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Abstract.  The flexible beams carrying attachments and ends elastically restrained against
rotational and translation inertia often appear in engineering structures, modal analysis of
those structures is important and necessary in structural design. In case of structure with large
aspect ratio of height and length the Timoshenko beam theory (TBT) is used, instead of the
Euler-Bernoulli theory (EBT), since it takes both shear and rotary inertia into account. Shear
effect is extremely large in higher vibration modes due to reduced mode half wave length. In
this paper, the full development and analysis of TBT for transversely vibrations uniform beam
are presented for elastically supported ends. A two-node beam element with two degree of free-
dom per node is obtained based upon Hamilton’s principle. The influence of stiffnesses of the
supports on the free vibration characteristics is investigated. For this purpose, the eigenvalues
of the Timoshenko beam are calculated for various rigidity values of translational and rota-
tional springs. The results obtained are discussed and compared with results obtained by other
researchers.
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Dynamic analysis of elastically supported Timoshenko beam

1 INTRODUCTION

The dynamic analysis of beams with ends elastically restrained against rotation and trans-
lation or with ends carrying concentrated masses or rotational inertia is a classical structural
problem. Various researchers have approached the analysis assuming that the beam is suffi-
ciently slender to be considered as an Euler-Bernoulli beam, and trying to analytically solve
the resulting fourth-order differential equation with variable coefficients. In exact method, dif-
ficulties arises in solving roots of the characteristic equation, except for very simple boundary
conditions, that one has to go for numerical solution and in determining the normal modes of
the system.

In 1972, Chun (1972) studied the free vibration of an Euler-Bernoulli beam hinged at one
end by a rotational spring and with the other end free. Lee (1973) and Grant (1975) obtained
the frequency equation for a uniform beam hinged at one end by a rotational spring and hav-
ing a mass attached at the other end. MacBain and Genin (1973) investigated the effect of
rotational and translational support flexibilities on the fundamental frequency of an almost-
clamped-clamped Euler-Bernoulli beam. Goel (1976) investigated the vibration problem of a
beam with an arbitrarily placed concentrated mass and elastically restrained against rotation
at either end by using Laplace transforms. The deflection of a rotationally restrained beam
was obtained by Nassar and Horton (1976) by successively integrating the differential equation
of equilibrium and satisfying the appropriate boundary conditions, while Maurizi et al. (1976)
studied the free vibration of a beam hinged at one end by a rotational spring and subjected to the
restraining action of a translational spring at the other end. The exact solutions for the problems
governed by a general self-adjoint fourth-order nonhomogeneous ordinary differential equation
with arbitrarily polynomial varying coefficients and general elastic boundary conditions are de-
rived in Greens function form was presented by Lee and Kuo (1992).

Free vibration frequencies of cantilever beam with variable cross-section and constraining
spring was examined by Craver and Jampala (1993). Grossi and Arenas (1996), employed both
the classical Rayleigh-Ritz method and the optimized Rayleigh-Schmidt method to find the
frequencies with varying width and height. A lot of numerical results were given, for various
non-classical boundary conditions. De Rosa and Auciello (1996) gave the exact free frequencies
of a beam with linearly varying cross-section, in the presence of generic non-classical boundary
conditions, so that all the usual boundary conditions can be treated as particular cases. Wang
et al. (2007) utilized the Fourier series to investigate the dynamic analysis of beams having
arbitrary boundary conditions. Yeih et al. (1999) employed a dual multiple reciprocity method
(MRM) to determine the natural frequencies and natural modes of an Euler-Bernoulli beam. Liu
and Gurram (2009) used Hes variational iteration method to calculate the natural frequencies
and mode shapes of an Euler-Bernoulli beam under various supporting conditions.

