REVISTA
INTERDISCIPLINAR DE
PESQUISA EM
ENGENHARIA

CILAMCE
2016

XXXVII IBERIAN LATIN AMERICAN CONGRESS
ON COMPUTATIONAL METHODS IN ENGINEERING

BRASILIA - DF - BRAZIL

MICROMECHANICAL APPROACH TO VISCOELASTIC BEHAVIOR
OF FRACTURED MEDIA

Céssio B. de Aguiar

Samir Maghous
cassio.barros.aguiar@gmail.com
samir.maghous@ufrgs.br

Universidade Federal do Rio Grande do Sul

Av. Osvaldo Aranha, 99 — Centro Historico, 90035-190, Rio Grande do Sul, Porto Alegre,
Brazil

Abstract. This paper presents a micromechanical approach to overall viscoelastic properties
of randomly fractured media. Unlike cracks, fractures can be viewed as interfaces that are
able to transfer efforts. Their specific behavior under shear and normal stresses is a
fundamental component of the deformation and fracture in brittle materials such as
geomaterials. Based on the implementation of the Mori-Tanaka linear homogenization
scheme, the first part of the analysis is dedicated to derive close-form expressions for the
homogenized elastic stiffness tensor of the fractured medium. The effective viscoelastic
behavior is then assessed from the elastic homogenization in Laplace framework and making
use of the correspondence principle. In this context, a specific procedure for performing the
inverse of Carson-Laplace transform is developed, allowing for the analytical derivation of
homogenized relaxation and creep tensors. It is shown that the viscoelastic behavior can
generally be described by means of a generalized Maxwell rheological model. For practical
implementation in structural analyses, an approximation of the effective behavior by a
Burger—like model is formulated in the last part of the paper.
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Micromechanical approach to viscoelastic behavior of fractured media

1 INTRODUCTION

A main characteristic of many engineering materials such as rocks and more generally
geomaterials, is the presence at different scales of discontinuities (cracks or fractures). The
term “fracture” refers to a zone of small thickness along which the mechanicals properties of
the matrix material are significantly degraded. Strength, deformability and conductivity of
fractured media are strongly affected by the presence of these discontinuities (e.g. Barton et
al., 1985; Maghous et al., 2008).

Most of the theoretical or computational analyses investigating the mechanical behavior
of cracked or fractured media have focused on the modeling of their instantaneous (elastic or
plastic) response, whereas few works dealt with delayed (time-dependent) behavior of such
materials are available in literature. In the framework of non-aging linear viscoelasticity, Le et
al. (2008) proposed a reasoning to the multi-scales modeling of heterogeneous materials.
Using the correspondence principle coupled with the Eshelby-based homogenization schemes,
Le et al. establish an equivalent model to the viscoelastic heterogeneous material. However,
this analysis was limited to classical heterogeneities. Nguyen (2010) and Nguyen et al. (2011,
2013) were extend this approach to cracked media, developing a micromechanics-based
model for viscoelastic medium where the heterogeneities are cracks. These authors
formulated a three-dimensional Burger model to approximate the homogenized viscoelastic
behavior. Nevertheless, the analysis has been restricted to viscoelastic materials with cracks
(i.e., discontinuities without stress transfers reduced to cracks). The present paper is
conceived as an extension of the Nguyen’s analysis, adding the behavior of fractures, studied
by Maghous et al. (2011), that are discontinuities able to transfer stresses.

2 ELASTIC BEHAVIOR OF FRACTURED MATERIALS

To formulate the delayed behavior of the fractured material, the first step shall consist in
formulating the instantaneous elastic behavior. The stating point is the micromechanics-based
approach originally developed in Maghous et al. (2011) and extended later in Maghous et al.
(2014) to evaluate in the context of elasticity the homogenized behavior of a medium with
an isotropic distribution of fractures (or discontinuities). The main features of the latter
approach are briefly recalled in the sequel.

