
by Eg. (1). For eack;, we have

.
—div(GVw;) + Vp; = f anddiv(u;) =0 a.e. inQ,
u, = gonl;NTif meas(I';,NT) > 0,
(26)
w = u; =ub@ on Ty if meas(Ty;) >0,
(GVu;:n; —pn;) = (GVu;:m —pjny) on Iy, if meas(L';;) > 0,
whereu®*xa<t js the trace ofx on ([';,,; U T).
The following result confirms the consistent:
Proposition 2. The formulation defined in (22) is consistent in the senske tha
Ah’Ct_DG((u,p, ut,exact)’ (Vh, (]h, Vh,t)) — bh,Ct—DG’(Vh’ (]h, Vh’t),
V(" q" v € HIN s Pl s ke, (27)
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Proof. The result is an immediate consequence of the equations @i @6), the Theorem of
the divergence and the definition af-“*="% (o, o). O

4.2 Continuity, coercivity and convergence

The idea of this subsection is to show that the bilinear fofrour formulation is continu-
ous and weakly coercive (satisfies thef Sup condition) in a suitable norm. In addition, we
enunciate the error estimates.

In order to obtain this suitable norm, we introduce the fiorals Jy (v, ¢, v*), Jox, (v, ¢, v*)
and.J, 1, (v, q, v*) defined o H**(Q)|N x E;” x T(I';: UT) and the functionall; (v, ¢, v*)
defined onf "*o:N x phke x ThFkN as follow

6o\ ) S
Jo(v.g, v = ) o G [Vvill +THV%H
=1 L

+ G%IW XF( ) |—|)
L(v.q,vh) = :Zl/g((
(HQW qu-Hz)) do,

Jor,(V,q, vt = Z Z / 6 o }VZ—VtH dr, (28)

1=1 ec&h0

ﬁz‘,kv
Jl,kv(V7Q7Vt) = Z

r;nr h
i,kqy,t
+/ 5 Hvl—th dr.
;N

The functionals defined in (28) together with the bilineanfe suggest ofl"F+-V x Phk» x
Thk:N the following norm for the analysis of continuity and coeitsi
1

v 0.V 10, e, = O (v, a. V) + Jin, (V.. vh)) (29)

=0

as well as suggest g/ > (Q)|N x E? x T(Fmt U T) the norm

o)

|I? dT

H (V’ ee Vt) Hz’t—DG,kv,err - JO + Z JZ k” (30)

for the error estimates that will be presented.

With the purpose to prove the the continuity and weak cod#yciin the norm defined by
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the equation (29), it is necessary to defind HA*(Q)]N x Ey* x T(Ty,, UT) the functionals

J2,kU(V>Qth) _ Z Z / (25267 v A—Vlt-Hz

1=1 ecgh0

2h; ¢
bR (IGTv) s+ gml?) ) ar
J3,kv(V7Q7Vt) - Z/ ( Z”2
b (16wl ) ) ar, @

J (V q Vt) _ i/ <Bivkv,t HV.—VI?HQ) dr
4.ky y Yy - - h i i .

7

Moreover, we introduce the classical inverse estimatesiated in eacif); for [ > 1 and
given by

Ci,o,l . sup fF nr Zz . dF + Zeegho fF le ezle ‘er
q#0;0€PL(Q;) fQ lq| 2d$2 )
il iel
cid 2 .o 5 IVI° dr+ze€ghofne el M
= sup ; 7
P @) Jo, ()2 VI a2
G
cizl fQ HVVH ds @2
it o, (1) 2 V72
the identity and the |nequaI|ty satlsfylng
0 v? b
i <% 2 ang ol = ol L .

and still, we consider the following inequalities

/ G, |div(v)| 240 < Ncwl,i/ G|IVv|dQ, W e [HY(Q)]Y,
Q;

Q;

n? [ IValtnz [ i vee @), (@9
Q Q

G; A fQ |75 2dQ
Chori =Sup ——; = € ) p: too= su
" P { G(z) } PO e, { Jo, (h)2 | V75| d©2

whereg; andr; are functions with null mean if;.

