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Abstract. The peridynamic theory is a generalization of classical continuum mechanics and
takes into account the interaction between material points separated by a finite distance within
a peridynamic horizon δ. The δ parameter corresponds to a length scale and is treated as
a material property related to the microstructure of the body. This work concerns a study of
the properties of a linear elastic peridynamic material in the context of a three-dimensional
state-based peridynamic theory, which considers both length and relative angle changes, and
is based upon a free energy function that contains four material constants. Using convergence
results of the peridynamic theory to the classical linear elasticity theory in the limit of vanishing
sequences of δ and a correspondence argument between the proposed free energy function and
the strain energy density function from the classical theory, expressions were obtained relating
three peridynamic constants to the classical elasticity constants of an isotropic linearly elastic
material. To evaluate the fourth peridynamic material constant, the correspondence argument
is used together with the deformation field of an elastic beam subjected to pure bending. This
work also concerns the validation of the proposed linearly elastic peridynamic model through
numerical simulations of mechanical problems formulated in the context of both the classical
linear elasticity and peridynamic theories. Simulation results will be presented at the meeting.
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1 INTRODUCTION

Peridynamics is a non-local theory of continuum mechanics that considers the interaction
of material points due to forces acting at a finite distance. The interaction between particles is
considered null when this distance exceeds a certain value called peridynamic horizon (δ). The
elastic peridynamic theory is a generalization of the classical elasticity theory in the sense that
the peridynamic operators converge to the corresponding operators of the classical elasticity on
the small horizon limit. The motivation for developing this theory comes from the intention of
modeling the behavior of a material in regions with singularities. In contrast with the classical
approach, the balance of linear momentum is formulated as an integral equation that remains
valid in the presence of discontinuities, such as in the case of Griffith cracks.

Silling et al. (2007) propose a strain energy density function for isotropic materials using
the extension scalar field, which is the length change between two particles due to deformation.
The authors obtain an energy function for the simple elastic peridynamic material that, as in the
classical elasticity theory for isotropic materials, depends only upon two elastic peridynamic
constants.

Aguiar and Fosdick (2013) present a three-dimensional state-based linearly elastic peridy-
namic theory using the relative displacement field between particles. The authors propose a free
energy function that depends on deformation measures that are analogous to the measures of
strain in classical linear elasticity theory and contains four elastic peridynamic constants. Using
vanishing sequences of the horizon δ, the authors find two relations between three peridynamic
constants and the two Lamé constants of classical linear elasticity.

In order to obtain a third relation, Aguiar (2015) introduces a correspondence argument
between the free energy peridynamic function and a weighted average of the energy density
function of the classical theory. This argument provides the two relations mentioned above in
the case of homogenous deformations, being, therefore, compatible with the theory presented by
Aguiar and Fosdick (2013). Aguiar (2015) uses this argument along with the non-homogenous
deformation of a circular shaft under uniform torsion to obtain the third relation. This relation
along with those two relations mentioned above allow evaluating three of the four peridynamic
constants.

In this paper, we have used the correspondence argument together with the non-homogenous
deformation of a beam bent by terminal couples to obtain an expression for the fourth peridy-
namic constant in terms of the classical elasticity constants.

With the four peridynamic constants so determined, we wish to simulate numerically both
the torsion of a circular shaft and the beam bent by terminal couples using the Aguiar and
Fosdick (2013) model and to compare the obtained computational results with corresponding
analytical results from classical theory. This numerical investigation is under development.

In Section 2, we introduce measures of angular distortion and length changes between
material points in the peridynamic theory. These measures are used in Section 3 to present the
free energy function proposed by Aguiar and Fosdick (2013). This function is used to obtain the
linearized form of the vector force state, which is analogous to the stress tensor of the classical
linear theory. Corresponding expressions for the strain energy function and the linearized force
vector state proposed by Silling et al. (2007) are presented in Section 3.1. It is observed that
these expressions correspond to particular cases of the expressions proposed by Aguiar and
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Fosdick (2013). The correspondence argument mentioned above is introduced in Section 3.2,
which is used in the determination of three peridynamic constants. The use of this argument
along with the deformation field of a cylindrical beam bent by terminal couples allows to obtain
a closed-form expression for the fourth peridynamic constant in Section 4, which is one of the
main goals of this work. Another goal is to simulate numerically problems in mechanics to
validate the peridynamic model proposed by Aguiar and Fosdick (2013). Simulation results
will be presented at the event. Conclusions of this work are found in Section 5.