It is first emphasized that fractures can be viewed as cracks that are able to transfer
normal as well as tangential stresses. They are classically modeled as interfaces with attached

orthonormal frame (t,t', n) (see Fig. 1) and whose behavior is described by means of a
relationship relating the stress vector T =g-n acting on the joint and the corresponding
relative displacement [£]:

L=kl with k=k, n®n+ k (t®t+ t'®t’) "

The stiffness k is defined by the scalars k, and k, referring to the normal and shear
stiffness of the fracture, respectively.
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Figure 1. Local frame for joint @ modeled as an interface

The intact matrix is assumed to be linearly elastic with fourth-order stiffness tensor C,
relating the local stress and strain: o=C; :¢.

The homogenized (effective) elastic behavior of the fractured medium is assessed
applying the framework of Eshelby-based homogenization schemes (e.g. Dormieux et al.,
2006). For this purpose, an appropriate geometrical description of the fracture should be
adopted. the fractures are represented by oblate spheroids with attached orthonormal frame

(t.t' n) (see Fig. 2).

Figure 2. Local frame for joint @ modeled as an interface

The radius of the oblate is r and the half opening is a,. The aspect ratio X =a,/r of
such a penny-shaped crack is subjected to the conditionX <<1. In the continuum
micromechanics approach employed herein, a fracture represents an inhomogeneity
embedded within the intact matrix. The matrix stiffness is C and the fracture stiffness is k .

In this context, the elastic material takes the place of the matrix and the fractures takes the
place of the heterogeneities. The volume fraction of fractures in the medium is denoted by f :

4
f=§7zeX )

where ¢ = N r® is the crack density parameter defined by Budianski and O’Connell (1976),
N being the number of cracks (fractures) per unit volume. Adopting a random distribution
for fractures in the medium, the Mori-Tanaka scheme provides the fallowing homogenized
stiffness tensor (Maghous et al., 2014):

-1

CPom :!(im){(cs + Ci :|:]I+]P’G :((Cs —(Cj)]_l};{]l+|:]l+PG :((CS —(Cj)]_l} 3)
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Micromechanical approach to viscoelastic behavior of fractured media

where P is the Hill’s tensor wrote in global coordinates (see Dutra ,2012). It depends on the
aspect ratio X of the oblate spheroid and its orientation n. The components of the Hill tensor
of an oblate spheroid can be found in Handbooks (see for instance Nemat-Nasser and Hori
1993; Mura, 1997). The symbol Q denotes the integral over the spherical angular
coordinates € [0, z]and ¢ <[0,27]:

Q=[ [ ty(6.0) Qb.9)sinodady @)

where w(6,p) represents the fracture distribution function (see for instance Advani and
Tucker, 1987). In the case of isotropic distribution of fractures with the same radius and
aspect ratio, this function reduces to the constant value of w(8,¢)=1/4x. Assuming an

isotropic elasticity for the matrix material, the four-order stiffness tensor C, can be described
by its bulk module k; and shear module g, :

C, =3k, J+2 4, K (5)

The fourth-order tensorsJand Kare defined as J=31®1 and K=I-J. Tensor C,
represents a four-order behavior tensor related to the crack stiffness according to:

4
(Cj=3Xr(kn—§kth+2ertK (6)

At the macroscopic level, the effective medium is elastically isotropic. Hence,
hom __
C"™" = 3K,y T+ 21,0 K (7

where k., and g, are respectively the homogenized bulk and shear modulus. Their
expressions have been derived analytically in Maghous et al. (2014) or Aguiar (2016):

K =3k, 22

) ®)

4

/uhom = 45/“5

Bi are coefficients that depending of matrix and fractures parameters:

Bo=3Kk 7w u +3K rk +4u rk +mu’

B, =12k’ m+16 K, € m p, +12 1 p K +9Kk rk +3 7 u>+9k, 7 u

Bo=9k mp +12k, rk +16 p, 1k +6 7 412 ©)
B, =(288BK, e m+384B, yile m+48BK, e w+64p, ple m+455,5,)
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3 VISCOELASTIC BEHAVIOR OF FRACTURED MATERIALS

