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Abstract. Vibration analysis of a beam is an important subject of study in engineering. All
real physical structures, when subjected to loads or displacements, behave dynamically. In case
of structure with large aspect ratio of height and length the Timoshenko beam theory (TBT) is
used, instead of the Euler-Bernoulli theory (EBT), since it takes both shear and rotary inertia
into account. Shear effect is extremely large in higher vibration modes due to reduced mode
half wave length. In this paper, the full development and analysis of TBT for the transversely
vibrating uniform beam are presented for classical boundary condition. Finally, a finite element
is developed in terms of dimensionless parameters of rotatory and shear. The stiffness and mass
matrices for a two-node beam element with two degree of freedom per node is obtained based
upon Hamilton’s principle. Cubic and quadratic Lagrangian polynomials are made interde-
pendent by requiring them to satisfy both of the homogeneous differential equations associated
with TBT. Numerical examples are given for some boundary conditions. The results showed
that for frequencies above critical frequency, Timoshenko beams presents distinct mode shapes
behavior including the presence of double eigenvalues, shear mode or remarkably modes.
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Finite element analysis of shear-deformation and rotatory inertia for beam vibration

1 INTRODUCTION

Although the classical Euler-Bernoulli theory predicts the frequencies of flexural vibration
of lower modes of slender beams quite accurately, it becomes inaccurate at higher modes or
for deep beams where the effects of transverse shear deformation and rotatory inertia become
significant. Beam theory with both contribution of rotary inertia and shear deformation was
initially proposed by Timoshenko (1921). The results of that formulation were more accurate
for thicker beams than the theories developed previously by Euler and Bousquet (1744) and
Rayleigh (1877).

Traill-Nash and Collar (1953) found the governing equation of dynamic motion for Tim-
oshenko beams and the frequency equations for some boundary conditions. In their research,
they observed the presence of a new spectre of frequency for free-free and hinged-hinged cases.
Anderson (1953) and Dolph (1954) confirmed the results obtained by Traill-Nash and Col-
lar (1953). In order to improve Timoshenko beam results for higher frequencies (frequencies
above critical frequency), Cowper (1966) developed a general expression for shape factor based
on elasticity. Thomas and Abbas (1975), Downs (1976) and Levinson and Cooke (1982) are
credited for studies on the dynamic behavior of Timoshenko beams from higher frequencies.
Han et al. (1999) was the first to present a wider study of beams in general by discussing the
four theories (Euler-Bernoulli, Rayleigh, Shear and Timoshenko).

New numerical methods developed from the middle of the past century provide a better and
more convenient tool. Among them, the method of finite elements is definitely unmatched. Dur-
ing the last years, different finite elements were developed to study the behavior of Timoshenko
beams. They are distinguished into the choice of interpolation functions for mathematical de-
scription of beam deflection and cross-section rotation and can be divided into two classes,
simple and complex. A simple element is one which, for unidirectional bending in a principal
plane, has a total of four degrees of freedom, two at each of two nodes. A complex element is
one with more than four degrees of freedom, having more than two degrees of freedom at a node
or more than two nodes (Tessler and Dong, 1981). The first Timoshenko-type element was due
to McCalley (1963), who developed a two-node four dof (degrees of freedom) element. This
was extended to tapered beams by Archer (1965). Severn (1970) and Davis et al. (1972), using
slightly different approaches, arrived at the same or equivalent results as McCalley (1963). The
commonality among these formulations is that they begin with a displacement characterization
as the sum of a bending deflection and shear deflection. By means of a statical moment-shear
equilibrium condition, these two deflections can be combined into one. In this connection, men-
tion is made of a similar procedure used by Egle (1969) to arrive at an approximate version of
Timoshenko beam theory that was employed by others in their beam element formulations.

Beam elements based on variational principle include those by Carnegie et al. (1969) and
Dong and Secor (1973). A highly attractive feature with this approach is that onlyCO continuity
of v and θ is required for full interelement continuity. Here the distribution of the two kinematic
variables that describe the beam translation and rotation are assumed using Lagrangian inter-
polation functions. Nickell and Secor (1972) and Thomas et al. (1973) tried different order
polynomials for the two different variables, where again the order of one of the polynomials
was larger than required. All of these elements gave reasonable results for short thick beams,
but produced overly stiff results (commonly known as shear-locking) for long slender beams.