2 KINEMATICS OF SMALL DEFORMATION

Let B ∈ E3 be the undistorted reference configuration of an elastic body and let y :=
χχχ(x, t) be the position of the particle x ∈ B at time t ≥ 0. Here, a neighborhood of any
point x0 is a sphere of radius δ centered at x0, which we denote by N δ(x0) ⊂ B. The vector
ξξξ := x − x0 is called a bond from x to x0, where x ∈ Nδ, as illustrated in Fig. 1. The set
Hδ(x0) is the collection of all bonds to x0.

Figure 1: Reference and deformed configurations of a body. Source: Aguiar and Fosdick (2013).

A peridynamic state at (x0, t) of order m is a function A(x0, t)〈·〉 : Hδ(x0) → Lm, where
Lm is the set of all tensors of order m. Thus, the image of a bond ξ ∈ Hδ(x0) for the state
A(x0, t)〈·〉 is the tensor of order m, A(x0, t)〈ξξξ〉. We denote by Am the set of all states at
(x0, t) of order m. Similarly, we introduce the definition of a double state at (x0, t) of order
p, D(x0, t)〈·, ·〉 : Hδ(x0) × Hδ(x0) → Lp. The dependency between two states A(x0, t)〈·〉 :

Hδ(x0)→ Lm and u(x0, t)〈·〉 : Hδ(x0)→ Lp is denoted by A(x0, t)〈ξξξ〉 = Â(x0, t)[u]〈ξξξ〉. For
notational convenience, we shall not exhibit the dependence on the time variable t and, when
the meaning is clear, may also omit the dependence on the particle x0.

The difference deformation state χχχ ∈ A1 at x0 ∈ B is defined through

χχχ〈ξξξ〉 := (χχχ(x)−χχχ(x0)) |x=x0+ξξξ .

With u ∈ A1 being the difference displacement state and x ∈ A1 the reference position vector
state at x0 ∈ B, we may writeχχχ = u+x. The difference deformation and displacement quotient
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states at x0 ∈ B are then defined by

f :=
χχχ

|x|
= h + e, h :=

u

|x|
, (1)

where e := x/ |x|, and |A| is the magnitude state of A, defined through

|A| 〈ξξξ〉 :=
√

A〈ξξξ〉 ·A〈ξξξ〉, (2)

with “ · ” being the scalar product in E3.

When the deformation of the body is small, we suppose that there is an ε, |ε| < 1, such that,
at x0 ∈ B, h〈ξξξ〉 ≡ u〈ξξξ〉/|ξξξ| = O(ε), |ξξξ| < δ. Using Eq. (1) and Eq. (2), we get

|f〈ξξξ〉| ≡
|χχχ〈ξξξ〉|
|ξξξ|

= 1 + e〈ξξξ〉 · h〈ξξξ〉+ O(ε2). (3)

The strain of a bond ξξξ at x0 is defined as the change of length of ξξξ per unit of length ξξξ as
the result of a deformation, i.e., e〈ξξξ〉 := (|χχχ| − |ξξξ|)/|ξξξ|. Thus, the infinitesimal normal strain
state ε〈·〉 : Hδ → R at x0 is given by the second term on the right-hand side of Eq. (3), viz.,

ε〈ξξξ〉 := ε̂[h]〈ξξξ〉 ≡ e〈ξξξ〉 · h〈ξξξ〉. (4)

From Eq. (4) we see that ε̂[·]〈ξξξ〉 : A1 → R is a linear function.

Next, we define the infinitesimal shear strain state γ〈·, ·〉 : Hδ(x0)×Hδ(x0)→ R through

the expression

γ〈ξξξ,ηηη〉 := γ̂[h]〈ξξξ,ηηη〉 ≡ 1

2
(e〈ξξξ,ηηη〉 · h〈ξξξ〉+ e〈ηηη, ξξξ〉 · h〈ηηη〉), |ξξξ| < δ, |ηηη| < δ, (5)

where we have used the notation

e〈ξξξ,ηηη〉 :=
(111− e〈ξξξ〉 ⊗ e〈ξξξ〉)e〈ηηη〉

sinα
=

e〈ηηη〉 − e〈ξξξ〉 cosα

sinα
, (6)

in which 111 is the identity tensor in L2 and α is the smallest included angle between ξξξ and ηηη.
From Eq. (5) and Eq. (6) we see that γ̂[·]〈ξξξ,ηηη〉 : A1 → R is a linear function.