Based on these previous definitions, we present a resulestalblishes the continuity of
our formulation. This result is given by the following Lemma

a) Continuity of“A"“=P%(o o) +al (o, 0) + b,(o,0)”

proj
Lemma 1. There is a real constartt, > 0, such that for al(w, ¢, w') € H"FN x phke x
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b)

TN and for all (v, r, vt) € HFeN i phike s ThikeN

|ARCDE (. W), (v, v)) o alhy(0.7) + Byla, )| <

Co H(Wv 9, Wt)HcﬁDG,kv (v, 7, Vt)HthDG,kv ; (35)
with %y = max{((1 + NCyo),C}); i € {1,---, Ne}}.
Proof. The proof of this result can be found in do Carmo et al. (sutaujt O

Now, we present two results that establish the weak cogya@¥the bilinear form: A"~ (o o)+
a’]}mj(o, o) + b,(0,0)” in the norm defined by equation (29). These results are eataati
through the Lemma and Theorem below.

The weak coercivity of A“=PC(o o) + al. (o, 0) + b,(o, 0)”

Lemma 2. There is a real constant;s > 0, such that for allV = (v, ¢, v!) € H"*N x
Phkv 5 ThkeN there existdW = (w,r, w') € HWFN x phke x ThkeN dependent oV
satisfying

Ah’Ct_DG(Va W) + aZroj(Qa 7) +l_?p(q, r) > Crs ||V||Ct—DG,kU ||W||Ct—DG,kU )
W = (1-w)V+w(VE+V?, we(0,1), (36)
with Ve = (v®,0,ve!) and V? = (v?,0,0) belonging toH %o~ x Phke 5 kN,

Proof. The proof of Lemma 2 can be found in do Carmo et al. (submitted) O

Theorem 1. There exists a real constaal s > 0 independent of the mesh parameters such
that

Y

Ah,ct—DG a b h ' -
inf sup (aV ’ M ) + apTZ] (Q7 T) + bp(q, T) )
HV ||Ct—DG,kU ||V ||Ct—DG,k‘U

VP = (w,q,w') £ 0; VP e HMoN s phvlo Th’kt’N}? (37)

Ve = (v,r,v) #0; V*c H" N x phhe T’“’““N} > COrs.

Wlth CIS — (1—w)+w(C;iO+(CB,1)1/2) .

Proof. The proof of this Theorem follows directly from Lemma 2, defjC; s as above.
O

Theorem 2. The variational problem defined in (22) is well posed in thessethat the
solution exists and is unique.

Proof. The result follows the fact that the linear functional giv®n(23) is continuous, the
bilinear forms are continuous and weakly coercive andgfioee, is a direct consequence of
theNetasTheorem given in Ern & Guermond (2004). O
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4.3 Convergence properties of the approximate solution

We consider the following error functions

fh — (uh _ u’ph —p, ut — ut,ea:act)’
Zh,I — (uh,I o u,ph’I —p, uh,t,] _ ut,exact)’ (38)
,Eh,h,l _ (U_h o uh’l,ph . ph,l7 U_h’t . U_h’t’l),

with (u,p) € ([((H»THQ)IN N [CO(QUT)Y) x (H»*1(Q) NC°(QUT)) as being the exact
solution of the problem defined in (1)-¢*** as being the trace afin (I';,,UT), (u!, pf uht 1)
the usual interpolant dfu, p, u*¢*e<*) and(u”, p", u*) the solution of the variational problem
defined by (22).

