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Abstract. This work analyzes the flow of elliptical particle suspensions through a converging-
diverging channel. The model considers rigid elliptical particles dispersed in a Newtonian
liquid, and the suspension viscosity is given by a function of the local particle concentration
and particle axis aspect ratio. Shear-induced particle migration phenomena is described by the
well-known Diffusive Flux Model, and the average particle orientation is given by the principal
direction of a particle conformation tensor. The conformation evolution in the flow and the
constitutive equation for the resulting complex liquid are adapted from classical models used to
describe the behavior of suspensions of spheroids, cylinders and fibers and polymeric solutions
of rod-like molecules that are almost or completely rigid. The resulting set of fully coupled, non-
linear equations is solved using a slightly variation of the DEVSS-TG/SUPG Finite Element
Method. The results show the local particle concentration and average particle orientation
in the flow domain, highlighting the behavior of the suspension microstructure near shear-
dominated and extensional-dominated regions.

Keywords: Elliptical particle suspensions, Particle migration, Particle alignment, Finite Ele-
ment Method
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1 INTRODUCTION

A suspension is a heterogeneous two-phase system in which solid particles are dispersed in
a liquid medium. In most of the applications, however, the small size of the suspended particles
and its quantity dispersed in the basis fluid allow the mixture to be treated as an equivalent con-
tinuous medium, whose average mechanical behavior is intrinsically related to the dynamics in
the scale of the particles. Typically, suspensions show non-Newtonian behavior, mainly at high
concentrations. Indeed, even though the continuous phase is composed by simple liquids, such
as water or organic solvents, for example, the physical phenomena that occur in the microscopic
scale of the material are very complex, such that the resulting complex fluid shows non-linear
effects in many cases (Larson, 1988, 1999; Trados, 2011, 2012). The importance of studying
the mechanics and rheology of suspensions is supported by the wide range and scope of its
applications. Fundamental understanding of the complex behavior of these materials are impor-
tant in many sectors of different industries, such as oil and petroleum (Schramm, 1996), coating
(Kistler & Schweizer, 1997), and pharmaceutical and comestic (Kulshreshtha et al., 2010).

Since the landmark works of Einstein (1911) and Jeffery (1922) on the viscosity of di-
lute suspensions of spherical and ellipsoidal particles, much progress has been achieved in this
sense. Notwithstanding, the situation for concentrated suspensions is very difficult to analyze.
At very high volume fractions in which the particles are near jamming, there is actually no
theoretical nor experimental consensus on the concentration dependence of the viscosity (She-
wan & Stokes, 2015). Many theoretical models based on effective-medium theories (Krieger
& Dougherty, 1959; Krieger 1972) and semi-empirical models based on experimental results
(Brady, 1993; Bicerano et al., 1999) have been proposed in order to extend a quantitative de-
scription of the suspension viscosity. At large, they tend to recover Einstein’s classical result
at very low concentrations and diverge at the approach of a maximum packing fraction, which
depends on particle shape and arrangement. Recently, Santamarı́a-Holek & Mendoza (2009,
2010) have developed a continuum-medium description for the viscosity-concentration relation
for suspensions of particles with different shapes, including spheres, ellipsoids, cylinders and
dumbbells, as long as they are not too elongated. Their model gives excellent quantitative re-
sults when compared to experimental data at the whole concentration range for different particle
shapes, even at concentrated regimes.