The difference displacement quotient state at x0 ∈ B, defined in Eq. (1), can be decompo-
sed as

h〈ξξξ〉 = ϕ〈ξξξ〉e〈ξξξ〉+ hd〈ξξξ〉, (7)

where ϕ is a scalar state that yields the radial component of h〈ξξξ〉 and hd is a vector state that
satisfies hd〈ξξξ〉 · e〈ξξξ〉 = 0.
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3 SIMPLE PERIDYNAMIC MATERIAL
Aguiar and Fosdick (2013) use the infinitesimal strains ε̂[h] and γ̂[h] defined in Eq. (4) and

Eq. (5), respectively, to propose a quadratic free energy function for a simple elastic material.
The reduced form of this function is given by

Ŵx0 [h] =

∫
Nδ

∫
Nδ

ω(|ξξξ|, |ηηη|){ α̂11

2
(ε̂[h]〈ξξξ〉)2 + α12 ε̂[h]〈ξξξ〉 ε̂[h]〈ηηη〉

+
α33

2
(γ̂[h]〈ξξξ,ηηη〉)2 + α̂13 γ̂[h]〈ξξξ,ηηη〉 ε̂[h]〈ξξξ〉}dvηdvξ, (8)

where ω(·, ·) is a given symmetric weighting function and α̂11, α12, α̂13, and α33 are elastic
peridynamic constants.

Substituting Eq. (7) into Eq. (8) and using the equalities e〈ξξξ〉 ·hd〈ξξξ〉 ≡ 0, e〈ξξξ,ηηη〉 ·e〈ξξξ〉 ≡ 0

and e〈ξξξ,ηηη〉 · hd〈ξξξ〉 = e〈ηηη〉 · hd〈ξξξ〉/ sinα, we get the alternative form

Ŵx0 [h] = Ŵx0 [ϕ e]+Ŵx0 [hd]+
α̂13

2

∫
Nδ

hd〈ξξξ〉·
∫
Nδ

ω(|ξξξ|, |ηηη|)
sinα

(ϕ〈ξξξ〉+ϕ〈ηηη〉)e〈ηηη〉dvηdvξ, (9)

where it follows from Eq. (8) that

Ŵx0 [ϕ e] =
1

2

∫
Nδ

ϕ〈ξξξ〉 ·
∫
Nδ

ω(|ξξξ|, |ηηη|)[α̂11ϕ〈ξξξ〉+ 2α12ϕ〈ηηη〉]dvηdvξ, (10)

Ŵx0 [hd] =
α33

4

∫
Nδ

hd〈ξξξ〉 ·
∫
Nδ

ω(|ξξξ|, |ηηη|)
(sinα)2

[e〈ηηη〉 · hd〈ξξξ〉+ e〈ξξξ〉 · hd〈ηηη〉]e〈ηηη〉dvηdvξ. (11)

Near the natural state, the peridynamic equation of motion is given by

ρ(x0)ü(x0) =

∫
Nδ

{L(x0)〈x− x0〉 − L(x)〈x0 − x〉}dvx + b(x0), (12)

where ρ is the mass density, u is the displacement field, b is a prescribed density body force
and L(x0)〈·〉 is the linearized form of the force vector state evaluated on bonds in x0. Equation
(12) is analogous to the differential equation of balance of linear momentum from the classical
linear theory.

For a simple elastic material, Aguiar and Fosdick (2013) show that

L(x0) ≡ L̂x0 [h] =
δhŴx0 [h]

|x|
, (13)

where δh is the Fréchet derivative with respect to h. Substituting Eq. (9) thru Eq. (11) into Eq.
(13), we get

L̂x0 [h]〈ξξξ〉 =

∫
Nδ

ω(|ξξξ|, |ηηη|)
|ξξξ|

{
α̂11ϕ〈ξξξ〉e〈ξξξ〉+ 2α12ϕ〈ηηη〉e〈ξξξ〉

+
α33

2 sinα
(e〈ηηη〉 · hd〈ξξξ〉+ e〈ξξξ〉 · hd〈ηηη〉) e〈ξξξ,ηηη〉

+
α̂13

2

[
(ϕ〈ξξξ〉+ ϕ〈ηηη〉)e〈ξξξηηη〉+

1

sinα
(e〈ηηη〉 · hd〈ξξξ〉+ e〈ξξξ〉 · hd〈ηηη〉)e〈ξξξ〉

]}
dvη. (14)
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3.1 Relation with the model proposed by Silling et al. (2007)

