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Abstract. The renewable energy is in the focus of many researches in the last decades, and the 

use of piezoelectric material can be used to obtain one source of this renewable energy. In 

this case, energy harvesting explores mainly the source of ambient motion and the 

piezoelectric material convert mechanical energy, present in the ambient motion, into 

electrical energy. In the work, we present a nonlinear bistable piezomagnetoelastic structure 

subjected to harmonic and random base excitation. At first, harmonic excitation is of concern 

and then, the system subjected to random excitation is analyzed. The goal of the numerical 

analysis is to present an investigation of the best electrical output response of the system 

given harmonic and random excitations. 
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1  INTRODUCTION 

Energy harvesting is a process where the available energy in the environment is 

converted into electrical energy. There are many sources of vibration energy and using 

piezoelectric material this kind of mechanical energy can be harvested by the piezoelectric 

direct effect, from which it can be used or stored. Recent works present significant 

contribution of the researches in energy harvesting (Anton and Sodano, 2007; Tang et al., 

2010). In linear systems the best energy harvesting performance is achieved when the system 

is excited at its resonance frequency, if the excitation is slightly changed the electrical 

response of the systems is reduced. Nonlinearities allow a broader frequency band of 

excitation for optimal performance, enhancing the amount of harvested energy (Ramlan et al., 

2009; Shahruz, 2007). Erturk (Erturk and Inman, 2008) presents a formulation of a 

cantilevered beam with piezoceramc layers and performance an analytical study of the energy 

harvested by the beam with a linear analysis.  In a recent work  (Erturk et al., 2009), 

considering a harmonic excitation, it was shown that the broadband behavior can be obtained 

by exploring nonlinearities of a bistable piezomagnetoelastic. Lefeuvre (Lefeuvre et al., 2007) 

were one of the first to investigate an energy harvesting system subjected to a random 

excitation.  This same system was also studied by Kumar (Kumar et al., 2014), where a 

Gaussian white noise was considered and an investigation of the effects of the system 

parameters on the mean square voltage was studied. De Paula (De Paula et al., 2015) 

presented a numerically and experimentally investigation of the piezomagnetoelastic system 

when it is subjected to a Gaussian white noise and presented the influence of nonlinearities in 

the system. A comparison between the voltage provided from a linear, nonlinear bistable and 

nonlinear monostable systems was also investigated for De Paula, showing that for a bistable 

system the better RMS voltage is when the system visits both stable points. Therefore, this 

paper presents a numerical analysis aiming to compare the amount of energy harvested and to 

establish a methodology to compare the performance of the piezomagnetoelastic system. The 

methodology is based in the Power Spectral Density (𝑃𝑆𝐷) of the input and the output 

response of the system when it is subjected to a harmonic and a random excitation. In section 

1, a general introduction and general overview is presented. Section 2 presents the 

piezomagnetoelastic system and the main features of its dynamic behavior. Section 3 shows 

some numerical results and discussion considering, at first, harmonic and then random white 

noise excitation. Finally, in Section 4 some conclusion and final remarks are drawn. 

2  PIEZOMAGNETOELASTIC STRUCTURE 

2.1 The Nonlinear System  

The energy harvesting system is based on a magnetoelastic structure first investigated by 

Moon and Holmes (Moon and Holmes, 1979), and Erturk (Erturk et al., 2009) describe the 

system as a structure that consists of a ferromagnetic cantilevered beam with two permanent 

magnets, one located in the free end of the beam and the other at a vertical distance d from the 

beam free end, subjected to harmonic and random base excitation. In order to use this device 

as a piezoelectric power generator, two piezoceramic layers are attached to the root of the 

cantilever and a bimorph generator is obtained as can been seen in Fig. 1 
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Figure 1 (a) Schematic representation of the piezomagnetoelastic structure and (b) picture of the 

actual structure. 

The system is governed by Eqs. (1) and (2)  

𝑥 ̈ + 2𝜁𝑥 ̇ −
1

2
 𝑥(1 − 𝑥2 ) − 𝜒𝑣 = 𝐹(𝑡), 

(1) 

𝑣 ̇ + 𝜆𝑣 + 𝜅𝑥̇ = 0, 
(2) 

where 𝑥 is the dimensionless tip displacement of the beam in the transverse direction, 𝑣 is 

the dimensionless voltage across the load resistence. The constant ζ is the mechanical 

damping ratio, χ is the dimensionless piezoelectric coupling term in the mechanical equation, 