Another complex phenomena that may occur in the flow of concentrated suspensions is re-
lated to particle migration across the streamlines in non-homogeneous shear flows, which was
first observed by Karnis et al. (1966) and Gadala-Maria & Acrivos (1980). Briefly, their ex-
perimental results on pressure-driven flows through tubes and cylindrical Couette flows showed
that the suspended particles assume a non-uniform configuration in non-homogeneous shear
flows, migrating from high to low shear rate regions. However, the first explicit explanation of
the possibility of a cross-stream flux of particles in concentrated suspensions is due to Leighton
& Acrivos (1987). From simple scaling arguments, they proposed a general expression for
the diffusive flux of particles in unidirectional shear flows. Their hypothesis was that particle
migration arises from gradients in shear rate and viscosity, and was confirmed by Nuclear Mag-
netic Resonance (or NMR) images obtained from cylindrical Couette flows and pressure-driven
flows through tubes (Abbott et al, 1991; Altobelli & Givler, 1991; Graham & Altobelli, 1991;
Sinton & Chow, 1991). Subsequently, Phillips et al. (1992) extended the latter flux expression
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and developed a convection-diffusion equation that describes the evolution of particle concen-
tration profile, establishing the now well-known Diffusive Flux Model (thereafter DFM). Their
numerical results from a Finite Difference Method algorithm were compared in good agreement
to experimental data also obtained by NMR images of cylindrical Couette and pressure-driven
flows. Afterwards, the predictions of the model were confirmed once again for different flows
by other researchers using distinct experimental techniques (Chow et al., 1994; Hampton et al.,
1997; Han et al., 1999; Koh et al., 1994; Lyon & Leal, 1998; Subia et al., 1998).

On the other hand, when the suspended particles are not spherical, beyond the particle con-
centration distribution, it is also necessary to predict how the particles are aligned in the flow
domain. Recent works of Oumer & Mamat (2013) and Trebbin et al. (2013) have shown that
the alignment of suspended long fibers essentially depends on the external flow applied. From
their experimental results in converging-diverging flows through tubes, they determined that the
particles tend to align with respect to the flow direction in converging flows, as occurs near the
entrance of the contraction (i.e. uniaxial extensional zones), and perpendicular to the flow direc-
tion in diverging flows, as occurs at the end of the contraction (i.e. biaxial extensional zones).
Within this context, this work focuses on the converging-diverging channel flow of a suspen-
sion of slightly elliptical particles, and investigate the particle concentration and average particle
alignment in the domain, which contains both shear-dominated and extensional-dominated re-
gions. We present a fully coupled, non-linear model accounting for both particle migration
and particle orientation in the flow. The governing equations are numerically solved using a
variation of the DEVSS-TG/SUPG Finite Element Method. The paper is organized as follows.
In §2, we present the complete mathematical formulation of the problem, including details on
the calculation of the particle conformation tensor used to measure the average particle orienta-
tion in the flow and the constitutive relation used to describe an additional conformation stress
depending on particle concentration and particle orientation. Then, §3 is devoted to describe
the aspects of the numerical methodology employed. Finally, in §4, we present and discuss
extensively the results obtained for both local particle concentration and particle alignment.

2 MATHEMATICAL FORMULATION

Because of typical scales involved in the problem, the suspension of particles can be treated
as continuum medium in the converging-diverging channel. Therefore, the flow of the resulting
complex liquid is described by incompressible mass conservation and Cauchy’s equation of
motion, which require that

∇ · u = 0 (1)

and

ρ

(
∂u

∂t
+ u · ∇u

)
= ∇ ·Σ + ρg, (2)

where u is the velocity vector, ρ is the suspension density, Σ is the suspension stress tensor
and g is a body force per unit mass. The stress tensor is split as Σ = −pI + τ + σ, where
p is the pressure field, which is constitutively indeterminate, I is the identity tensor, τ is the
viscous stress, and σ is an additional conformation stress that depends on the local particle
concentration and average particle orientation in the flow.
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The viscous stress obeys Newton’s law of viscosity with a concentration-dependent vis-
cosity, i.e. τ = η(φ)(∇u + ∇uT ), where η is the suspension viscosity, φ is the local particle
concentration and the superscript T denotes the transpose operation. Considering differential-
effective medium arguments, the suspension viscosity is calculated as (Santamarı́a-Holek &
Mendoza, 2010)

η = η0

[
1−

(
φ

1− cφ

)]−[η]

. (3)

In Eq. (3), η = η(φ) is the suspension viscosity, η0 is the viscosity of the Newtonian solvent
liquid and [η] is the so-called intrinsic viscosity. In addition, c = (1−φc)/φc is a crowding factor
that guarantees that the particles cannot occupy all the volume of the sample due to geometric
restrictions, where φc is the critical concentration of particles at which the suspension loses its
fluidity. In the case of elliptical particles, [η] and φc depend on the particle axis aspect ratio p,
defined as the ratio between the polar and equatorial radii of a particle, i.e. p = b/a. The values
of these parameters can be found in Landau et al. (1984) and Donev et al. (2004, 2007).