Hughes et al. (1977) was the first to develop a low-order two-node element based upon
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linear polynomials (two dof/node) for each of the variables. This element, which was formu-
lated using selective reduced integration, produced reasonably accurate results over a broad
range of beam thickness/length ratios (i.e., free of shear-locking). Tessler and Dong (1981) use
a polynomial for the translational displacement v that is one-order higher than the rotational
displacement θ and then impose a constraint that makes the two polynomials interdependent.
The imposed constraint is equivalent to requiring the displacements to satisfy one of the par-
tial differential equations associated with the homogeneous form of Timoshenko beam theory.
Friedman and Kosmatka (1993) extended the approach of Tessler and Dong (1981) to include
two constraints using a cubic and quadratic Lagrangian polynomials for the transverse and ro-
tational displacements, respectively, where the polynomials are made interdependent by requir-
ing them to satisfy both of the homogeneous differential equations associated with Timoshenko
beam theory.

In this paper, the motions equation are derived from Euler-Lagrange equation. The effects
of transverse shear deformation and rotatory inertia are included in the governing equations. The
stiffness and mass matrices for a two-node beam element with two dof/ node is obtained based
upon Hamilton’s principle. Cubic and quadratic Lagrangian polynomials are made interdepen-
dent by requiring them to satisfy both of the homogeneous differential equations associated
with TBT. Mode shapes and frequencies curves were determined for some boundary conditions
in order to investigate Timoshenko beam behavior for higher frequencies. The results obtained
by Finite Element Method (FEM) are discussed and compared with analytical solutions.

2 TIMOSHENKO BEAM MODEL

Timoshenko (1921) proposed a beam model which includes both rotatory inertia and shear
deformation effects to classical theory. Timoshenko theory is a major improvement for non-
slender beams and for high-frequency responses where shear or rotary effects are not negligible.
The potential energy of the beam is derived partly from the bending deformation and partly from
the shear deformation. Therefore, total potential energy is given by:

U =
1

2

∫ L

0

EI

(
∂ψ(x, t)

∂x

)2

dx+
1

2

∫ L

0

κGA

(
ψ(x, t)− ∂v(x, t)

∂x

)2

dx, (1)

where L is the length of beam, A, the cross-sectional area, I , the moment of inertia of cross
section, E, the modulus of elasticity, G the modulus of rigidity, κ is the shape factor or shear
coefficient, v(x, t) is the transverse deflection and ψ(x, t) is the total slope at the axial location
x and time t.

The kinetic energy of the beam is derived partly from the motion of translation and partly
from the rotation and is given by:

T =
1

2

∫ L

0

ρA

(
∂v(x, t)

∂t

)2

dx+
1

2

∫ L

0

ρI

(
∂ψ(x, t)

∂t

)2

dx, (2)

where ρ is the mass per unit volume. Equation of motion is obtained using Hamilton’s principle:∫ t2

t1

δ(T − U)dt+

∫ t2

t1

δWncdt = 0, (3)
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Suzana Moreira Ávila (Editor), ABMEC, Brası́lia DF, Brazil, November 6-9, 2016



Finite element analysis of shear-deformation and rotatory inertia for beam vibration

where δWnc is the virtual work done by non conservative forces, t1 and t2 are times at which
the configuration of the system is known and δ( ) is the symbol denoting virtual change, in
the quantity in parentheses. Substituting Eq. (1) and Eq. (2) on the Eq. (3) and, after some
manipulations, we have two coupled equations expressed as:

ρA
∂2v(x, t)

∂t2
+ κGA

(
∂ψ(x, t)

∂x
− ∂2v(x, t)

∂x2

)
= 0, (4)

κGA

(
ψ(x, t)− ∂v(x, t)

∂x

)
− EI ∂

2ψ(x, t)

∂x2
+ ρI

∂2ψ(x, t)

∂t2
= 0. (5)

Equations (4) and (5) can be expressed as two decoupled equations:

EI
∂4v(x, t)

∂x4
+ ρA

∂2v(x, t)

∂t2
− ρEI

κG

∂4v(x, t)

∂t2∂x2
− ρI ∂

4v(x, t)

∂x2∂t2
+
ρ2I

κG

∂4v(x, t)

∂t4
= 0, (6)

EI
∂4ψ(x, t)

∂x4
+ ρA

∂2ψ(x, t)

∂t2
− ρEI

κG

∂4ψ(x, t)

∂t2∂x2
− ρI ∂

4ψ(x, t)