The behavior of homogenized viscoelastic materials can be derived directly from a
combination of the correspondence theorem (Le et al., 2008) with the Eshelby-based elastic
homogenization. The correspondence principle consists in introducing the Carson-Laplace
transform in order to formulate the viscoelastic problem in terms of an equivalent elastic
problem in the Laplace-domain (Bland, 1960; Salencon, 2009). The Carson-Laplace

transform u” of function u is defined by:
u(p)= ju(t)e‘ptdt (10)

In the context of an isotropic viscoelastic-fractured material, the correspondence principle
is used taking advantage of the homogenized elastic formulated in the previous section by Eq.
(7) to (9) expressed in the Laplace-domain. The homogenized viscoelastic relaxation tensor is
the viscous counterpart of Eq. (7):

Rion = Criom =3 Kiom J+2 fo K (11)

where k... and p; .., are respectively the homogenized bulk modulus and shear modulus
Carson-Laplace transforms:

A

2

. - 450, 3,

*
k*
*

hom

_3K’
(12)

/uhom - /us ,34

It is observed that ki and . are respectively the bulk and shear moduli of matrix

material in the operational space. Their values are dependent on the rheological model utilized
adopted for the viscoelastic behavior of matrix material. If the Kelvin-Voigt rheological

model (represented in the Fig. 3) is adopted for instance, moduli k; and . take the fallowing
form:

(K k)
* pk}\é,s +k|e<,5 +kr?\,s 13
ot (Pas i) 13

S \" e e
p/uK,s + /uK,s + /um,s
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Figure 3: Kelvin-Voigt rheological model

He, o

M.

The coefficients A are the viscous counterpart of Eq. (9):

Br=3K mu +3K rK +4u rK +mu’

By =12k % n+16 K, € m p, +121 1, K +9K, r K +3 7 12 +9 K, 7 11,
Bi=9K 7 +12k; rk +16 4, r kK +6 7 g’

Bi =(288BK; e m+38Ap, p’c m+A8BK; wie m+6AS; ulie m+45P. ;)

(14)

where k’ and k; are the Carson-Laplace transforms of normal and tangential stiffness of
fractures. It is observed that no restriction has been introduced regarding the rheological
model of fractures, For convenience, the following notations will be introduced in the
subsequent analysis:

(15)

A main issue of viscoelastic homogenization is connected with the ability to derive
analytical expression for homogenized relaxation tensor from inverse Carson-Laplace

transform of R . For this purpose, a specific analytical procedure is developed in the next
section.

3.1 Procedure for inverse of Carson-Laplace transform

Le et al. (2008) presented a procedure to obtain the inverse Carson-Laplace transform
that is valid for generalized Maxwell and generalized Kelvin rheological models. The present
approach has been developed independently of the latter procedure and covers a larger
number of individual rheological models adopted for matrix material and fracture material,
including Spring elastic model, Maxwell model, three-element standard model, Burger model
or Generalized Maxwell model. For sake of simplicity, rheological models which do not
exhibit instantaneous elasticity, such as the two-element Kelvin model, shall not be
considered in the present analysis.

It may be perceived from the analysis of Eq. (12) and Eq. (14) that the expressions of the
bulk and shear moduli can always be written as a ratio of two polynomial functions of
variable p. Referring either to k. or g . by the generic relaxation function on R, ., it

follows that:
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Rhom =57 (16)

n (17)
B(p)zzbk pk: (p_Rk)gk ; bn=l

It is observed that for most usual rheological models, k; and . (respectively k; and
,u;) are polynomials of same degree with respect to variable p. Thus implying that the
polynomials A(p) and B(p)have the same degree. In the above definition Eq. (17) of
polynomial of B(p), scalar R, is the kth roots of B(p) and g, is the degree of the kth root,
while z is the number of main poles of B(p).