Shear-induced particle migration is described by the Diffusive Flux Model developed by
Phillips et al. (1992). The model sets a typical convection-diffusion equation accounting for
particle transport in the flow, such that

∂φ

∂t
+ u · ∇φ+∇ ·Nφ = 0, (4)

whereNφ is the total diffusive flux of particles due to different mechanisms. Particle migration
arises from three different physical mechanisms, namely: gradients in shear rate, gradients in
viscosity, and curvature of the streamlines. The mathematical expressions for each one of these
fluxes are (Phillips et al., 1992; Kim et al., 2008)

N c = −Kca
2φ∇(γ̇φ), (5)

N η = −Kηa
2

(
γ̇φ2

η

)
∇η, (6)

and

Nκ = Kκa
2γ̇φ2κn. (7)

In Eqs. (5), (6) and (7), a is a typical particle size (the equatorial radius of an elliptical particle),
γ̇ is the local shear rate, κ is the local curvature radius of a streamline and n is the unit normal
vector in the radially outward direction of a curved streamline. The parameters Kc, Kη and Kκ

are diffusion-like coefficients of O(1) that should be found from experimental results. Here,
we assume that Kc = 0.41, Kη = 0.62 and Kκ = Kc (Phillips et al., 1992; Kim et al., 2008).
Finally, note that the total diffusive flux of particles is given by the summation of these three
diffusive fluxes, so thatNφ = N c +N η +Nκ in Eq. (4).

The orientation of the elliptical particles in the flow is given by a particle conformation
tensor, which is defined as M =< rr >, where r is the end-to-end vector of a particle and
<> denotes average over the distribution of orientations. It is worth mentioning that M is
a positive definite symmetric tensor, and, at equilibrium, M = I . In order to investigate
regions of molecular stretching and molecular extension in complex flows of polymer solutions
composed by almost rigid molecules dispersed in a Newtonian medium, Pasquali & Scriven
(2002, 2004) proposed an equation accounting for the evolution of the conformation dyadic.
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Here, we consider an adaptation of this model to describe the conformation of rigid, elliptical
particles, so that the evolution of the dimensionless particle conformation in the flow is given
by

∇
M +2

D : M

I : M
M +

1

λ
(M − I) = 0. (8)

where the superscript ∇ denotes the upper-convected time derivative1 and λ is the particle re-
laxation time. The two first terms on the right-hand side of Eq. (8) account for a variation
on particle conformation because of the velocity field, whereas the last term represents a re-
laxation process on the conformation dyadic, which is assumed to be linear with the distance
from the value at equilibrium. Therefore, the result of particle conformation is dictated by a
balance between the velocity field and the rate of relaxation of the suspension microstructure,
which acts to restore the particles to its equilibrium configuration. In this sense, let us define
the dimensionless time parameter τ = τλ/τ∞, where τλ = λ is a characteristic scale of time
of the suspension microstructure and τ∞ = H/V is a characteristic scale of time of the con-
vective transport related to the velocity field. By definition, τ measures the ratio between the
effects of particle relaxation to the effects of the velocity field in the conformation transport
equation. Once the equation of conformation transport has been solved and the conformation
dyadic is known, the average particle orientation can be properly obtained using the orthonor-
mal eigenvectors ofM , i.e. the principal directions of the second moment of the distribution of
orientations. Considering that m is the eigenvector related to the largest eigenvalue of M , the
average particle orientation with respect to the ê1-direction is calculated as

θ = tan−1

(
|m · ê2|
|m · ê1|

)
. (9)

We emphasize that the transport of conformation in Eq. (8) is a simplified model to describe the
evolution of conformation of elongated particle suspensions. For instance, this approach does
not explicit consider the effect of the suspension concentration and particle axis aspect ratio
on the conformation evolution, but only in a indirect way through the suspension viscosity in
momentum equation.