Aguiar (2015) shows that, near the natural state, the free energy function proposed by
Silling et al. (2007) for a simple elastic peridynamic material can be approximated by

W̃x0 [h] :=
κ̃ϑ[ϕ]2

2
+
α̃

2

∫
Nδ

ω̃(|ξξξ|)|ξξξ|2
(
ϕ〈ξξξ〉 −

ϑ[ϕ]

3

)2

dvξξξ, (15)

where ω̃ : R → R is a known weighting function, κ̃ and α̃ are peridynamic material constants,
and

m :=

∫
Nδ

ω̃(|ξξξ|)|ξξξ|2dvξξξ, ϑ[ϕ] :=
3

m

∫
Nδ

ω̃(|ξξξ|)|ξξξ|2ϕ〈ξξξ〉dvξξξ. (16)

Notice from Eq. (4) thru Eq. (7) that ε〈ξξξ〉 ≡ ϕ〈ξξξ〉 and that, therefore, Eq. (16.b) is
a weighted average of the infinitesimal normal strain in a δ-neighborhood of x0. It follows
from Eq. (15) and Eq. (16.b) that distortions caused by angle changes between bonds are not
considered in the energy function proposed by Silling et al. (2007).

The linearized force response function state, obtained from Eq. (13) together with Eq. (15)
and Eq. (16), is given by

L̃x0 [h]〈ξξξ〉 = ω̃(|ξξξ|)|ξξξ|
[(
κ̃− α̃m

32

)
3

m
ϑ[ϕ] + α̃ϕ〈ξξξ〉

]
e〈ξξξ〉. (17)

Comparing Eq. (14) with Eq. (17), it is observed that the expressions are equivalent if

α̂11 =
α̃

m
, 2α12 =

(
3

m

)2

κ̃− α̃

m
, α33 = α̂13 = 0,

and

ω(|ξξξ|, |ηηη|) = ω̃(|ξξξ|)ω̃(|ηηη|)|ξξξ|2|ηηη|2. (18)

The linearized model proposed by Silling et al. (2007) is, therefore, a particular case of the
linear model proposed by Aguiar and Fosdick (2013).

3.2 Determination of three peridynamic constants

Using convergence results obtained by Silling and Lehoucq (2008), Aguiar and Fosdick
(2013) show that, for a homogeneous deformation corresponding to an infinitesimal displace-
ment gradient H0,

1

2
H0 · (Cx0H0) = Ŵx0 [H0e], (19)

where Cx0 is the elasticity tensor of the classical linear theory. They further show that the left-
hand side of Eq. (19) reduces to the strain energy function of an isotropic classical linear elastic
material, which is given by

ŴL
x0

[E] =
1

2
[λ(trE)2 + 2µE · E], (20)
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Suzana Moreira Ávila (Editor), ABMEC, Brası́lia, DF, Brazil, November 6-9, 2016



A. Seitenfuss, A. Aguiar, M. Pereira

where λ and µ are the Lamé constants and E := (H0 +HT
0 )/2 is the infinitesimal strain tensor.

Using the resulting relation between ŴL
x0

[h], given by Eq. (20), and Ŵx0 [h], given by Eq.
(9) thru Eq. (11), the autors obtain two relations between the first three peridynamic material
constants appearing in Eq. (8) and classical elasticity constants. These relations are given by

2α̂11 + α33 =
15E

16(1 + ν)ωδ
, α̂11 + 2α12 =

3E

16(1− 2ν)ωδ
, (21)

where ν is the Poisson’s ratio, E the Young’s modulus, and ωδ ≡ π2
∫ δ
0

∫ δ
0
ω(ρ̌, ρ̂)ρ̌2ρ̂2dρ̂dρ̌.

To obtain a third relation, Aguiar (2015) introduces a correspondence argument according
to which the free energy function of the peridynamic material at x0 near the natural state is equal
to the weighted average of the strain energy density function from classical elasticity theory in
a δ-neighborhood of x0. Considering that Eq. (18) holds, the correspondence argument yields

Ŵx0 [h] = W
L

x0
[h] :=

1

m

∫
Nδ

ω̃(|ξξξ|) |ξξξ|2 ŴL
x0

[Ê[h]]dvξ, (22)

where Ê[h] is the infinitesimal strain tensor obtained from the vector state h and m is given by
Eq. (16.a). Observe from Eq. (22) with Ê[h] constant that Ŵx0 [h] = ŴL

x0
[h]. Therefore, Eq.