The first step of the inverse procedure consists in introducing the Laplace transform of

R, defined as F(p)=R;0m/p. This operation allows to easily splitting the relaxation
function into an instantaneous part and a delayed part:

n

;Z[(boak — a5 ) pk_1]

& b (18)
F(P)= 5(p)

It is observed that b, =0 does not correspond to any usual rheological model. Using the
expression Eq. (17) of B( p) into Eq. (18) yields:

~ ao z G Di,k
F(p)—p—tﬁggm (19)
where
_ 1 a(giik) C(p) 9i
D« —(gi_k)!ap(gi_k)l:B(p)(p_Ri) :|p=Ri (20)
and
13 k-1
C(p)=;- [ (B ~ab,) P (21)

0 k=1

We now proceed to the inverse of Laplace transform of F ( p)’ whose expression is given
by EqQ. (19). It can be readily shown that:
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z

R = (F(R)=| g+ E2 gt o VO @)

i=1 k=1 -

where Y (t) is the Heaviside step function at origin.

Although the proposed procedure includes the situation of polynomial B(p) having

multiple roots, this situation does not occur for usual rheological models. It will be therefore
assumed in what follows that the polynomial B(p) admits only simple roots (g, =1). Eq.
(22) reduces thus to:

R, = {%Jrkz_lpkeﬂv (t) (23)

0

with

D, = C(p) :{M}

)
B(p) B(p)

(24)
ap p=R¢

The present reasoning has been developed for isotropic homogenized materials whose
relaxation tensor R;_ can be expressed by Eq. (11). The procedure can be applied to obtain

hom

the inverse Carson-Laplace transform of the bulk and shear moduli separately.

4 EXACT HOMOGENIZED VISCOELASTIC MODEL

Before further developments, it is useful to first recall the viscoelastic generalized
Maxwell model. The latter is characterized by assembling several Maxwell elements in
parallel together with a spring (Fig. 4).

3_—fmzsm\°—

Figure 4: Generalized rheological model of Maxwell

The relaxation function R, _,,,, associated with the generalized Maxwell model reads:
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_ By

R&W0ﬁza+iaJW]Y@)

(25)

which is formally identical to the homogenized relaxation of the fractured medium expressed
by Eq. (23) medium, with:

Eo:a0 , E.=D¢ _E:Rk:m:_%

b, m ) (26)
This means that in the context of adopted framework, the overall viscoelastic behavior of

the fractured medium can always be exactly described by an appropriate generalized Maxwell
model. The homogenized isotropic behavior is characterized by:

IRhom = 3 khom "IH—Z :uhom K (27)

where generalized Maxwell models can be associated with the bulk and the shear moduli
as shown in Fig. 5.

kg 15
L e
i cho usfo
T gt Lt et
k3 K3 7 ps
2 e 2 rpprrnnted

:kﬁ kﬁ: :#E #fl:

Figure 5: Generalized rheological Maxwell models for viscoelastic bulk and shear moduli.

Accordingly,

k=1
n (7%) (28)
luhom (t) /ug + Zulf € i Y (t)
k=1
with the following relationships:
k e k
=25 k=Dl -k =RISK =k
b0 kk Rk (29)
u e H
e L e H v__D
ﬂo=§'—j, D oH=D G =R =
0 k k
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In the above expressions, superscripts k and x are used to refer to bulk modulus and shear

modulus, respectively. Parameter n in the sum operation is the number of Maxwell branches
assembled in parallel with the spring. It depends on the rheological models adopted to
describe the individual behaviors of matrix material and fracture material. For instance, if the
Kelvin-VVoigt model is used for both bulk and shear moduli of the matrix, and the fractures are
assumed to behave elastically (i.e., modeled by means of springs for shear and normal
behaviors), A(p) and B(p) are polynomials of degree four. Consequently, the value of n in

Eqg. (23) is equal to four, which coincides of the number of roots of polynomial B(p).

Consequently, the equivalent generalized Maxwell model has four branches in parallel with a
spring. Changing the rheological model matrix material or fracture material will result in a
different number of branches of the equivalent generalized Maxwell model.