∂x2∂t2
+
ρ2I

κG

∂4ψ(x, t)

∂t4
= 0. (7)

Assume that the beam is excited harmonically with an angular frequency ω and

v(x, t) = V (x)ejft, ψ(x, t) = Ψ(x)ejft,

ξ = x/L, b2 =
ρAL4

EI
ω2, with ω = 2πf, (8)

where j =
√
−1, ξ is the non-dimensional length of the beam, f is the natural frequency

and V (x) and Ψ(x) are the normal functions of v(x) and ψ(x) respectively. Substituting the
relations presented in Eq. (8) into Eqs. (6 - 7) and omitting the common term ejft we obtain:

∂4V (ξ)

∂ξ4
+ b2s2

∂2V (ξ)

∂ξ2
+ b2r2

∂2V (ξ)

∂ξ2
+ b4r2s2V (ξ)− b2V (ξ) = 0, (9)

∂4Ψ(ξ)

∂ξ4
+ b2s2

∂2Ψ(ξ)

∂ξ2
+ b2r2

∂2Ψ(ξ)

∂ξ2
+ b4r2s2Ψ(ξ)− b2Ψ(ξ) = 0, (10)

where r and s are coefficients related with the effect of rotatory inertia and shear deformation
given by:

r2 =
I

AL2
and s2 =

EI

κAGL2
, (11)

We must consider two cases when obtaining Timoshenko beam model spatial solution. In
the first case, assume:√

(r2 − s2)2 + 4/b2 > (r2 + s2) which leads to b <
1

(r s)
, (12)

while in the second√
(r2 − s2)2 + 4/b2 < (r2 + s2) which leads to b >

1

(r s)
. (13)
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Substituting b = 1/(rs) in b relation presented on Eq. (8), we have the critical frequency
expressed as:

ωcrit =

√
κGA

ρI
or fcrit =

√
κGA/ρI

2π
. (14)

We call this cutoff value bcrit = 1/(rs). When b < bcrit the solution of Eqs. (6) and (7) can
be expressed respectively, in trigonometric and hyperbolic functions:

V (ξ) = C1cosh(αt1ξ) + C2sinh(αt1ξ) + C3cos(βtξ) + C4sin(βtξ), (15)
Ψ(ξ) = C ′1sinh(αt1ξ) + C ′2cosh(αt1ξ) + C ′3sin(βtξ) + C ′4cos(βtξ), (16)

with

αt1 =
b√
2

[
−(r2 + s2) +

√
(r2 − s2)2 +

4

b2

]1/2
(17)

and

βt =
b√
2

[
(r2 + s2) +

√
(r2 − s2)2 +

4

b2

]1/2
. (18)

Equations (15) and (16) have two eigenvalues, αt1 and βt, that are related with trigonomet-
ric and hyperbolic sines and cosines, respectively. When b > bcrit the solution V (ξ) and Ψ(ξ)
can be expressed only in trigonometric functions:

V (ξ) = C1cos(αt2ξ) + C2sin(αt2ξ) + C3cos(βtξ) + C4sin(βtξ), (19)

Ψ(ξ) = C
′
1sin(αt2ξ) + C

′
2cos(αt2ξ) + C

′
3sin(βtξ) + C

′
4cos(βtξ), (20)

with

αt2′ = j
b√
2

[
(r2 + s2)−

√
(r2 − s2)2 +

4

b2

]1/2
= j αt2 (21)

and

βt =
b√
2

[
(r2 + s2) +

√
(r2 − s2)2 +

4

b2

]1/2
. (22)

Notice that αt2′ values are always complex. The Equations (19) and (20) have two eigen-
values αt2 and βt which leads to two pair of frequency equations for each boundary conditions.
The relations between the coefficients in Eqs. (15) and (16), or Eqs. (19) and (20) can be found
in Huang (1961) and Soares and Hoefel (2015).

In the literature, some researchers adopted a terminology to separate these pairs in two
distinct spectra: the ”first spectrum” for b < bcrit and the ”second spectrum” for b > bcrit.
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Traill-Nash (1953) first claimed the existence of double eigenvalue for hinged-hinged boundary
conditions for b > bcrit. They noted that modes shapes given by Eq. (15) are similar to Eq. (19).
Due to this phenomena the frequencies found were separated in two distinct spectra: the first
spectrum which is represented by sin(βt) = 0 and the second spectrum which is represented by
sin(αt2) = 0. However, Downs (1976) noted that mode shapes of each spectra of frequencies
although similar are distinct, because deformations due to shear and deflection are of the same
phase and are summed to give the total transverse deflection for b < bcrit, while for b > bcrit
the shear and bending deformation are opposed with the net transverse deflection equal to their
difference as can be observed in Fig. 1.