When the suspension is treated as a continuum medium, particle orientation gives rise to
an additional anisotropic viscous stress in suspensions of spheroids, cylinders and long fibers
(Larson, 1988, 1999). A quadratic closure approximation can be used to write a simple relation
to describe the additional stress due to particle orientation in the flow, so that

σ = f(p)ηM(φ)MM : D, (10)

whereD = (∇u+∇uT )/2 is the rate of strain tensor. Here, f(p) = (p2−1)/(p2+1) is a scalar
function of the particle aspect ratio and ηM(φ) = η(φ) − η0 is the viscosity increment because
of the presence of the dispersed particles. Note that f(p) → 0 as p → 1, so that σ = 0 when
p = 1, meaning that there is no particle alignment, and thereby no additional conformation
stress when the particles are spherical. In this case, the stress tensor reduces to a Newtonian
stress with a local concentration-dependent viscosity, Σ = −pI + 2η(φ)D. In turn, the term
ηM accounts for dependence of the additional stress on the particle concentration. Note that
η(φ) → η0 as φ → 0, so that σ = 0 when φ = 0, and thereby the stress tensor reduces to the
Newtonian constitutive relation Σ = −pI + 2η0D when there is no particles in the solvent.

1By definition,
∇
M=

∂M

∂t
+ u · ∇M −∇uT ·M −M · ∇u.
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The fully coupled, non-linear model proposed here is used to study the flow through a
converging-diverging channel with a contraction ratio of 4:1. The geometry of the problem is
presented in Fig. 1. The channel height at the inflow and outflow planes is 2H . The domain
is subdivided into three distinct regions: upstream the contraction, the contraction, and down-
stream the contraction. Each region has the same size in length, which is equal to 50H , and the
channel total length is L = 150H . The flow is assumed to be symmetric with respect to the
x2 = 0 plane, such that only the upper half of the channel was considered in the calculations.

H

50H 50H 50H

3H/4

ê1

ê2

Figure 1: Sketch of the geometry of the problem (not to scale).

The boundary conditions used to solve the transport equations given in Eqs. (1), (2), (4) and
(8) are described as follows, where n and t are local unit normal and tangent vectors to the
boundaries.

1. Inflow plane. We assume a fully developed, parabolic velocity profile u = u1(x2)ê1 with
pressure free. Moreover, we considered that the suspension concentration is uniform and
equal to the bulk concentration, φ = φ̄, and that particle conformation does not change
along the streamlines, u · ∇M = 0.

2. Symmetry line. Because of symmetry, at the centerline of the channel we have that
n · u = 0, t · (n ·Σ) = 0 and n ·Nφ = 0.

3. Outflow plane. We assumed a fully developed flow with fixed pressure and no diffusive
flux of particles, n · ∇u = 0, p = p0 and n ·Nφ = 0.

4. Channel walls. We applied the no-slip and no-penetration conditions, which lead to
u = 0 and n ·Nφ = 0.

Figure 2 summarizes the boundary conditions of the problem.

ê1

ê2

u = 0, n ∙ N  = 0.ϕ

n ∙ u = 0, t · (n · Σ) = 0, n ∙ N  = 0.ϕ

n ∙   u = 0,

p = p ,0

 
n ∙ N  = 0.ϕ

Δu = u (x )ê ,1 2 1

ϕ = ϕ,
 

u ∙    M = 0.

Δ

_

Figure 2: Boundary conditions for the flow through the converging-diverging channel.
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3 SOLUTION METHOD

The transport equations governing the suspension flow are numerically solved using a
slightly variation of the discrete elastic-viscous split stress, independent traceless velocity gradi-
ent interpolation, streamline upwind Petrov-Galerkin Finite Element Method (DEVSS-TG/SUPG
FEM). This stable, robust numerical formulation was developed by Pasquali & Scriven (2002)
and is based on the earlier works of Guénette & Fortin (1995) and Szady et al. (1995) on the
flow of viscoelastic polymer solutions.