Fourier series, also was used by Kim and Kim (2001) to obtain frequency expressions for
uniform beams with generally restrained boundary conditions. The transverse vibration of uni-
form Euler-Bernoulli beams under linearly varying axial force was presented by Naguleswaran
(2004). Kocaturk and Simsek (2005) used the Lagrange equations with the trial functions in
the power series form denoting the deflection and the rotation of the cross-section of the beam
for analyses of free vibration of elastically supported Timoshenko beams. Wang et al. (2007)
studied the natural frequencies and mode shapes of a uniform Timoshenko beam carrying mul-
tiple intermediate spring-mass systems using an exact as well as a numerical assembly method.
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Numerical results reveal that the effect of the shear deformation and rotary inertia joint terms on
the lowest five natural frequencies of the combined vibrating system is somehow complicated.
Prasad and Krishnamurthy (1973) and Rao and Raju (1974) have applied the Galerkin finite
element method to vibration problems of beams. These studies have shown that the method is
reliable and very accurate. The problem of free vibration of Timoshenko beams with elastically
supported ends is solved by Abbas (1984), using the unique finite element model developed by
Abbas (1979) which can satisfy all the geometric and natural boundary conditions of an elasti-
cally restrained Timoshenko beam. The effects of the translational and rotational support flex-
ibilities on the natural frequencies of free vibrations of Timoshenko beams with non-idealized
end conditions are investigated in detail. Undamped natural frequencies and the corresponding
mode of vibration of a two-dimensional Timoshenko beam-column with generalized support
conditions (i.e., with semirigid flexural restraints and lateral bracings as well as lumped masses
at both ends) and subjected to a constant axial load along its span was derived, in a classic man-
ner, by Aristizaba-Ochoa (2007). The model includes the simultaneous effects (or couplings) of
bending and shear deformations, translational and rotational inertias of all masses considered.
Hernandez et. al (2008) analyzed a mixed finite element method for computing the vibration
modes of a Timoshenko curved rod with arbitrary geometry.

In this paper, free vibration of elastically supported beams is investigated based on TBT.
The motions equation are derived from Euler-Lagrange equation. The stiffness and mass ma-
trices for a two-node beam element with two degree of freedom per node is obtained based
upon Hamilton’s principle. Cubic and quadratic Lagragian polynomials are made interdepen-
dent by requiring them to satisfy both of the homogeneous differential equations associated
with Timoshenko’s beam theory. The influence of stiffness of the supports on the free vibration
characteristics of TBT is investigated. For this purpose, the eigenvalues of the Timoshenko
beam are calculated for various rigidity values of translational and rotational springs. The re-
sults obtained by Finite Element Method (FEM) are discussed and compared whit analytical
solutions.

2 REVIEW OF BEAM EQUATION

The governing coupled differential equations for transverse vibrations of Timoshenko beams
are (Timoshenko, 1921):

dtv(x,t) O*v(x,t)  pEId"w(z,t) o'w(z,t) = p°I 'v(z,t)
Bl T4 %a ~ &G e "owe ke oan 0 W

Mp(x,) *p(x,t)  pEIOY(x, 1) Mp(x,t) | p I IY(x,t)
Bl—ge TP e " Ka o " oee TwG om0 @

in which E is the modulus of elasticity, /, the moment of inertia of cross section, /&, the shear
coefficient, A, the cross-sectional area, (G, the modulus of rigidity, p the mass per unit volume,
v(x,t), the transverse deflection, and ¢(x, t) the bending slope. Assume that the beam is excited
harmonically with a frequency w and

v(z,t) = V(z)el!, Y(x,t) = U(z)el?, and E=uz/L, 3)

where j = v/—1, £ is the non-dimensional length of the beam, V' (x) is normal function of v(x),
U (z) is normal function of ¥)(x), and L, the length of the beam. Substituting the above relations
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into Eq. (1) through Eq. (2) and omitting the common term e//¢, the following equations are
obtained (Soares and Hoefel, 2015):

o v

ot b*(r* + 5°) e b (1 —b*r’s*)V =0, 4)
d*w >
d_§4+62(r2+82)d_£2 —62(1 —b27”232)\1] =0 (5)
with:
AL*
b= P f? and w=2xf, (6)

ET

where w is angular frequency, f, the natural frequency, and r and s are coefficients related with
the effect of rotatory inertia and shear deformation given by:

, I ,  EI

= ad 8= @

r

We must consider two cases when obtaining Timoshenko beam model spatial solution
(Soares and Hoefel, 2016). In the first case, assume:

1
V(r2 —s2)2 +4/b2 > (r* + s%) whichleadsto b < s)’ (8)
rs
while in the second:
1
V(2 —s2)2+4/b2 < (r* + s*) whichleadsto b > ) )
rs

Substituting b = 1/(rs) in b relation presented on Eq. (6), we have the critical frequency
expressed as:

N KGA/pl
Werit = KGIA or fcrit = S /p . (1 0)
p T

We call this cutoff value b..;; = 1/(rs). When b < b.;; the solution of Egs. (1) and (2) can
be expressed respectively, in trigonometric and hyperbolic functions:

V(&) = Cicosh(ar€) + Cysinh(ar€) + Cscos(BE) + Cysin(BE), (11

V(&) = Cpsinh(ai€) + Cheosh(ai€) + Chsin(BE) + Cycos(BE) (12)
with

; . 1/2

o] = E —(r2+s2)+\/(r2—82)2+ﬁ (13)

and
1/2
_ b 2 2 2 2)2 4

5_E (r*4+s%) +1/(r _S)+ﬁ (14)
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When b > b.,;; the solution V' (§) and ¥(¢) can be expressed only in trigonometric func-
tions:

V(€) = Creos(as€) + Casin(asf) + Cacos(5E) + Cusin(BE), (15)

U (&) = C)sin(agf) + Cocos(asf) + Clysin(BE) + Cycos(BE) (16)
with

) 1"

Oét2/—jﬁ (r +5)—\/(7’2—82)2+§ =J (17)

and
) 1/2
Btzﬁ (r +3)+\/(7’2 52)2+b2 (18)

The relations between the coefficients in Egs. (11) and (12), or Egs. (15) and (16) can be
found in Huang (1961). The application of boundary condition will result in a infinite series of
natural frequencies f;, each associated with a particular mode shape. The Table 1 presents some
boundary conditions, where k,,, and k, are, respectively, the translational and rotational spring
constant, S, = 1 for right end and S, = —1 for left end.

Table 1: Boundary Conditions

Boundary Condition Shear Force Moment Total Slope Deflection
ov

Hinged - % =0 - V(E) =0

Clamped - - UE)=0 V(E) =0
10V ov

Sliding v(E) — za‘gf) =0 - U(E)=0

Linear spring S KGA [agg) — \I/(g)} =k, V(&) 82}725) =0

Torsional spring U(E) - %mgiéf) =0 SOEIa\Iajiéf) =k U(§)

3 FINITE ELEMENT FORMULATION

Considering a element as shown in Fig. 1, the generalized coordinates at each node are
V, the total deflection, and W, the total slope. This results in a element with four degrees of
freedom thus enabling the expression for V' and ¥ to contain two undetermined parameters
each, which can be replaced by the four nodal coordinates.

Using the non-dimension coordinate (¢ ) and element length /. defined in Fig. 1, the dis-
placement V' and total slope W can be written in matrix form as follows:
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Figure 1: Beam element

V=[NENv} and ¥=[NEIvl.

where

(&) Nao§) Ns(€) Na(§)]

N Ny )
N Ni(€) N2§) Ns(§) Na(9)]:

(19)

(20)
21

The displacements functions in Egs. (20) and (21) can be expressed in terms of dimension-

less parameters of rotatory r and shear s:

2(3s2+1) — 3(2s2 + 1)+ &
1 af3s2+1—&— (352 +1)€2 + &3

N; = /9.2 1 1\ ’
(&) 435+ 1) | 2352 1) + 3(282 + 1) — &
a[-35 —1—-&+(3s° + 1) + &
and

B a (352 B 3) ]

_ | —1—2(382 4 1)¢ + 652 + 3¢2

N;(§) = 432+ 1) a (3 — 3¢2) |
|1+ 2(35% + 1) + 65 + 362

where a = [, /2.