5 SIMPLIFIED HOMOGENIZED MODEL

The whole homogenized viscoelastic behavior determined in the previous section can be
described by means of Generalized Maxwell models shown in figure 4. However, it may be
suitable to formulate an approximate model that would be more tractable for practical
implementation in structural analyses. In the context of micromechanics approaches, Nguyen
et al. (2011) developed a simplified Burger model to approximate the homogenized
viscoelastic properties of a medium with cracks (i.e., discontinuities which do not able to
transfer efforts). This section aims at extending the latter work to fractured viscoelastic
material

Owing to isotropy at macro-scale, it is possible develop the reasoning separately for the
bulk modulus and the shear modulus. For sake of simplicity, the approximate model shall be
only detailed for the bulk modulus. The results regarding the shear modulus are summarized
in Appendix once that the procedure to the shear module is similar. It Follows from Eq. (12)
and Eq. (14) that

1 _ 1 Ame(3+4k) 14eQ

==t " .
I(hom ks ﬁl ks (30)
with:
A7 (3K, +4 4 )k
Q = ( = ) (31)

B

Assuming for instance a Burger model for the behavior of the matrix material together
with a Maxwell model for the fracture material, the coefficients k;, s, k; and u; take the

values:

1 1 1 1 1 1 1 1

P e + \ + e v ! T = e + \ + e \

ks kM,s pkM,s kK,s + p kK,s /us /uM S p/uM,s /uK,s + p/uK,s

1 1 1 1 1 (32)
P e + \Y ! = e + \

ki ku; Pky; Hi My Ply
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It should be kept in mind that the Carson-Laplace transform of the relaxation function
Ky, associated with the Burger model shown in Fig. 6 is computed as:

1 _ 1 1 1
k;ur kl?/l ,Bur p kl\\;l ,Bur kIi,Bur +p kz,Bur (33)

kIE{.Bur
j ~FEOOI KmBuw  Kiipu

I'C
LL

v
IFCJE".Bur

Figure 6: Burger rheological model approximating the homogenized the bulk modulus

Comparing Eqg. (30) and Eqg. (33) indicates that is impossible establish a direct
relationship between the exact model and that associated with the Burger model. The idea to
solve this problem consists in expanding in series Eg. (30) and Eg. (33) to formulate an

*

approximation of k, . given in Eq. (30) by the Burger model represented in Eq. (33). The
approximate model is chosen such that it represents a good approximation at short t=0 and

long t = oo times. The series expansion of Q" at p=0 (t =o0) yields:

Q =Q)+Q’ p+0O(p?) (34)
with

B Ak o (3K o + 411 )

By, (3K o+ o)+ (3 iy + 3Ky ot + At ot )

v P e e v v
4ﬂkM,s (;ﬂK,sﬂfA,sﬂM,j (3kM ,S +4/JM ,s)PZ + P3j

kl?/l,skli,sﬂ:ﬂ,sﬂli,sk:ﬂyjﬂ'sﬂvj(Pl)2
P = (B« (3K o + 1 )+ (3K o + 420 ) (3K, +44a )
PZ (3k§,skl\\lll,skl\e/l,j _Skli,skl?/l,skl\\l/l,j +4k|i,skl$/| ,s/ul\\lll,j +3kle<,skl\\lll,sklsl,j)

Q

Q=

e \ e e e e % \ v \ v (35)
Py = —37ky Ki, (K sk s 34w s s (3kM sy )(3k|v| s T Hn ,s)

kKt P (30 4 Ay ) (3K 4

+36 7K K oK ” 4k sk 1 s s +BOTKE Ky (Ko A0 o Hhan £ 1 s b s
167K Ky 4l oty e i b 5> +18TKE Ky Ky (ko + 1y o ) Ko st &
+ 277Ky jany ik St o7 (K Ky ot o+ KE KR st Kttty o+ Ky 1 o185 )
+ 127k Ky kit (ks + i o) 1

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
Suzana Moreira Avila (Editor), ABMEC, Brasilia, DF, Brazil, November 6-9, 2016



Micromechanical approach to viscoelastic behavior of fractured media

Developing Q* at the neighbor of p=ow (t=0) yields:

o e Q7 1
Q=Q +T1+0(?J (36)
with
Qoo 47Tk:/| ,S (3k:/|,5 +4/’l:/|,5)

0

372-;“!3 \S (3'(,?/'5 +ﬂﬁﬂ,s)+a(3kﬁn,sk:ﬂ,j +12:Ul?/l ,sklf/l,j +12klfll,sﬂ:/l,j +16ﬂl6\3/l,sﬂl$/l,j)

e 1 v v v e e
47Ky s (3,u|<,s,uM,sﬂM,j (3kM,s +4:uM,s)Sl Sy + Sa]