@V

@ξ
θ

Ψ
Ψ

θ

@V

@ξ

a)Ψ = θ + @V

@ξ
b)Ψ = θ −

@V

@ξ

Figure 1: Free vibration of Timoshenko beam: (a) b < bcrit ; (b) b > bcrit

Table 1 presents frequency equations obtained considering b < bcrit and b > bcrit for
clamped-clamped ( c-c ), hinged-hinged ( h-h ) and sliding-sliding( s-s ) Timoshenko beam.

Table 1: Frequency equations of Timoshenko model

frequency equation (b < bcrit)

c-c 2− 2cosh(αt1)cos(βt) +
b(b2s2(r2 − s2)2 + (3s2 − r2))√

1− b2r2s2
sinh(αt1)sin(βt) = 0

h-h sin(βt)sinh(αt1) = 0

s-s
b2s2(α2

t1 − β2
t )(b2s2(β2

t − α2
t1) + 2β2

t α
2
t1)

αt1β3
tL

2
sin(βt)sinh(αt1) = 0

frequency equation (b > bcrit)

c-c 2− 2cos(αt2)cos(βt) +
b(b2s2(r2 − s2)2 + (3s2 − r2))√

b2r2s2 − 1
sin(αt2)sin(βt) = 0

h-h sin(αt2)sin(βt) = 0

s-s
(β2

t − α2
t2)s

αt2βt
sin(βt)sin(αt1) = 0

Soares and Hoefel (2015) observed that, when r and s approaches zero, TBT frequency
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equations becomes identical to EBT frequency equation and that bcrit approaches infinity. It can
be observed in Eq. (8) that if bcrit approaches infinity, fcrit can no longer be defined, in fact fcrit
only appears if both rotatory inertia and shear deformation effects are considered.

The natural frequency f is written in terms of two eigenvalues (αt1 and βt or αt2 and βt )
as follows (Huang, 1961):

fi =

√
β2
t − α2

t1

2π
√
r2 + s2

(
EI

ρAL4

)1/2

with i = 1, 2, ..., n. when b < bcrit, (23)

fi =

√
β2
t + α2

t2

2π
√
r2 + s2

(
EI

ρAL4

)1/2

with i = 1, 2, ..., n. when b > bcrit. (24)

3 FINITE ELEMENT FORMULATION

The element model is showed in Fig. 2, the generalized coordinates at each node are V , the
total deflection, and Ψ, the total slope. This results in a element with four degrees of freedom
thus enabling the expression for V and Ψ to contain two undetermined parameters each, which
can be replaced by the four nodal coordinates.

Ψj

VjVi

Ψi

le

x; ξ

ξi = −1 ξj = 1

i j

Figure 2: Beam element

Using the non-dimension coordinate ( ξ ) and element length le defined in Fig. 2, the dis-
placement V and total slope Ψ can be written in matrix form as follows:

V = [N(ξ) ]{v }e and Ψ = [N(ξ) ]{v }e. (25)

where

[N(ξ) ] = [N1(ξ) N2(ξ) N3(ξ) N4(ξ) ], (26)

[N(ξ) ] = [N1(ξ) N2(ξ) N3(ξ) N4(ξ) ]. (27)

In the current development, a cubic shape and a quadratic shape functions are proposed,
respectively, as follows:

Ni(ξ) =
3∑

i=0

λi ξ
i and N i(ξ) =

2∑
i=0

λi ξ
i, (28)

where λi and λi are shape functions coefficients. These coefficients are determined by requiring
shape functions Ni and N i to exactily satisfy both homogeneous form of TBT static equations
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of equilibrium:

κGA

(
∂ψ

∂x
− ∂2v

∂x2

)
= 0, (29)

κGA

(
ψ − ∂v

∂x

)
− EI ∂

2ψ

∂x2
= 0. (30)

The displacements functions in Eqs. (26) and (27) can be expressed in terms of dimension-
less parameters of rotatory ( r ) and shear ( s ) :

Ni(ξ) =
1

4(3s2 + 1)


2(3s2 + 1)− 3(2s2 + 1)ξ + ξ3

a [3s2 + 1− ξ − (3s2 + 1)ξ2 + ξ3]

2(3s2 + 1) + 3(2s2 + 1)ξ − ξ3

a [−3s2 − 1− ξ + (3s2 + 1)ξ2 + ξ3]

 , (31)

and

Ni(ξ) =
1

4(3s2 + 1)


a (3ξ2 − 3)

−1− 2(3s2 + 1)ξ + 6s2 + 3ξ2

a (3− 3ξ2)

−1 + 2(3s2 + 1)ξ + 6s2 + 3ξ2

 , (32)

where a = le/2.