(19) with its left-hand side replaced by Eq. (20) and ω(·, ·) given by Eq. (18) is a particular case
of Eq. (22).

In addiction, the autor considers the infinitesimal strain tensor field from a non-homogeneous
deformation, corresponding to the experiment of uniform torsion of a circular shaft. For x0 lo-
cated on the axis of the shaft, ϕ〈ξξξ〉 ≡ 0 for all bonds to point x0.

Using the correspondence argument, given by Eq. (22), and considering uniform torsion of
a circular shaft, Aguiar (2015) obtains the relation

α33 =
20µ

m2
. (23)

Replacing Eq. (23) and the expressions µ = E/(2(1 + ν)) and κ = E/(3(1− 2ν)) in Eq.
(21), the other two contants can also be determined, being given by

α̂11 =
5µ

m2
, α12 =

1

2m2
(9κ− 5µ) . (24)

4 DETERMINATION OF THE CONSTANT α̂13

The determination of the constant α̂13 is one of the objectives of this work. This constant
represents non-local effects of the peridynamic material and can not be determined from the
approach leading expressions in Eq. (21). To determinate α̂13, we use a simple experiment in
mechanics that provides a deformation field for which both radial and non-radial components
of h in Eq. (7) do not vanish. The experiment consists of a beam bent by terminal couples, as
illustrated in Fig. 2. The solution of this problem is given by (SOKOLNIKOFF, 1956)

u(ξ1, ξ2, ξ3) =
M

2EI
[(ξ3

2 + νξ1
2 − νξ22)e1 + 2νξ1ξ2e2 − 2ξ1ξ3e3], (25)
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Figure 2: Beam bent by terminal couples.

where {e1, e2, e3} is the orthonormal basis associated to the cartesian coordinates {ξ1, ξ2, ξ3}
with origin at a point x0 on the axis of the shaft, which is aligned with the ξ3-direction, M is
the resulting moment applied at the ends of the beam, which is taken to be positive, I is the
moment of inertia with respect to the ξ2-direction, and we recall from section 3.2 that ν is the
Poisson ratio and E is the Young’s modulus. The non-zero components of the corresponding
infinitesimal strain tensor E are given by

ε11 = ε22 =
M

EI
νξ1, ε33 = −M

EI
ξ1. (26)

To apply the correspondence argument, in the form of Eq. (22), first, we use Eq. (20)
together with Ê[h] ≡ E(ξ1, ξ2, ξ3) and the strain components given by Eq. (26) to obtain
ŴL

x0
[Ê[h]] = (M2/2EI2)ξ21 . Using the transformations ξ1 = ρ cosθ senφ, ξ2 = ρ senθ senφ, ξ3 =

ρ cosφ, where (ρ, φ, θ) are spherical coordinates with origin at x0, and taking the limits of in-
tegration ρ ∈ (0, δ), φ ∈ (0, π) and θ ∈ (0, 2π), we obtain

W
L

x0
[h] =

M2m6

6EI2m
, (27)

where m6 and m = m4 are given by mn := 4π
∫ δ
0
ω̃(ρ)ρndρ.

Using the decomposition of Eq. (7), the expression h〈ξξξ〉 = u(ρ, φ, θ)/ρ, and the transfor-
mation from the cartesian coordinate system with base {e1, e2, e3} to the spherical coordinate
system with base {eρ, eφ, eθ}, we get the radial and non-radial components

ϕ〈ξξξ〉 =
Mρ

2EI
cosθ senφ(ν sen2φ− cos2φ), (28)

hd〈ξξξ〉 =
Mρ

4EI
{−cosφ cosθ[−3− ν + (1 + ν)cos(2φ)]eφ + 2senθ(ν sen2φ− cos2φ)eθ},

respectively, of the vector state h〈ξξξ〉(ρ, φ, θ).