From (38) and the properties of approximation/f*» we obtain

|

Lemma 3. The solution(u”, p*, u!) converges to the interpolarti™!, p"! u™!) with the
following convergence rate

1 - Pi,
HEhﬁJHCﬁDG,kU,err < Hfhﬁ’[HcﬁDG,kv < C—IS <<; NCZ‘ROCSP GLl

gh — ghly phhl

2
h,I d,P ||, |2 .
Pi Hmkpﬂ)(ﬂi) S sz ||H(k”+1)(9i) V. (39)

(2

1/2
x (hy) 2ker ) ||pi||§{<kp+1)(m> + (3 (1 + 2(Co, )+

1 1/2
(Promas + 12+ 14 (14 C20)?)) % x <JO(£h,I) +> Jl,wsh’f)) (40)
(=0

N, 1/2
; (Z NP () ||pi||2<kp+n<m>> ,
1=1

where\* and A are as given in (12) andl,, = inf{k,, k, }.

Proof. The proof of this Theorem can be found in do Carmo et al. (sttbaji O

Lemma 4. The solution(u”, p", u!) converges to the exact solutign, p, u****<) with the
following well-established convergence rate

< 1",

HZ:hHthDG,kv,err - (41)

h,h,IH
— DG ky,err + Hf Ct—DG ky,err’

Proof. From equations given in (38), the triangular inequality &echma 3, the result follows
immediately. O

5 NUMERICAL EXPERIMENTS

In this section several numerical experiments are predenterder to verify the accuracy
and robustness of thé, — DG method developed in this paper.

All the numerical experiments were performed using tridagmeshes, wherein each side
of a square domain was uniformly discretized with 10, 20,480 ,50, 60, and 70 partitions, for
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obtaining meshes nearly regular. The valiié = 25 was chosen because it allows an adequate
capture of the singularities of pressure on the cornerseofrtsh as well as leads to a solution
with the best properties of robustness for problems withatimsolution. Also, we adopted the
viscosityG = 1 in our simulations.

We use interpolatio?2— P1— P2 for the velocity, pressure and trace variable, respegtivel
for theC; — DG, the one presented in do Carmo et al. (2015) and’the DG+ methods. Itis
important to mention that thé, — DG+ method is our method without using the Eq. (17), using
only the Dirichlet conditions imposed strongly in the spa&e". Although theC, — DGx
method does not use the Eq. (17), its computational coseisame order of thé, — DG
method. However, th€; — DG method has the best robustness due to the inclusion of this
equation, as will be seen in the following experiments. Ve aiclude the classical continuous
Galerkin method in our numerical experiments.

As previously mentioned, one of the advantages of our foatrari is the reduction of the
number of degrees of freedom in relation to the usual hybediimethods. The degrees of
freedom ofC, — DG and(C; — DGx methods are associated only with the velocity, i.e, the
constant component as well as the null mean component anénated completely. These
components are not eliminated in the do Carmo et al. (201 alerkin methods.

We must call the attention that, even that the results pteddrere just use interpolation
P2 — P1 — P2, the polynomial degree for the pressure can assume any eqlwad or higher
than zero, as long as the polynomial degree for the velocitythe space trace are equal or
higher than two. This conclusion is deduced through the Lasnand Theorems mentioned
before and from definition of spaces in Eq. (3).

The numerical experiments are divided into two kinds. Ttet,fthe cavity problem, has as
goal to verify the performance of the four methods mentiomeyiously for capturing singu-
larity of pressure on the corners of the mesh. The secondisygieide in two problems with
smooth solution. In the first problem the pressure is nulll@koundary of the domain and
for the second the pressure is not null on two faces of the denyrof the domain. These two
choices have the objective of verifying the robustnessefdlir methods to obtain the pressure
on the boundary.

5.1 Experiment 1: the cavity problem

The cavity problem is modeled by
—div(Vu)+Vp=0 and div(u)=0 a.ein,

4
w, = 0 on UFmand uy =0 on T,Ul3UTy, (42)
m=1

up = 1 on {(0.5,y); —0.5 <y < 0.5},

with © = (—0.5,0.5)x (—0.5,0.5), T’y = {(—0.5,1); =0.5 < y < 0.5}, 'y = {(0.5,4): —=0.5 <
y < 0.5} Ty ={(z,-0.5); —0.5 < z < 0.5} andl'y = {(z,0.5); —0.5 < z < 0.5}.