Q=
' kl\\lﬂskl\isﬂl\\lﬂsﬂl\éskl\\lﬂjﬂl\\lﬂj (Sl)2
Sy = (372t (35 + 50 )+ (35 + At o) (3K, +442d )
S2 :(3kl\2,sksﬂ,skl\\//|,j +3kl\\lll,skl(\ell,skl\\lll,j +4kr\2,skl\\//|,sﬂlfll,j _Skl\é,skl\\lll,skl(\e/l,j) (37)

Sy == K st st st stlyn o (3KE s + 4ty < ) (3K s+t ) (3K =Bt ;)
Kt (36 4 A ) (3K + 4 )
— 67Ky, e 52K K ot (s + i s ) (K5 o + 228 )
=277k st 1 K 1 st (K K ) K ki (22 + 22 )

Expanding the equation of k; on Eq. (32) leads to:

11 1 1
=0: —= + + +0
ST (k k} (°)
(38)
11 11 [1j
p=ow. S=—-+t—| ——+— |+0| =
ks kM,s p [ kM,s kK,s ] p

Introducing the previous equations within Eq. (30), one obtains:

5=0: k*l =1+6Q8+£6Q10+(1+5Qg)( 1 1 D*O(p)

v v e e
hom pkM ,S kM ,S kM ,S kK,s

p=oo: *l =ﬂ+l (1+5Qg°) vl + Vl +€?*1 +O[i2j
khom kM S p kM S kK,s kM S p

These equations must be compared with the series expansion of the Eq. (33):

(39)
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p=0: k} 3 +( 1 1 ]+O(p)

= e e
Bur p |(M,Bur I(M ,Bur kK,Bur

(40)
1 1 1( 1 1 ( 1 j
0! =t ———+— +0| —
kBur kM ,Bur p kM ,Bur I(K,Bur p

The parameters defining the Burger model are thus obtained from the comparison between
Eqg. (39) and Eq. (40):

o
Il

1 1+eQy . 1 1+eQq
k:A,Bur kl?/l,s , in,Bur kli,s
1 14eQ, 1 1+eQ) (41)
kI\\’/I,Bur I(l\\I/Is ’ I(I\L,Bur kI\és
where
e _ A» . e _ NoO k}i,s 0 kIe<,s ®© 0
Q=0 i Q=00+ QY- (Qr Q)
kM,s kM,S
kY kY (42)
Qu=0Q7 & Q=07+ Q- (&%-Q7)
M,s M,s

which defines entirely the bulk modulus of the Burger model approximating the
homogenized material. To complete the approach, it is necessary solve the same problem
regarding the approximation of homogenized shear modulus by a Burger model:
1 1 N 1 N 1
IU;ur /U:A,Bur plul\\//I,Bur luli,Bur—i_plul\é,Bur (43)

where the homogenized coefficients are provide in appendix.

We proceed now to the assessment of accuracy of the approximate Burger model through
comparison with the exact homogenized relaxation bulk modulus given by Eq. (30). For
illustrative purposes, the following data will be considered:
ky s =11,4.10°Pa ; k; ,=9,7.10°Pa ; ky, , =9000.10" Pa.s ; ky ; =95.10" Pa.s
ty o =8,51.10°Pa ; uy  =7,28.10°Pa ; uy, , =6750.10" Pass ; uy . =71,3.10" Pas

e pPa aPa pPa 21 Pa
kw,; =12.10"— ;ky, ; =120.10 F'S ; ty §=10.10" — ;4 ;=90.10 F'S (44)
k}i,j :6.1012E ; kl\é,J :60.1021E.S ; luli,j :5.1012E ; /,[K’J :50'1021E's ; 620,1
m m m m
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Figure 7 displays the variations of these moduli normalized by their initial value as a
function of time. The maximum relative gap is not exceeding 11%, thus showing that the
simplified model can provide an accurate approximation for all range of time.