Particle transport and conformation equations deal with higher-order derivatives of the ve-
locity field in their weighted residual formulations. However, these derivatives are discontinu-
ous across the element boundaries, which leads to several numerical issues. In order to compute
these terms, the DEVSS-TG formulation treat the velocity gradient as an additional independent
variable of the problem with a continuous traceless interpolation, defined as

G = ∇u− ∇ · u
I : I

I. (11)

The variable G is called interpolated velocity gradient to distinguish it from the raw velocity
gradient,∇u. The use of a traceless interpolation for the velocity gradient is fundamental in the
numerical computation of incompressible flows. In this case, Eq. (11) guarantees that trG = 0
regardless of the value of∇ · u calculated with the approximated velocity field, which may not
be exactly divergence-free. The interpolated velocity gradient is used to rewrite the suspension
stress tensor. Since there is no elastic stress in the flow, the viscous stress can be written as

τ = η(φ)(G+GT ) + ηa(∇u+∇uT −G−GT ), (12)

where ηa is a numerical viscosity-like parameter, so that the second term on the right-hand side
of Eq. (12) stabilizes the computational method. The introduction of this term is legitimate
because this term is zero in the strong form of the equations and becomes vanishingly small
in the weighted residual form as the approximate solution approaches the exact solution. All
computations were made with a constant value of ηa. Changing the value of ηa has a little or no
effect on the final numerical solution, provided that ηa is of the same order of magnitude of η0.

Another numerical problem that may appear in the numerical computations of the problem
is related to the singularity of the DFM in regions where the shear rate vanishes, as was reported
by different researches considering the pressure-driven flows of suspensions through tubes and
channels (Miller & Morris, 2006; Ahmed & Singh, 2011; Rebouças et al., 2016). In an effort
to overcome this issue, we have used a modified version of the non-local stress contribution to
the shear rate proposed by Miller & Morris (2006). Briefly, the procedure consists on define a
non-local constant shear rate γ̇δ = δγ̇c to be added to the shear rate field to avoid the existence
of regions of zero shear rate. Here, δ = 10−4 is a numerical parameter and γ̇c = V/H is a
characteristic shear rate of the flow. Note that the finite non-local contribution satisfies γ̇δ +
γ̇ ≈ γ̇ except in regions where γ̇ → 0, giving the model the required effect of improving the
numerical results near regions where the shear rate approaches zero.

Multiplying Eqs. (1), (2), (4) and (8) by weighting functions ψc, ψm, ψφ, ψM and ψG, inte-
grating over the physical domain Ω (bounded by Γ) and applying the Gauss-Green-Ostrogradskii
Theorem to the momentum and particle transport equations to lower the order of the highest
derivatives of the independent variables yields the following weighted residual equations,
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Rc,α =
∫

Ω
ψαc (∇ · u) dΩ, (13)

Rm,α =
∫

Ω
ψαm

[
ρ

(
∂u

∂t
+ u · ∇u

)]
dΩ +

∫
Ω
∇ψαm ·Σ dΩ−

∫
Γ
n · (ψαmΣ) dΓ, (14)

Rφ,α =
∫

Ω
ψαφ

(
∂φ

∂t
+ u · ∇φ

)
dΩ−

∫
Ω
∇ψαφ ·Nφ dΩ +

∫
Γ
n · (ψαφNφ) dΓ, (15)

RM,α =
∫

Ω
ψαM

[
∇
M +2

D : M

I : M
M +

1

λ
(M − I)

]
dΩ, (16)

RG,α =
∫

Ω
ψαG

[
G−∇u+

∇ · u
I : I

I
]
dΩ. (17)