κ is the dimensionless piezoelectric coupling term in the electrical circuit equation, and λ is 

the reciprocal of the dimensionless time constant (𝜆 ∝ 1/𝑅𝐿𝐶𝑃  where 𝑅𝐿 is the load 

resistance and 𝐶𝑃 is the equivalent capacitance of the piezoceramic layers). 𝐹(𝑡) is the forcing 

of the system, for a harmonic excitation 𝐹(𝑡) = 𝑓0𝑐𝑜𝑠(𝜔𝑡), where 𝑓0  is the dimensionless 

excitation due to base acceleration (𝑓0  ∝  𝛺2 𝑋0 where 𝑋0 is the dimensionless base 

displacement amplitude). And for a random excitation 𝐹(𝑡) = 𝑁(𝜎, 𝑥̅), where 𝑁(𝜎, 𝑥̅) is a 

Gaussian white noise with mean value 𝑥̅ and standard-deviation σ. The values of the 

parameters are considered as the same as in Erturk (Erturk et al., 2009): 𝜁 = 0.01, 𝜒 = 0.05, 

𝜅 = 0.5, 𝜆 = 0.05. By considering these parameters, the equilibrium points, that are obtained 

from Eq. (1) and (2), are two stable spiral points located at (𝑥, 𝑥̇ , 𝑣)  =  (±1,0,0) and one 

instable saddle point located at (𝑥, 𝑥̇ , 𝑣) = (0,0,0). 

2.2 Behavior  when subjected to harmonic excitation  

At first, the case of harmonic excitation is investigated. Figure 2 shows the qualitative 

change of system response from bifurcation diagrams by varying forcing parameters. In the 

diagram of Fig. 2 (a), the black points consider the system starting at 𝜔 = 0.8 and 𝑓0 =
0.083 with initial conditions (𝑥, 𝑥̇ , 𝑣)  =  (1,0,0), which corresponds to a chaotic response. 

Note that this behavior consists in a region in the middle of the bifurcation diagrams. From 

this chaotic response value of 𝑓0 is increased and decreased and plotted together in the 

diagram. The pink points present a similar analysis, however, the system is started at ω  = 0.8 

and 𝑓0  =  0.083 with initial condition (𝑥, 𝑥̇ , 𝑣)  =  (1,1,0) which correspond to periodic 

orbit of periodicity 1. From this analysis, only periodic behavior is observed. In Fig. 2 (b), a 

similar analysis is evaluated, but now value of ω is increased and decreased and once again 

plotted together in the bifurcation diagram. The black points consider the system starting at ω 

= 0.8 and f0=0.1 with initial conditions (𝑥, 𝑥̇ , 𝑣)  =  (1,0,0), and the pink point considers the 

system starting at 𝜔 =  0.8 and 𝑓0 = 0.1 with initial conditions (𝑥, 𝑥̇, 𝑣)  =  (1,1,0). From 
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this analysis, the diagrams indicate periodic and chaotic behaviors. By considering black and 

pink points of both bifurcation diagrams, coexisting attractors are observed. In the following 

analysis, some of these responses are investigated. 

(a)

 

(b)

 

Figure 2.  Bifurcation Diagram, (a) for 𝜔 = 0.8 and different values of 𝑓0 (b) and for 𝑓0 = 0.1 and 

different values of 𝜔.  

From the bifurcation diagram presented in Fig. 2, different responses of the system can be 

seen. For the proposed analysis, 8 different cases of the response of the system, based on their 

behaviour identified from the bifurcation diagram, are chosen. Table 1 identifies all analysed 

cases. The cases are chosen in order to expose the different behavioural responses of the 

system. Table 1 also presents forcing parameters and initial conditions.  Cases 1 to 3 are 

periodic with periodicity 1 and the phase space and Poincaré section are shown in Figure 3. 

Cases 4 to 6 are chaotic and the phase space and Poincaré section are presented in Figure 4(a)-

(c).  Cases 7 and 8 are periodic with periodicity 5 and the phase space and Poincaré section 

are shown in Figure 3.  

For a better understanding of the behavior of the system, it can be observed that the cases 

2 and 4 have the same forcing parameters but case 2 has a periodic response and case 4 has a 

chaotic response, this difference is related with different initials conditions, as can be seen in 

Table 1. 