(22)

(23)

Now, considering a linear spring connected to a beam, the potential and kinetic energy for

an element length [, of a uniform Timoshenko beam are given by:

1LEI (! [00\? 1LEI ' (10V 2 1,
b=y [ () w s [, (o v) ey -
1 Lrovy® 1, 4 [t /00’
T, = gpAa/_l (E) d§+§r pAa /_1 (E) dg, (25)
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Substituting the displacement expression (Eq. 19) into the potential energy (Eq. 24) gives:

v. = oo [E [ N o +

-1

317 |24 [ Nty - N ivtey - Neglae] v +
5 07 BN NG 41, 26)
where [N(£)'] = [ON(€)/0€]. Therefore, the element stiffness matrix is given by:
EI (' — e,
k= |20 [ @I e +
25 [ N - NN - N + kNETNE]. @

Substituting the displacement expression (Eq. 19) into the kinetic energy (Eq. 25) gives:

1 1

T. = %{V}Z [pAa /

-1

IN(E)TIN(6)]dE + r2pAd? /

-1

[N@JT[N(W&] [} ©8)

The element mass matrix is given by:

1

(me] = {pAa /1 [IN(E]FIN(€)]dE + erAa3/

1

[N@)JT[N(f)de] : (29)

1

Torsional spring, whose ends are rotated in angular deflection, is presented similarly to
linear spring, just adding the potential energy of the torsional spring to strain energy. So,
LET [' (0%)” 1LEI [ [18V 2 1
U,=-—— — ) d¢+ = —— =V df+ kU 30
vo [ GGe) s [ (G5 ) s o

The kinetic energy of the element continues unchanged. Developing the Eq. (30) yields:

1
— ! /

v. = 307 |2 [ NEOTING ] 1.+

-1
1

a s2

3 017 |5 [ NG - N IN(e) - N(©lde | (. +

3 07 BN N©) ) 61)

The connection of more torsional or linear springs will add in the Eq. (30) and Eq. (24)
more terms of potential energy of each spring. The torsional and linear springs are associated
to the degree of freedom of slope and not to degree of freedom of vertical displacement.

Potential energy for Timoshenko beam including both translation and torsional springs is
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given by:
v. = oo [E [ N o +
3 0 [ [ vty Ny - N ). +
5 07 [BNEPING (0 + (0 B INOP N 90

4 Numerical Results

This section presents numerical examples for Timoshenko beams subjected to various
translational and rotational stiffness coefficients. Consider a straight uniform Timoshenko beam
of length L, K = 5/6 and Poisson’s ratio v = 0.3. The beam is elastically restrained against
translational and rotational at either end as shown in the Fig. (2), where k,,, and k, are the
translational and rotational spring constant.

Ky (BY*r
kim km

Figure 2: Timoshenko beam restricted with translational and rotational springs at both ends

In order to investigate the influence of stiffness of the supports on the free vibration char-
acteristics of Timoshenko beams, the eigenvalues are calculated for a set of h/L ratios. The
results obtained by FEM (discretizations with 30 and 70 elements) are compared with classical
theory (CT) presented by Kocaturk and Simsek (2005). We observed the possibility to simu-
late infinite support stiffness by setting translational and rotational stiffness coefficients equal
to 1 x 10%. Figure 3 presents the four classical boundary conditions obtained by setting ,, and
k, to zeroor 1 x 108,

a) km =0and k=0 b) kp =0 and k, = 108

| > G

¢)km=10% and k., =0 d) kp, = 10% and k, = 103

Figure 3: a) Free-free; b) Sliding-sliding; c) Hinged-hinged; d) Clamped-clamped beams

4.1 Hinged-hinged beam

Table 2 presents the first six eigenvalues for hinged-hinged ( k,, = 1 x 10* N/m, k, =
0 Nm/rad ). Notice that for higher modes, error decreases when the number of elements is
increased. It is observed that the difference in the frequencies of EBT and TBT beams become
significant with increase of the mode numbers and h/L ratio. However, the dimensionless
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Table 2: Eigenvalues of the hinged-hinged Timoshenko beam