In relation to Eqs. (13)-(17), the first superscript on the residual identifies the type of resid-
ual equation, and the second superscript labels the residual equation in the set. The independent
variables of the problem are written as a linear combination of a finite number of basis func-
tions, such that p = pβϕβp , u = uβϕβu , φ = φβϕβφ ,M = MβϕβM and G = GβϕβG. Einstein’s
summation is assumed here. The subscript in the basis function denotes the variable that is
approximated with that basis function, and is needed because different sets of basis function are
used to approximate different variables. On the other hand, the superscript index in the basis
functions identifies each basis function in the basis set and takes any value between one and the
number of basis function in the set. Lagrangian biquadratic functions were used to represent
the velocity field and the concentration field, Lagrangian bilinear functions for particle confor-
mation and interpolated velocity gradient, and linear discontinuous functions for the pressure
field. Galerkin’s weighting functions were used in the residual equations of mass conservation,
momentum conservation and interpolated velocity gradient, so that ψc = ϕp, ψm = ϕu and
ψG = ϕG. In turn, the stabilized Streamline-Upwind Petrov-Galerkin formulation was applied
in both particle concentration and conformation equations, leading to ψφ = ϕφ + hu(u · ∇ϕφ)
and ψM = ϕM + hu(u · ∇ϕM), where hu is the upwinding parameter, defined as the character-
istic size of the smallest element in the computational mesh.

The domain was discretized using Q2/P−1 quadrilateral finite elements, each one with 62
degrees of freedom. The DEVSS-TG/SUPG formulation leads to a large, sparse set of coupled,
non-linear algebraic equations, which was solved using Newton’s method with a numerical
Jacobian matrix. The tolerance on the L2-norm of the global residual vector and Newton’s
update was set to 10−6. At each iteration, the linear system was solved with a frontal solver
based on the LU factorization method and solutions at different parameters were achieved with
a first-order arclength continuation.

4 RESULTS

The spatial discretization was made with 1,200 finite elements and 4,961 nodes, and Fig. 3
shows the computational mesh used in the simulations. Stretching functions were used in order
to concentrate elements near the contraction and channel walls. The resulting global system of
non-linear algebraic equations has 28,731 degrees of freedom in this case.
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Figure 3: Representative mesh used in the simulations.

The results are given in a dimensionless way, where the unit of length in the ê1-direction
is the channel length, L, and in the ê2-direction is half the channel height at the inflow plane,
H . The imposed flow rate is expressed using the Reynolds number of the flow, which was
defined as Re = ρV H/η̄, where ρ is the suspension density, V is the mean velocity of the flow
and η̄ = η(φ̄) is the suspension viscosity evaluated with the bulk concentration (i.e. neglecting
particle migration effects). The results for the average particle orientation are given in degrees.
We have used suspensions of particles with a = 1 µm, p = 2 and τ = 1 in a channel with
H = 100 µm. In all simulations, Re = 0.03.

4.1 Particle concentration

Our first analysis is related to the effects of particle migration in the flow through the
converging-diverging channel. In this sense, Fig. 4 shows the particle concentration profile
along the channel centerline (x2 = 0) for suspensions with different bulk concentrations.