Potential and Kinetic energy expressions presented in Eqs. (1) and (2) for an elemental
length le of a uniform Timoshenko beam are given by:

Ue =
1

2

EI

a

∫ 1

−1

(
∂Ψ

∂ξ

)2

dξ +
1

2

EI

a s2

∫ 1

−1

(
1

a

∂V

∂ξ
−Ψ

)2

dξ, (33)

Te =
1

2
ρAa

∫ 1

−1

(
∂V

∂t

)2

dξ +
1

2
r2ρAa3

∫ 1

−1

(
∂Ψ

∂t

)2

dξ, (34)

where V is the deflection, Ψ and ∂V/∂ξ are the total and bending slope, respectively. Substi-
tuting the displacement expression (Eq. 25 ) into the potential energy ( Eq. 33 ) gives:

Ue =
1

2
{v}Te

[
EI

a

∫ 1

−1
[N(ξ)

′
]T [N(ξ)

′
]dξ

]
{v}e +

1

2
{v}Te

[
EI

a s2

∫ 1

−1
[N(ξ)′ −N(ξ)]T [N(ξ)′ −N(ξ)]dξ

]
{v}e , (35)

where [N(ξ)′] = [∂N(ξ)/∂ξ]. Therefore the element stiffness matrix is given by:

[ke] =

[
EI

a

∫ 1

−1
[N(ξ)

′
]T [N(ξ)

′
]dξ +

EI

a s2

∫ 1

−1
[N(ξ)′ −N(ξ)]T [N(ξ)′ −N(ξ)]dξ]

]
. (36)
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Substituting the displacement expression ( Eq. 25 ) into the kinetic energy ( Eq. 34 ) gives:

Te =
1

2
{v̇}Te

[
ρAa

∫ 1

−1
[N(ξ)]T [N(ξ)]dξ + r2ρAa3

∫ 1

−1
[N(ξ)]T [N(ξ)]dξ

]
{v̇}e, (37)

Therefore the element mass matrix is given by:

[me] =

[
ρAa

∫ 1

−1
[N(ξ)]T [N(ξ)]dξ + r2ρAa3

∫ 1

−1
[N(ξ)]T [N(ξ)]dξ

]
. (38)

4 NUMERICAL RESULTS

This section presents numerical examples for Timoshenko beams subjected to four bound-
ary conditions: hinged-hinged, slinding-slinding , hinged-slinding and clamped-clamped. These
boundary conditions are defined in Table 2. The same parameters value are considered for all
examples. A beam of rectangular cross section such that L = 0.5m, H/L = 0.25, κ = 5/6,
E = 210GPa, G = 80.8GPa and ρ = 7850 kg/m3 are considered. The values at inertia ro-
tary and shear deformation factors, are respectively, r = 0.0722 and s = 0.1275. This example
was presented by Levison and Cooke in 1982.

Table 2: Boundary Conditions

Boundary Condition Shear Force Moment Total Slope Deflection

Hinged -
∂Ψ(ξ)

∂ξ
= 0 - V (ξ) = 0

Clamped - - Ψ(ξ) = 0 V (ξ) = 0

Sliding Ψ(ξ)− 1

L

∂V (ξ)

∂ξ
= 0 - Ψ(ξ) = 0 -

4.1 Hinged-hinged beam

Considering a hinged-hinged beam, the first fourteen natural frequencies are presented in
the Table 3: the first ten frequencies from the first spectrum, the first four frequencies from
the second spectrum, and the shear mode frequency. The second column represents the ana-
lytical results obtained by reference adopted (Levinson and Cooke, 1982), and the third and
fifth columns represent FEM results for 30 elements and 70 elements, respectively. Fourth and
sixth columns show the error between analytical and FEM results. An observation that must
be made is the value of shear mode frequency from second column. This value corresponds to
shear mode found by Azevedo et al. (2016), since a typographic error appear to be present in
Levinson and Cooke (1982), for the shear mode value, which do not appear to have been noted
in the literature. Notice that for higher modes, error decreases when the number of elements is
increased. Therefore, FEM formulation presents a good accuracy.