0.6

044

— 7T
0 5.% 10 1.x 10! 1.5 % 10!
¢

| kﬁom — exact kﬁom — approgach |

Figure 7: Homogenized bulk modulus versus time:
comparison of exact and approximate Burger predictions.

Although the approach has been presented in the particular case defined by a Burger
model for matrix material and a Maxell model for fracture material (Burger-Maxwell), a
general procedure to formulate the approximate homogenized model has been developed for a
large class of rheological models for matrix and fractures (see Table 1). However, the
approximate homogenized rheological model is formulated considering it is similar to that
adopted for the matrix material.

Table 1 presents the parameters required to define the individual rheological model for
matrix or fractures. Subscript a =s refers to matrix while « = j refers to fractures.

Table 1: Definition of parameter used for individual models

Model Required parameters

Crack

Spring Kii e 5 Hir e

Maxwell Koo o Kio o Mg o+ Mg
Kelvin-Voigt Ko o Ko 1Ko 3 Mo 0 Mo s Hya

Burger Kvo o Kko o Kua o Kka e 3 Ha 3 B 5 Mo

The model proposed in Nguyen et al. (2011) for a cracked medium is retrieved by
considering the following parameters given in Table 2:
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Table 2: Definition of parameter used to retrieve the
approximate model formulated in Nguyen (2011)

Model Used parameters
Maxwell Kko =0 5 Kgo =001 fg, =0 § Uy, =o
Kelvin-Voigt Kiw =00 5 fy, =

Table 3 summarizes the different cases covered by the present modeling, as well as the
maximum relative gap between the homogenized exact relaxation function and approximate
equivalent model.

Table 3: Comparison of the exact and approximate homogenized bulk moduli

_ Number of Branches Equivalent . .
Matrix Fracture | (Generalized Maxwell) approximate Maximum Error in
Model Model model approaches Model

Bulk Shear
Crack 2 3 ~0,00%
Maxwell Spring 3 5 Maxwell ~0,00%
Maxwell 4 6 ~0,00%
Crack 5 6 ~0,00%
NELT Spring > 8 Kelvin-Voigt Yok
Voigt | Maxwell 7 11 11,76%
Kelvin-Voigt 6 10 0,04%
Crack 6 8 ~0,00%
Spring 7 12 0,48%
Burger Maxwell 8 13 Burger 10,76%
Kelvin-Voigt 8 14 3,12%
Burger 10 16 9,22%
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6 CONCLUSIONS

Starting from the results established in the context elastic homogenization, the effective
viscoelastic properties of a fractured medium have been formulated model. The approach is
based upon the combination of correspondence principle and an Eshelby-based
homogenization (Mori-Tanaka) scheme. The specific inverse Carson-Laplace transform
developed in this paper allows for the analytical derivation of the homogenized relaxation
tensor of fractured medium. It can easily be applied for a large class of rheological models
used to describe the individual viscoelastic behavior of matrix material or fracture material.

It has been shown that the overall viscoelastic behavior can always be described by an
appropriate generalized Maxwell rheological model. This difference is observed in the
number of branches of the model and in the value of the parameters.

Finally, an approximate model that would be more suitable for practical implementation
in structural analyses has been formulated. Despite the approximate model is identified from
the short and long time-term regimes, it provides accurate approximation in between these
limit cases.
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APPENDIX: COEFFICIENTS OF THE APPROACH RHEOLOGICAL
MODEL OF BURGER

Expression of the relaxation function in shear associated with the approximate model is
provided herein. The principle of determination is quite to that followed for the bulk
relaxation modulus.

1 1+eMf, . 1 14eMg
/u:/I ,hom lulfll S , :ule< ,hom luli,s
1 1+eMy, . 1 1+eMy (A1)
/u;\//I ,hom :u& S , :UK ,hom /’ll\és
with
Mg =M Mg =ME+ ke mo s (w0
Hu s Hw s
Y y (A2)
My =MY 5 MY =M MY B (MY Mg )
Hy s Hy s
and
MO_E”/“[I\\IA,S(?’I(I\\IA,S_F“'#;\IA,S)% i MO__E ﬂﬂl\\lll,sps
° 5 P1P2 ’ . 5 ﬂli,sﬂl(\a/l,skli,sk:/l,sk:/l,j#:/l,jP42P22
e e e e (A3)
» 16 ”ﬂM,s(3kM,s+4ﬂM,s)Q3 i . 16 7ty Qs
My ==— M :