x
1
/L

φ

0 0.25 0.5 0.75 1

0.1

0.2

0.3

0.4

0.5

φ = 0.10

φ = 0.20

φ = 0.30

Plane x
2

= 0
_

_

_

Figure 4: Particle concentration along the channel centerline varying the suspension bulk concentration.
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From Fig. 4, one views that the particle concentration along the channel centerline is al-
ways equal or higher than the suspension bulk concentration (denoted by the dashed horizontal
lines), ensuring that the particles migrate from the wall, where the shear rate is maximum, to the
center of the channel, where the shear rate approaches zero. This result is in good agreement
with the predictions of the DFM. Note, however, that the rate of increasing of particle concen-
tration along the centerline depends on the position along the channel. Indeed, for a given bulk
concentration, the particle concentration increases with approximately the same rate upstream
and downstream the contraction. On the other hand, the presence of the contraction at the mid-
dle of channel increases the flux of particles from the wall towards the centerline, so that the
maximum concentration always occurs near the contraction. For instance, the maximum value
predicted for particle concentration is φ ≈ 0.47 for φ̄ = 0.30, φ ≈ 0.32 for φ̄ = 0.20, and
φ ≈ 0.14 for φ̄ = 0.10, and occur at x1/L ≈ 0.51 in all cases. The driving force for particle
migration is the spatial variation of interparticle collisions related to gradients in shear rate due
to the non-homogeneous shear flow, and a simple analysis of the flow kinematics can explain
these results. In order to satisfy the mass conservation principle, the flow accelerates at the
entrance of the contraction, increasing the shear rate and its gradients, and thereby increasing
the flux of particles towards the center of channel. In turn, the mean velocity of the flow is the
same upstream and downstream the contraction, leading to approximately the same particle flux
from the wall to the centerline.

The predictions of particle concentration at the contraction (x1/L = 0.5) and at the outflow
plane (x1/L = 1) for the same cases are presented in Fig. 5. These results confirm, again, the
migration of particles from the wall to the channel centerline. Draws attention that, for a given
bulk concentration, the shape of the profiles of particle concentration at the contraction and at
the outflow are almost the same, with slightly differences at the wall and centerline. However,
the total amount of particles at these sections are considerably different in order to conserve the
total convective flux of particles in the flow, which is defined as

∫
S
u(x)φ(x) · n dS. In other

words, this integral quantity is constant, so that, as the velocity increases, the local concentration
of particles decreases.
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(b)

Figure 5: Particle concentration in the channel varying the suspension bulk concentration. In (a), at the
contraction (x1/L = 0.5); in (b), at the outflow plane (x1/L = 1).
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Figure 6 summarizes these results and shows a color map of particle distribution in the
domain for the case in which φ̄ = 0.30, highlighting the effect of the contraction in increasing
the flux of particles from the wall to the centerline of the channel.

Figure 6: Color map of particle concentration in the converging-diverging channel, highlighting the local
concentration of particles in the contraction. Predictions at φ̄ = 0.30.

4.2 Particle alignment

Now, let us consider the particle alignment in the converging-diverging channel, investigat-
ing the average particle orientation in shear-dominated and extensional-dominated regions in
the flow domain. Figure 7 shows the average particle orientation along the channel symmetry
line (x2 = 0) varying the suspension bulk concentration. The particles experience a very strong
variation in their alignment as the suspensions flows through the channel. Upstream the con-
traction, where the flow is dominated by shear, the orientation of the particles remains almost
constant and equal to θ ≈ 63◦, regardless of the value of φ̄. As the contraction approaches, the
flow accelerates, so that uniaxial extensional effects are predominant. Hence, the particles tend
to align with respect to the flow direction and there is a great decrease in the value of θ near
the contraction entrance. The minimum value predicted occurs at x1/L ≈ 0.37 and is θ ≈ 3.5◦

for all cases considered. Otherwise, at the end of the contraction, the flow decelerates, so that
biaxial extensional effects are predominant, and the particles tend to align perpendicular to the
flow direction. For instance, the maximum value predicted for θ occurs at x1/L ≈ 0.67, and is
θ ≈ 84◦ for φ̄ = 0.10, θ ≈ 84.5◦ for φ̄ = 0.20 and θ ≈ 87.5◦ for φ̄ = 0.30. Then, the angle θ
decreases from its maximum to a lower value, which remains almost constant at the downstream
region, where the flow is once again dominated by shear effects. The three profiles are virtually
the same from the inflow plane to x1/L ≈ 0.57. In turn, downstream the contraction we have
that the particle alignment depends on the suspension concentration, varying from θ ≈ 61.4◦

for φ̄ = 0.10 to θ ≈ 74.5◦ for φ̄ = 0.30 at the outflow plane.
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Figure 7: Average particle orientation along the channel centerline varying the suspension bulk concentra-
tion.