In order to obtain the graphs that permit a sensitivity asialyor the singularities of the
pressure, we normalize the pressure using’té& (Pressure Multiplication Factor)which rep-
resents the maximum value of the module of pressure. Thexdfor each graph that represents
the elevation of the pressure, we must multiply the valuemim the graph by the respective
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value of theP M F that is associated to the graph.

The elevation of the pressure normalized through the qooresentP M F' is presented
in Figure 1 (right side) for th&€’, — DG method. In the table of Figure 1 are presented the
PMF for the four methods analyzed. We observe that@he- DG method has an ability
slightly better for capturing the singularities. In additj we note greater ability of the methods
C; — DG, C; — DG* and do Carmo et al. (2015) to capture the singularities optbesure on
the corners than of the Galerkin method.

Method PMF
C, - DG 1313.38 ;é%‘gg —
do Carmo et al. (2015) 1231.75 o = - o
C, — DG+ 1361.08 R e
Galerkin 1179.55

Figure 1: Ability to capture singularities.

In Figure 2 we present the results for the discontinuousoviglolt must observed that the
four methods have equivalent behavior.

0.2 S be 0.2 C DG ——
0.15 CDGY ot 0.15 CDG* |
i do Carmo et al (2015) @ do Carmo et al (2015)
01 f Galerkin s 0.1 Galerkin .
005 }(f \ 0.05
0
5 o0 ! S S~
-0.05 \ ; o1 \ _f{
—01 \ / 015 '\ .H'F
-0.15 . F" -0.2
-0.2 -0.25
-06 -04 -02 0 02 04 06 -06 -04 -02 0 02 04 06
Y Y
(@) Component of velocity? = Uy;y =Y (b) Component of velocity = Us;y =Y

Figure 2: Components of velocityu and u on sectionz = 0.

5.2 Experiment 2: smooth solutions
Following Donea & Huerta (2003), we consider the Stokes lgrmbon the squar€ =
(0,1) x (0,1) andI" being the boundary ab
—div(Vu)+Vp=f and div(u)=01inQ2 and u=0 onT, (43)
with a known analytic solution given by

up = 2%(1 — 2)%(2y — 6y +4y%), uy = —y*(1 — y)*(2x — 62° + 42°)

4

p = sin(7x) sin(my) — 5 (44)
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The components df are given by:
fi = (12— 24y)a* + (—24 + 48y) 2> + (—48y + 72y* — 48y® + 12)2?
+ (=24 24y — 7297 + 48y )x + 1 — 4y + 12y* — 8y* — (1 — 22)
+ mcos(mz) sin(my) (45)
fo = (8 =48y +48y%) 2 4 (=12 + 72y — 72y*)2” + (4 — 24y + 48y
48y° 4 24y w — 129 + 24y° — 12y* + msin(7z) cos(y).
The analytic solution described previously was used to agefhe errors presented in

Figure 3. We exhibit the error for the velocity and for theetiyent of the velocity in thé?(Q)
norm. Also, we exhibit the error in thE' seminorm for the velocity.

12 12

CiDG —»— Ci—DG —»—
do Carmo et al (2015) ----x-- 1 do Carmo et al (2015) -]
11 C-DG* @ .4 C~DG* @
Galerkin - 10 Galerkin =
10 =
/. °
w9 o woog
o
8 7
‘/
7 6 Er '
] p/ 5 F
22 24 26 28 3 32 34 36 38 4 42 22 24 26 28 3 32 34 36 38 4 42
[Ln(h)l [Ln(h)l
(@) E=|Ln(|[u—u||2)] (b) E =|Ln(||divu — divu®|| 2)|

11

C—DG —»—
do Carmo et al (20152 ren e
C—DG* @ 1

10

Galerkin

22 24 26 28 3 32 34 36 38 4 42
[Ln(h)l

(c) E= |Ln(|u - uh|H1)|

Figure 3: (Module of L,, of error) x |L,(h)].