Table 1. Forcing parameters and initial condition  

 𝜔 f0 Initial Condition Behavior  

Case 1 0.5000 0.1000 (1.4263, 0.4801, -0.7263) Periodic  

Case 2 0.8000 0.0830 (1.0000, 1.0000, 0.0000) Periodic  

Case 3 1.4000 0.1000 (0.9609, 2.966, -0.5192) Periodic  

Case 4 0.8000 0.0830 (1.0000, 0.0000, 0.0000) Chaotic  

Case 5 0.8000 0.1000 (-1.2316, -0.0048, 0.3478) Chaotic  

Case 6 0.8650 0.1000 (-0.6729, 0.2838, -0.1789) Chaotic 

Case 7 0.8000 0.0930 (-1.0000, 0.0000, 0.000) Periodic 

Case 8 0.8150 0.1000 (0.2983, 0.4198, -0.5181) Periodic  
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Figure 3.  Phase space and Poincaré Section for case 1 to 3  

a)  

 

b)  

 

c)  

 

d)  

 

Figure 4.  Phase space and Poincaré Section for (a) case 4, (b) 5, (c) 6 and (d) 7 and 8 

 

3  PIEZOMAGNETOELASTIC STRUCTURE 

This section is divided in two parts. The first is dedicated to the numerical simulations for 

the system subjected to a harmonic forcing, and the second to the Gaussian white noise 

forcing. To evaluate the system we propose the analysis based in the Power Spectral Density 

(PSD), that present the distribution of power into frequency domain. 
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𝑥(𝑓) =  ∫ 𝑒−2𝜋𝑖𝑓𝑡𝑥(𝑡)𝑑𝑡 
∞

−∞
  (3) 

𝑃𝑆𝐷 =  |𝑥(𝑓)|2  (4) 

where 𝑥(𝑓) is the Fourier Transform. The PSD of 𝑣(𝑡) and 𝐹(𝑡) are calculated using a 

periodogram approach and Hanning windowing (Newland, 2005). And area under the curve is 

estimated for both type of forcing and represents the Power of the Signal (PS). It is 

established the ratio of the 𝑃𝑆𝑣 and 𝑃𝑆𝑓 as a parameter to measure the performance of the 

system by: 

𝑟 =
∫ 𝑃𝑆𝐷𝑣(𝜔)𝑑𝜔

𝜔

0

∫ 𝑃𝑆𝐷𝑓(𝜔)𝑑𝜔
𝜔

0

=
𝑃𝑆𝑣

𝑃𝑆𝑓
 , 

(5) 

The bigger the value of the ratio r, the larger the area under the PSD of electrical response 

when compared to the mechanical input. Moreover, the value of PSDv is related to electrical 

output. Thus, 𝑃𝑆𝑣 and 𝑟 are parameters used to indicate system performance for different 

dynamical behaviour. The quantities v(t) and F(t) are dimensionless, so the 𝑃𝑆𝑣 and 𝑃𝑆𝑓 can 

be compared directly. 

3.1 Harmonic Excitation 

The piezomagnetoelastic structure presents richness in the response when subjected to a 

harmonic forcing, as described in section 2. Three different of behavior in the response of the 

system are evaluated, periodic with periodicities 1 and 5 and chaotic, as it can be observed in 

Table 2. Figure 5 presents the response in time domain of cases 2, 4 and 7 and the spectrum of 

PSD, each one corresponding to one kind of evaluated behavior.  

All cases, presented before in Table 1, are now assessed and Table 2 presents the kind of 

behavior of the system as well as the values for 𝑃𝑆𝑣, 𝑃𝑆𝑓 and its ratio 𝑟. It can be observed 

that cases 1 to 3 have similar periodic behavior but with different amplitudes. Although the 

𝑃𝑆𝑣 are roughly in the same level of value, higher amplitudes are associated with higher 

values of 𝑃𝑆𝑣, once the piezoelectric material is subjected to higher deformations. Case 3 

presents the biggest 𝑃𝑆𝑣 between period-1 responses, therefore, the best electrical output and 

the best performenca. According to the parameter 𝑟, the best performance in cases 1 to 3 is 

also case 3.  

In cases 4 to 6 a chaotic response is presented, the best value for 𝑃𝑆𝑣 is presented in case 

5 that also presents the best value of 𝑟. Cases 7 and 8 have a very similar response, as can be 

observed in Fig. 4 (d), therefore, the value of 𝑃𝑆𝑣 are very close as the piezoelectric material 

deformation is similar. However, the value of r is higher in case 7. Thus, case 7 has the best 

performance. This happens because of the value of the 𝑃𝑆𝑓, case 7 and 8 have a similar 

behavior but the forcing parameters are different, which cause different value for the 𝑃𝑆𝑓. 
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Table 2. Performance of the system subjected to a harmonic excitation for the eight cases under 

analysis. 