Figure 8 presents the profiles for particle orientation just before and just after the con-
traction (x1/L = 1/3 and x1/L = 2/3, respectively), and these results confirm the analysis
discussed so far. One observes that the particles orientation varies from θ ≈ 42◦ to θ ≈ 85◦

along the symmetry line from the section just before the contraction to the section just after the
contraction, regardless of the value of φ̄. In both sections the particle alignment near the wall is
very similar, being θ ≈ 25◦ for all cases considered.
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Figure 8: Average particle orientation in the channel varying the suspension bulk concentration. In (a), just
before the contraction (x1/L = 1/3); in (b), just after the contraction (x1/L = 2/3).
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The results of Figs. 7 and 8 show that the particle alignment strongly depends on the flow
kinematics, which forces the particles to orient in the stretching direction. As a matter of fact,
the orientation of the particles remain almost constant in regions dominated by shear. On the
other hand, in regions where the flow is convergent and dominated by uniaxial extensions, the
particles tend to align with respect to the flow direction (θ → 0◦), and in regions where the flow
is divergent and dominated by biaxial extensions, the particles align perpendicular to the flow
direction (θ → 90◦). Figure 9 illustrates a color map of average particle orientation in the flow
for φ̄ = 0.30, and summarizes the results discussed so far.

Figure 9: Color map of average particle orientation in the converging-diverging channel, highlighting the
local orientation of particles in the contraction. Predictions at φ̄ = 0.30.

It is remarkable that our numerical predictions agree very well with some experimental
results recently available in the literature of suspensions flows. For instance, the experiments
of Trebbin et al. (2013) have showed that anisotropic cylindrical micelles align parallel to the
flow direction at the entrance of the contraction, and perpendicular to the flow direction at the
end of the contraction in the flow through a converging-diverging tube. The same qualitative
results were obtained by Oumer & Mamat (2013) with suspensions of long fibers in reinforced
polymer composites.

5 FINAL REMARKS

This work studied particle migration and particle alignment phenomena in the flow of sus-
pensions of elliptical particles. We considered the flow through a converging-diverging channel
to investigate particle dynamics in shear-dominated and extensional-dominated regions. The
model considers two additional equations accounting for particle migration and particle ori-
entation in the flow. Particle migration was modeled according to the Diffusive Flux Model
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developed by Phillips et al. (1992) with an additional curvature-induced flux (Kim et al., 2008),
whereas the average particle orientation was evaluated using the principal direction of a par-
ticle conformation tensor. The transport of conformation in the flow was obtained from the
model proposed by Pasquali & Scriven (2002, 2004), and the constitutive relation to define the
suspension stress tensor was adapted from models used to describe the flow of suspensions of
spheroids, cylinders and long fibers (Larson, 1988, 1999). The resulting fully coupled, non-
linear model was solved using a slightly variation of the DEVSS/TG-SUPG Finite Element
Method, and several aspects of the numerical methodology employed were discussed, such as
the use of a traceless velocity gradient interpolation, an adaptive viscous stress, and a non-local
shear stress to overcome the singularity of the DFM.

The results show that the particles tend to migrate against gradients in shear rate, moving
from the wall, where the shear rate is maximum, to the channel centerline, where the shear rate
approaches zero. These predictions are in very good agreement with the DFM. Because of the
contraction in the middle of the channel, the fluid accelerates and increases the gradients in shear
rate in this region. As a consequence, the contraction increases the diffusive flux of particles
towards the center of the channel. In all cases, we found that the maximum local concentration
of particles occurred inside the contraction zone. In addition, the average particle orientation
strongly depends on the flow kinematics. The alignment of the particles remains almost constant
in shear-dominated regions, as occurs upstream and downstream the contraction. On the other
hand, the particles tend to align to the flow direction in converging flows dominated by uniaxial
extensions, as occurs at the entrance of the contraction, and perpendicular to the flow direction
in diverging flows dominated by biaxial extensions, as occurs at the end of the contraction. Our
model recovers very well the experimental results of Trebbin et al. (2013) and Oumer & Mamat
(2013) on the alignment of long fibers suspensions in converging-diverging tubes.
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