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
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Table 3: Natural frequencies for the hinged - hinged Timoshenko beam (rad/s)

1st Spectrum 2nd Spectrum

Mode TBT FEM - 30e FEM - 70e Mode TBT FEM - 30e FEM - 70e

Number Frequency Frequency Error (%) Frequency Error (%) Number Frequency Frequency Error (%) Frequency Error (%)

1 6712 6712.85 0.0127 6712.53 0.0078 1 89077 89420.32 0.3854 89151.54 0.0837

2 22136 22150.95 0.0675 22139.61 0.0163 2 108044 108691.89 0.5996 108174.10 0.1204

3 40701 40790.47 0.2198 40720.56 0.0481 3 132212 133410.01 0.9061 132442.17 0.1741

4 60170 60454.42 0.4727 60227.69 0.0959 4 158992 162451.91 2.1761 159378.98 0.2434

5 79806 80469.39 0.8313 79936.26 0.1632

Shear Mode 81164 81394.24 0.2837 81205.98 0.0517

6 99375 100660.20 1.2933 99622.29 0.2488

7 118812 121018.92 1.8575 119231.42 0.3530

8 138112 141594.19 2.5213 138767.63 0.4747

9 157287 161048.88 2.3917 158253.67 0.6146

10 176356 183660.76 4.1420 177716.66 0.7715

In the Fig 3 , we can see the natural frequencies of the hinged-hinged beam for various
values of the r factor using 70 elements.
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Figure 3: Frequency curves for the hinged-hinged Timoshenko beam (FEM - 70e)

Continuous curves represents first spectrum, the shear mode is the curve marked by ”x”
and the dashed curves represents second spectrum. Note that the shear mode frequency is not
a boundary between the two frequency spectra. This also can be noticed for r factor equal to
0.25, which the shear mode curve is contained between two curves belonging to first spectrum.
However, for each r factor, the natural frequencies from second spectrum are above shear mode
frequencies. So, this spectrum appears only for higher frequencies than shear mode.

Mode shapes for the first ten frequencies of hinged-hinged beam are presented in the Fig.
4 for 70 element. In the Fig. 4-a and Fig.4-b showed the mode shapes before and after fcrit. In
all examples the peak amplitude of the transverse deflection has been normalized to 0.02m.
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Figure 4: a) First five mode shapes for f < fcrit; b) First five mode shapes for f > fcrit

4.2 Slinding-slinding beam
Now, considering a sliding-sliding beam, first four natural frequencies for both frequency

spectra are presented on Table 4. The second column represents the analytical results of TBT,
and the third and fifth columns represent FEM results for 30 elements and 70 elements.

Table 4: Natural frequencies for the slinding-slinding Timoshenko beam (rad/s)

1st Spectrum 2nd Spectrum

Mode TBT FEM - 30e FEM - 70e Mode TBT FEM - 30e FEM - 70e

Number Frequency Frequency Error (%) Frequency Error (%) Number Frequency Frequency Error (%) Frequency Error (%)

1 6712 6712.85 0.0127 6712.53 0.0079 1 89091 89420.32 0.3696 89151.54 0.0680

2 22137 22150.95 0.0630 22139.61 0.0118 2 108057 108691.89 0.5876 108174.10 0.1084

3 40705 40790.47 0.2100 40720.56 0.0382 3 132224 133410.01 0.8970 132442.17 0.1650

4 60177 60454.42 0.4610 60227.69 0.0842 4 159003 162451.91 2.1691 159378.98 0.2365

Frequency curves in function of dimensionless parameter r are shown in Fig. 5.
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Figure 5: Frequency curves for the sliding-sliding Timoshenko beam (FEM - 70e)
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Suzana Moreira Ávila (Editor), ABMEC, Brası́lia DF, Brazil, November 6-9, 2016



Finite element analysis of shear-deformation and rotatory inertia for beam vibration