S QQ, - :ul,s:ul\\lll ,skl\é,skl\\/ll ,skl\\lll,j:ul\\lll ]Q42Q22

where

R, =U,R’+U,P/+U,P,+U, ; Q,=V,Q+V,Q7+V,Q,+V,

P =37y, o (3K o + 1ty o )+ 1 (Ko Ko o +12K3 o +12004 oty +1643 a1y )

P, =3y, o (3K, o + 22 ¢ )+ 4113y 1 (3Kyy o + 4214 )

Py =y (9K o +4adly )42 (3K, +4uaty ) (K, +2440 )

Py =3ty (3K, + )1 (3K + Aty ) (K + 228 ) (A4)
Qu =3y (3K5y o + atiy o )+ 1 (K K s +12K5 sty s + 1285 ptgy | +1605 45y )

Q, =3ty o (3Kyy o + 20ty o )+ AT 115y ; (3K o +4uy )

Qu =7tty o (9K o+ 44ty )+ 21 (3K o+ 4aty ) (K5 + 208 )

Q, =37t (3K5y o + a1y o )+ 1 (3Kyy o +4225 ) (ki s + 205, ;)
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Finally, the value of U, and V, are:

e

U =—Kg ki sk ;B s + 4ty )t st s (K + g 1) =ty o1t (K s + 22 6))

\ \ \ l e \ \ \
Uz = _ﬂ’-uM,S(ng,S +10UM,5)U3 _EkK,skM,jka,sGkM,s +4IJM,S)2'

(K, M sk s (3K + 2Hy ) =100y oy 1Kg 5 (H s + Hy )
+7Tk:/|;l'l\l\llls (kle(sk;\lﬂjkl?/lsuis“:/ls (3k;\llls +4H\I\I/Is)(9kl\\llls +5“\I\I/Is)

v

+ Zlkl\\//lsulflljuvMs (kli,sk:A,suvM,s(u:/l,s + ueK,s) - kM,sueK,sp'Ell,s(k}i,s + k:As)))

U, = (367z2k,‘\’,|'s(va ,3)3 +307T2(|JVM,5)4)U3

Ug

SCLAL SRS (S i SN TVIRT I € A T o (TR T

+9r (3K s +4Hu K, K s (K sk, K sHi sbi s 3Ky s + 4y )21y 5 + 3Ky )
= A Ky (M s + B ) BKi oK ki 2 +5Kic Ky sy s s +4Kic Ky My )

+ 2Ky ) B oM s (K o+ ki D) 7277 (3, ) (ki )7 Fi K 1 s s (K s KRy )
= 377K K Ko (Kan o)? BLKy (K o) i oM ¢ + 234Ky, 5 (K )7 i sHi oMy (A5)
+ 210Ky, Ky oM sHi s (M3 s )* + 56Ky i oy (B )7 + 245 (ki iy 5 (b o)

+ 24Ky oy sk s (K 6)°)

(=547 o (M .)° =367 (y )W,

—187r Ky (k)7 B () (3K + 4k o7 (ke < + B )OOk ok < (ki )°
12K oKy ok o ¢ +8KE ki iy ) +B(Kyy o) Mg o (ke + ki)

O+ KGO K b 3K+ 40 2R 360, )
=8y o) (k5 + M s )Oki ks (ki )% +22Kk iy ki oy ¢ + 8K oKy (K 1))
6Ky o) B s (ki ki N +97°kg (o) (120085 )71 5 (K ) B o b s (ki s + K o)
ki ok o (12K ki ok o (ke o) By (M s + M )

i K, K s P sHi s (2Hy 5 3Ky ) (3K  + 4y o) (4Hy < + 9K )
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Vy =Ky Ku iKus By s +4H5 ) (M My (K 5+ K ) — B sHu s (M s + Hy )

l \ e \" e e e \" \" A\ \"
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