As can be seen in Figure 3(a) it is possible infer that therexfrthe velocity in theL?(2)
norm for all the methods are equivalent, i.e, they have theesaccuracy. On the other hand,
in Figure 3(b) theC; — DG method provides an accuracy slightly better in fi¥€2) norm
when compared with the do Carmo et al. (2015) &)d- DGx methods for the divergent
of the velocity and, therefore, a better representatiorhefihcompressibility of the velocity
field. From Figure 3(c) we observe that the method presentedd paper has accuracy slightly
better for the velocity in théZ' seminorm than the other three studied methods. However, alll
the methods have the same convergence rates.
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Finally, we can deduce from the graphs presented that therkaimethod has the smaller
accuracy and that the other methods present an excess @irgence in relation to the Galerkin
method.

Itis important to observe that the graphs presented in Ei§(o) are approximately parallel
straight lines, indicating that the four methods have esjeivt convergence rates, including the
Galerkin method. Due to this fact, we present in Figure 4 thesergence rates only for the
C; — DG method.

9.79
9.23
8.66 |
8.10
E 753 |
6.97
6.40

10.22
9.64
9.07
8.50

E 792
7.35
6.77

| |

5.84 2.22 2.85 3.48 4.11 6.20 2.22 2.85 3.48 411
| Ln(h) | | Ln(h) |

(@) E =|Ly(||diva — diva"|[ )] (b) E=|Ly([u—u”||,2)]
9.34

8.77 |

8.21 -

7.64 -

E 7.08 |

6.51

5.95

|

5.38 2.22 2.85 3.48 411
[Ln(h)|

(c) E :‘Ln(|uf uh|H1)‘

Figure 4: Convergence rates forC; — DG method.

From Figure 4(a) we conclude that the convergence rate imdne L*(2) is optimal
for the divergent of the velocityO((hmean)*)). In the Figure 4(b) we can observe that the
convergence rate is suboptimal for the velodi€¥((h.,can)™)) in the normL?(Q2). Notice
that in the Figure 4(c) the convergence rate for velocityhimsemi norm /' (Q2)]V is optimal
(O((hmean)*))-

The Dirichlet conditions weakly imposed does not allow usktain the optimal con-
vergence rate in the norrh?($2) for the velocity. Also, it is well known that the symmetric
formulation results in suboptimal in the norfit(€2) for the velocity if we use even degree
polynomials.

In Table 1 we compare the accuracy of the pressufé {f2) norm for the simulated meth-
ods. From Table 1 we can infer that, for the pressure, the auustrate solution was obtained
with theC; — DG method, followed by th€’, — DG* method.
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="l .-

Table 1: Accuracy of the pressure for the methods using; s
mean H

homean | Cy — DGx | Galerkin| C; — DG | CARMO et al(2015)
0.10789| 4.91273 | 6.03328| 3.46292 6.31028
0.05775| 2.71630 | 6.98783| 2.80741 5.88636
0.03814| 5.17891 | 8.20402| 4.27345 6.90431
0.02862| 4.91740 | 8.06011| 3.35187 6.31424
0.02274| 3.57151 | 4.73772| 2.92005 4.89807
0.01901| 5.02347 | 7.81667| 2.50352 6.77887
0.01630| 3.36633 | 4.74439| 1.80752 4.84615

In Figure 5, we present the elevation of the pressure foCthe DG method (right side).
The exact value of pressure {0.5,0.5) = 1.0000. Notice that, in the table of Figure 5, the
C; — DG method is more accurate to obtain the pressure than thesotHemever, the other
three methods can be considered as having a similar penmaena

Method Sol p”
(1)-0005
— — 0.75
C; — DG 1.0005 507503
do C tal. (2015) 1.0020 D00
o Carmo et al. ) -0.000 N .
( 02 ae 5 2 }:\%%?\‘&‘\‘& s
_ 0. . N
Cy — DG 1.0011 x 08
Galerkin 0.9962

Figure 5: Elevations of the pressure” = Sol.