Similarly to hinged-hinged frequency curves presented in Fig. 3, solid-lines are the first
spectrum frequencies and dashed-lines corresponds to second spectrum frequencies. Observe
that although sliding-sliding beam have double eigenvalues for frequencies beyond critical fre-
quencies, there is no shear mode. Sliding-sliding beam have one rigid body mode. This rigid
body mode is a translation of the rigid beam due to a constant force applied at the center of mass.
The corresponding rigid body mode frequency is zero because the beam does not actually os-
cillate. Figure 6 presents the rigid body mode and the first ten mode shapes for a sliding-sliding
beam. The rigid body mode have zero associated strain energy, and can be interpreted to mean
the vibration occurs infinitely slowly, so there are zero associated inertia forces.
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Figure 6: a) Rigid body and first five modes for f < fcrit; b) First five modes for f > fcrit (FEM -70e)

4.3 Hinged-sliding beam

Han et al. (1999) discuss the relations between different boundary conditions by studying
their symmetric and antisymmetric modes. It is observed that hinged-sliding is the symmetric
mode of the hinged-hinged case and the antisymmetric mode of the sliding-sliding case.
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Figure 7: Frequency curves for the hinged-sliding Timoshenko beam (FEM - 70e)
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Once the presence of second spectrum is confirmed on both previous cases, we investigate
the phenomenon on hinged-sliding beam. The results obtained are presented in Fig. 7 and Fig.
8. Figure 7 shows that the presence of second spectrum (dashed-lines) is confirmed on hinged-
sliding beam. However, unlike their symmetric (hinged-hinged) and antisymmetric (sliding-
sliding) cases, hinged-sliding beam have no rigid body motion neither shear mode, as shown in
Fig. 8.
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Figure 8: a) First five modes for f < fcrit; b) First five modes for f > fcrit (FEM -70e)

4.4 Clamped-clamped beam
Consider a clamped-clamped beam, frequency curves are presented in Figs. 6 - 11 for both

TBT and FEM with 10, 30 and 70 elements. Solutions of TBT frequency equation given in
Table 1 are presented as a continuous functions of both r and s by solid-lines. FEM results are
presented into dashed lines with different markers.
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Figure 9: First frequency curves for the clamped-clamped Timoshenko beam

Figure 9 shown that finite element models provides well agreement with TBT first fre-
quency curves for all three discretizations. However, as the mode increases only the 30 and 70
elements provides reasonable results.
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Figure 10: Second frequency curves for the clamped-clamped Timoshenko beam

r =

√

I/AL2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

N
a

tu
ra

l 
F

re
q

u
e

n
c
ie

s
 f

×104

0

1

2

3

4

5

6

TBT 10 e 30 e 70 e

Figure 11: Third frequency curves for the clamped-clamped Timoshenko beam
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Figure 12: Fourth frequency curves for the clamped-clamped Timoshenko beam
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It is observed in Fig. 10 that the 10 elements become less precise for values of dimen-
sionless parameter r above 0.1, and that in Fig. 11 the precision of the results decreases for
r > 0.05. Note that in Fig. 12 the precision of 30 and 70 elements still provide results accu-
rately with TBT. Figure 13 presents the critical frequency fcrit and first six frequency curves for
a 70 elements in order to demonstrate the frequency behavior to values above critical frequency.
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Figure 13: First six frequency curves for the clamped-clamped beam (FEM -70e)

Smith (2008) observed that TBT predicted that for f < fcrit the number of peaks in the
deflection profile increases by unit with increase in mode number, however, for f > fcrit, the
number of peaks increases with each pair of modes. To illustrate clamped-clamped beam modes
behavior we shown the first ten mode shapes on Fig. 14.
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Figure 14: a) First five mode shapes for f < fcrit; b) First five mode shapes for f > fcrit (FEM -70e)

5 Conclusion

In this paper, the full development and analysis of TBT for the transversely vibrating uni-
form beam were presented for classical boundary condition. Also, a review of classical Tim-
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oshenko beam theory was presented. A finite element is developed in terms of dimension-
less parameters of rotatory and shear based upon Hamilton’s principle. Cubic and quadratic
Lagrangian polynomials are used for total deflection and slope, respectively, where the poly-
nomials are made interdependent by requiring them to satisfy both of the homogeneous and
stationary TBT differential equations. Numerical examples are presented for four boundary
conditions in order to study beam behavior above critical frequency. The investigation of mode
shapes and frequency curves determined the existence of second spectrum in three boundary
conditions: hinged-hinged, sliding-sliding and hinged-sliding, and the peculiar behavior on
clamped-clamped beam where the number of peaks in the deflection increases by unit with each
pair of modes. Finite elements results were in well agreement with other researchers results.
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