h/L = 0.005
Eigenvalues CT FEM 30e  Error(%) FEM 70e  Error(%) EBT
b 3.14152  3.1415 6.3663e-04 3.1415 6.3663e-04 | 3.14159
) 6.28265  6.2827  7.9584e-04  6.2827  7.9584e-04 | 6.28319
b3 9.42297  9.4230 3.1837e-04 9.4230  3.1837e-04 | 9.42478
by 12.56200 12.5623 2.3882e-03 12.5621 7.9605e-04 | 12.5664
bs 15.69960 15.7002 3.8218e-03 15.6997 6.3696e-04 | 15.7080
bs 18.83510 18.8366 7.9639e-03 18.8353 1.0618e-03 | 18.8496
h/L = 0.020
Eigenvalues CT FEM 30e  Error(%) FEM 70e  Error(%) EBT
b1 3.14053  3.1405 9.5525e-04 3.1405  9.5525e-04 | 3.14159
) 6.27470  6.2747 0.0000 6.2747 0.0000 6.28319
bs 9.39630  9.3965  2.1285e-03  9.3963 0.0000 9.42478
by 12.49930 12.5003  8.0004e-03  12.4995 1.6001e-03 | 12.5664
bs 15.57830 15.5810 1.7332e-02 15.5788  3.2096e-03 | 15.7080
be 18.62810 18.6345 3.4357e-02 18.6292 5.9051e-03 | 18.8496
h/L = 0.050
Eigenvalues CT FEM 30e  Error(%) FEM 70e  Error(%) EBT
by 3.13499  3.1350 3.1898e-04  3.1350  3.1898e-04 | 3.14159
) 6.23136  6.2315  2.2467e-03  6.2314  6.4191e-04 | 6.28319
b3 9.25536  9.2564  1.1237e-02  9.2556  2.5931e-03 | 9.42478
by 12.18130 12.1854 3.3658e-02 12.1821 6.5674e-03 | 12.5664
bs 14.99260 15.0040 7.6038e-02 14.9947 1.4007e-02 | 15.7080
bs 17.68090 17.7067 1.4592e-01 17.6857 2.7148e-02 | 18.8496

frequency parameter b; of both theories are very close to each other for small values of h/L
ratio.

Early researchers reported that Timoshenko beams presents changes on dynamic behavior
for b > b..;;. On hinged-hinged beam is well known the existence of double eigenvalues with
similar wave forms, but distinct because deformations due to shear and bending are on the same
phase for b < b..;; and out of phase for b > b..;; (Downs, 1976). Beside that it is, observed that
when b = b.,.;; on hinged-hinged beam occurs a mode shape, called shear mode, with the motion
as a shear oscillation without transverse deflection. For a rectangular cross-section beam, b,
is written as a function of i/ L ratio as follows:

L\ | 2K
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25
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0 0.1 0.2 0.3 0.4

Figure 4: Critical frequency parameter

05
h/L

Figure 4 presents b.,;; for various h/L ratios. We observed that b.,.;; become lower as h/L
ratio increases. In order to show this behavior into lower modes, Fig. 5-a presents the first five
mode shapes (solid-lines) for b < b.,.;; and Fig. 5-b the first five mode shapes for b > b.,.;; and
shear mode (dashed-line) to a thicker beam of h/L = 0.25.

a) ozs

0.2

-0.05

5" mode shape

4™ mode shape

39 mode shape

2" mode shape

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

b) o3

0.2

V(§)

-0.05

5" mode shape

M
N NN

shear mode

3" mode shape
2" mode shape

4™ mode shape

st

Figure 5: a) First five modes for b < b.,;;; b) Shear mode and first five modes for b > b.,.;; (FEM -70¢)

Observe that on Fig. 5 shear mode does not fit the boundaries conditions as reported by
Levison and Cooke (1982). The peak amplitude of the transverse deflection on each mode shape

for all examples has been normalized to 0.02 m.

4.2 Clamped-clamped beam

Table 3 presents the first six eigenvalues for clamped-clamped (k,,, = 1 x 10® N/m, k, =
1 x 108 Nm/rad). The accuracy of presented finite element is also confirmed for clamped-
clamped beam.We observed that the difference in the frequencies of EBT and TBT beams be-

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
Suzana Moreira Avila (Editor), ABMEC, Brasilia DF, Brazil, November 6-9, 2016



Soares A., Azevedo A. C., Hoefel S. S.