Using Eq. (18), we rewrite Eq. (9) along with Eq. (10) and Eq. (11) in the form

Ŵx0 [h] = α̂11Â
11
x0

[h] + α12Â
12
x0

[h] + α33(Â
33
x0

[h] + B̂33
x0

[h]) + α̂13(Â
13
x0

[h] + B̂13
x0

[h]), (29)
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where

Â11
x0

[h] :=
1

2

∫
Nδ

ω̃(|ξξξ|) |ξξξ|2 ϕ〈ξξξ〉2
∫
Nδ

ω̃(|ηηη|) |ηηη|2 dvηdvξ,

Â12
x0

[h] :=

∫
Nδ

ω̃(|ξξξ|) |ξξξ|2 ϕ〈ξξξ〉
∫
Nδ

ω̃(|ηηη|) |ηηη|2 ϕ〈ηηη〉dvηdvξ,

Â33
x0

[h] :=
1

4

∫
Nδ

ω̃(|ξξξ|) |ξξξ|2 hd〈ξξξ〉 ·
∫
Nδ

ω̃(|ηηη|) |ηηη|2

(senα)2
(e〈ηηη〉 · hd〈ξξξ〉)e〈ηηη〉dvηdvξ,

B̂33
x0

[h] :=
1

4

∫
Nδ

ω̃(|ξξξ|) |ξξξ|2 hd〈ξξξ〉 ·
∫
Nδ

ω̃(|ηηη|) |ηηη|2

(senα)2
(e〈ξξξ〉 · hd〈ηηη〉)e〈ηηη〉dvηdvξ,

Â13
x0

[h] :=
1

2

∫
Nδ

ω̃(|ξξξ|) |ξξξ|2 hd〈ξξξ〉 ·
∫
Nδ

ω̃(|ηηη|) |ηηη|2

senα
(ϕ〈ξξξ〉)e〈ηηη〉dvηdvξ,

B̂13
x0

[h] :=
1

2

∫
Nδ

ω̃(|ξξξ|) |ξξξ|2 hd〈ξξξ〉 ·
∫
Nδ

ω̃(|ηηη|) |ηηη|2

senα
(ϕ〈ηηη〉)e〈ηηη〉dvηdvξ.

(30)

Next, using Eq. (28) and the limits of integration introduced above Eq. (27) in the first two
expressions of Eq. (30), we get

Â11
x0

[h] =
mm6

8

M2

(EI)2
(24ν2 − 8ν + 3)

105
, Â12

x0
[h] = 0. (31)

The integrals in the other four expressions in Eq. (30) are evaluated numerically using
MATHEMATICA 9 c©. Each one of them was divided in three parts that multiply either 1, ν,
or, ν2. The values obtained from numerical integration converge to rational numbers multiplied
by π2, or, π3. The four resulting expressions are then given by

Â33
x0

[h] =
mm6

64

(
M

EI

)2
(64ν2 + 16ν + 92)

105
, B̂33

x0
[h] = 0,

Â13
x0

[h] = 0 , B̂13
x0

[h] =
πm5

2

32

(
M

EI

)2
(−11ν2 + 20ν − 4)

105
.

(32)

Substituting Eq. (31) and Eq. (32) back into Eq. (29) and equating the resulting expression
to Eq. (27), we finally get that

α̂13 =
140

π

m6 µ

m m2
5

(
8ν2 − 8ν − 1

11ν2 − 20ν + 4

)
. (33)

In this section we have used the correspondence argument given by Eq. (22) and considered
the pure bending experiment defined by the displacement field given by Eq. (25) to obtain an
expression for the constant α̂13, which is given by Eq. (33). This expression along with Eq. (23)
and Eq. (24), corresponding to the other three peridynamic constants, can now be substituted
back into Eq. (8), or, equivalently, into Eq. (9) thru Eq. (11) to describe the behavior of the
elastic peridynamic material.
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5 CONCLUSIONS

Three of the four peridynamic constants that appear in the free energy function defined by
Eq. (8) were previously determined. From Eq. (9) it is noted that, to determinate the constant
α̂13, we need to consider a deformation state in which both hd and ϕ do not vanish. Considering
the pure bending experiment and using the correspondence argument between the free energy
function and the weighted average of the strain energy density function from classical elasticity
theory, in the form of Eq. (22), we obtain a relation between α̂13 and the elastic constants from
classical theory.

It is of great interest to numerically simulate the behavior of a body using the classical
linear elasticity model and the peridynamic models proposed by Aguiar and Fosdick (2013)
and Silling et al. (2007). Comparing the simulations results, we aim at validating the model
proposed by Aguiar and Fosdick (2013) and studying the existing differences between this
model and the one proposed by Silling et al. (2007). To achieve the goals, we are investigating
numerically simple problems in mechanics such as, for example, the torsion of a circular shaft
with no body force. The results of this investigation will be presented at the event.
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