For the domain defined by = (0,1) x (0, 1) wherel is the boundary of2, consider the

following problem

—div(Vu)+Vp=f and div(u)=0inQ and u=0 onT, (46)
with the components df being given as follow

fi = (12— 24y)a* + (—24 + 48y) 2> + (—48y + 72y* — 48y° + 12)2?

+ (=24 24y — 727 + 48y )z + 1 — 4y + 129° — 8y° (47)
fo = (8—48y +48yH)a® + (=12 + 72y — 72y*)x? + (4 — 24y + 48y*
48y> + 24yt w — 12y% + 24y° — 129,

The exact solution of this problem is given as follows

up = 2°(1 —2)*(2y — 6y* +49°), wuy = —y*(1 —y)*(2x — 62% + 42°)

1

p = x(l—:c)—é. (48)
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The elevations of the pressure obtained with@he- DG method (right side) are presented
in Figure 6. The exact value of pressure(in5,0.5) = 0.25000. In the table of Figure 6
is presented the approximate solution of the pressure &fdilr methods analyzed. We can
observe that thé'; — DG method showed a better performance in relation to the otle¢hads
for determining the maximum elevation.

Method Solp"
0.2500¢
0.1
C, — DG 0.25000 302! 7
20y RIS ess
0.06 e et
do Carmo et al. (2015) 0.25066 S S
C, — DG 0.25196 Y R oor 080
Y°- 142 142 X
Galerkin 0.25055

Figure 6: Elevations of the pressure” = Sol.

We end this numerical experiment presenting in Figure 7 taplts for the pressure evalu-
ated on sectiop = 0 for the four methods studied, together with the exact sofuti

2547.02 . i .
2182.61 f / .
1818.21 } / _
1453.81 } W ]
o ;
1089.41 } .
725.00 } Exact 1
do Carmo et al (2015) -
360.60 | C-DG* _
' Galerkin -
Ct_DG —————
-3.79 . ;
0 333.33 666.66 1000
X

(@) 10*Pressure=Pt03 x=W; on sectiony = 0

Figure 7: Pressure for the four methods and the exact solutio.

We can observe that the, — DG method, the Galerkin method and the do Carmo et al.
(2015) method agree very well with the exact solution. HasvetheC;, — DG« method presents
small oscillations when compared with the exact solutiore &njecture that the lack of the
bilinear form given in (17) together with fact that this methuses strong Dirichlet condition
for the component of trace space are the causes of this.
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6 CONCLUSIONS

In this paper, we developed a hybridized continuous / disecoaus Galerkin formulation
via continuous trace space applied for the Stokes problempraviously mentioned, one of
the differentials of our formulation is the penalty biliméarm. This formulation was presented
in order to perform a full static condensation of pressurelament level, i.e, the constant
component as well as the null mean component are eliminaegletely. Moreover, it was
introduced in order to not change the usual convergencs.rate

In order to verify the proposed methodology, we presentechtimerical results with the
goal to confirm the convergence rates, the robustness andaagcof the proposed formula-
tion. A satisfactory agreement was observed between thencahresults and the analytical
solution. It must observed that tlie — DG* method showed an ability approximatelys3
percent better than theé, — DG method for capturing singularities of pressure on the asine
I.e, these methods were quasi equivalent in what sing@sitapture is concerned. However,
for the other methods used in the comparison,i@he- DG method presented the better abil-
ity for capturing the singularities of the pressure for thgity problem. The second case was
the problems with smooth solution. For this case, €dhe- DG method presented the best
performance in relation to the other methods.
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