Table 3: Eigenvalues of the clamped-clamped Timoshenko beam

h/L = 0.005
Eigenvalues CT FEM 30e  Error(%) FEM 70e  Error(%) EBT
by 472962 477296  4.2287e-04  4.7314  3.7635e-02 | 4.73004
by 7.85161 7.8516  1.2736e-04  7.8499  2.1779e-02 | 7.85320
bs 10.99160 10.9918 1.8196e-03 10.9952  3.2752e-02 | 10.9956
by 14.12920 14.1297 3.5388e-03  14.1307 1.0616e-02 | 14.1372
bs 17.26520 17.2660 4.6336e-03 17.2582 4.0544e-02 | 17.2788
bg 20.39850 20.4006 1.0295e-02 20.3952 1.6178e-02 | 20.4204
h/L =0.020
Eigenvalues CT FEM 30e  Error(%) FEM 70e  Error(%) EBT
by 472348  4.77235  4.2342e-04  4.7285 < 1.0628e-01 | 4.73004
by 7.82816  7.8282  5.1098e-04  7.8321  5.0331e-02 | 7.85320
b3 10.93400 10.9345 4.5729e-03  10.9357 1.5548e-02 | 10.9956
by 14.01530 14.0169 1.1416e-02 14.0150 2.1405e-03 | 14.1372
bs 17.06760 17.0719 2.5194e-02 17.0667 5.2731e-03 | 17.2788
bg 20.08450 20.0959 5.6760e-02 20.0862 8.4642e-03 | 20.4204
h/L = 0.050
Eigenvalues CT FEM 30e  Error(%) FEM 70e  Error(%) EBT
by 4.68991 4.6899  2.1322e¢-04  4.6899  2.1322e-04 | 4.73004
by 7.70350  7.7039  5.1924e-03  7.7036  1.2981e-03 | 7.85320
b3 10.64010 10.6422 1.9737e-02  10.6405 3.7594e-03 | 10.9956
by 13.46100 13.4678 5.0516e-02 13.4624 1.0400e-02 | 14.1372
bs 16.15890 16.1756 1.0335e-01 16.1620 1.9184e-02 | 17.2788
bg 18.73180 18.7662 1.8364e-01  18.7380 3.3099¢-02 | 20.4204

come significant with increase of the mode numbers and %/ L ratio, similarly to hinged-hinged
example.

Smith (2008) observed that on clamped-clamped TBT beam occurs a interesting phenom-
ena, for b < b,,.;; the number of peaks in the deflection increases by unit with increase in mode
number, and for b > b.,.;;, the number of peaks increases with each pair of modes. In order to
show this behavior for lower modes, Fig. 6-a presents the first five mode shapes for b < b,
and Fig. 6-b for b > b, to a thicker beam of h/L = 0.25.

S CONCLUSIONS

In this paper was presented a brief review of Timoshenko beam theory, and developed a
two-node beam element with two degree of freedom per node base upon Hamilton’s princi-
ple. The influence of the supports stiffness was investigated on Timoshenko beams elastically
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Figure 6: a) First five mode shapes for b < b.,.;+; b) First five mode shapes for b > b.,.;; (FEM -70e)

restrained against rotational and translation inertia at both ends on the free vibration. We ob-
served the possibility to obtain the four classical boundary conditions by simulating infinite
or zero support stiffness on translational and rotational stiffness coefficients. Eigenvalues and
mode shapes of hinged-hinged ( k,, = 1 x 10® N/m and k, = 0 Nm/rad ) and clamped-
clamped ( k,, = 1 x 10 N/m and k, = 1 x 108 Nm/rad ) beams were obtained in well
agreement with other researchers results. Was observed that by manipulating the stiffness co-
efficients of both elastically supports for b > b.,.;; is possible to obtain the double eigenvalues
and shear mode well known for hinged-hinged beam, and the phenomena for clamped-clamped
beam where the number of peaks in the deflection increases per unit with each pair of modes.
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