  Behavior  𝑃𝑆𝑓 𝑃𝑆𝑣 𝑟 

Case 1 Periodic  0.3807 0.1056 0.2773 

Case 2 Periodic   0.1639 0.1059 0.6461 

Case 3 Periodic   0.1359 0.1336 0.9830 

Case 4 Chaotic  0.6541 0.1711 0.2615 

Case 5 Chaotic  0.9495 0.1953 0.2056 

Case 6 Chaotic  0.8781 0.1634 0.1860 

Case 7 Periodic    0.8212 0.2209 0.2689 

Case 8 Periodic   0.9320 0.2198 0.2358 

a)  

 

b)  

 
c)  

 

d)  

 
e)  

 

f)  

 
Figure 5. Response in time domain and the 𝑃𝑆𝐷 curve for (a)-(b) case 2, (c)-(d) case 4 and (e)-(f) case 7 
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3.2 Harmonic Excitation 

In this section, the systems performance is analysed under withe noise excitation. Ten 

different cases are presented and they are not related to the eight cases previously presented in 

harmonic excitation, i.e. they do not have the same dynamic behaviour necessarily. Cases 

were defined according to the random forcing parameter σ. Table 3 presents the value of 

forcing parameters. The response in time domain and the PSD spectrum is presented in Figure 

6. In case 1 the system visits just one equilibrium point and in all the other cases the system 

visit both equilibrium points, as can be seen from the jumps in the time domain response of 

x(t). It has been verified experimentally (De Paula et al., 2015) that when the system is 

subjected to a random vibration the bigger electric output is reached when the beam oscillates 

in both equilibrium points. This behaviour is also observed in Figure 6, that presents the 

excitation along with the electrical and mechanical responses. Both 𝑥(𝑡) and 𝑣(𝑡)  are linearly 

related, as can be seen in Eqs. (1) e (2) , which implies that when the system vibrated in both 

equilibrium points, the electrical response is better.  

It can be observed that the value of 𝑃𝑆𝑓 is increasing as the value of σ increases. A 

similar effect is observed in the value of 𝑃𝑆𝑣 however the value of 𝑟 is best in case 3 when 

σ = 0.6. After case 5  starts to decrease. So the best case for a random white noise excitation 

is presented in case 3 that presents a good value for the 𝑃𝑆𝑣 and the best value for the 

parameter 𝑟. As the value of σ increases the PSD is spread out over frequency band under 

analysis, as can be verified from Figure 6. (b), (d) and (f).  

 

Table 3. Performance of the system subjected to the 10 cases of random excitation. 

  𝜎 𝑃𝑆𝑓 𝑃𝑆𝑣 𝑟 

Case 1 0.2 4.8393 0.0004 0.00008 

Case 2 0.4 19.3575 0.0030 0.00015 

Case 3 0.6 43.5544 0.0139 0.00031 

Case 4 0.8 77.4301 0.0229 0.00029 

Case 5 1.0 120.9845 0.0368 0.00030 

Case 6 1.2 174.2178 0.0448 0.00025 

Case 7 1.4 237.1297 0.0498 0.00021 

Case 8 1.6 309.7205 0.0620 0.00020 

Case 9 1.8 391.9900 0.0677 0.00017 

Case 10 2.0 483.9383 0.0693 0.00014 

 



T.L. Pereira, A.S. de Paula, A.T. Fabro M.A. Savi 

CILAMCE 2016 

Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering 

Suzana Moreira Ávila (Editor), ABMEC, Brasília, DF, Brazil, November 6-9, 2016 

a)  

 

b)  

 
c)  

 

d)  

 
e)  

 

f)   

 

Figure 6. Response in time domain and the 𝑃𝑆𝐷 curve for (a)-(b) case 1, (c)-(d) case 2 and (e)-(f) 

case 5. 

4  CONCLUSION  

In this work a non-linear model for a piezomagnetoelastic structure is presented. This 

system has a richness in the behavior of the response. For a harmonic excitation eight cases 

are chosen in order to verify the best performance, and the best case is presented when the 

system has very large amplitude in the periodic response. When the system has a chaotic 

response best performance is presented when the 𝑃𝑆𝑓 is the lowest. The same is stated when 
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the system present a periodic orbit of periodicity 5. When the system is subjected to a 

random excitation the best performance of the system increase until case 3, when the value 

of σ = 0.6, but the performance starts to decrease after case 5 when σ = 1.0. The ratio 𝑟 of 

𝑃𝑆𝑣 and 𝑃𝑆𝑓is shown to be a good indicator for the performance of system for energy 

harvesting. For a future work a study of the system when the equation of motion is in the 

dimensionalized form can be simulated to a better understand of the value 𝑟. 
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