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Abstract. Vibration-based energy harvesting has the main objective to convert available 

environment mechanical energy into electrical energy. Piezoelectric materials are usually 

employed to promote the mechanical-electrical conversion. This work investigates the 

influence of nonlinear effects in piezoelectric vibration-based energy harvesting. Mechanical 

nonlinearities are treated considering Duffing-type mechanical oscillator. Piezoelectric 

nonlinearities are analyzed assuming quadratic constitutive coupling model. Energy 

harvesting performance is evaluated for different system characteristics being monitored by 

the input and the generated power. Numerical simulations are carried out considering 

different kinds of responses, including periodic and chaotic regimes. 
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1  INTRODUCTION 

The concept of sustainability is increasing the importance of energy harvesting that is the 

process by which available environmental energy can be captured and stored. Among the 

main types of energy it should be highlighted solar power, electrical noise, wind energy. 

Vibration based energy harvesting is another alternative that can be applied in several 

situations. The main objective of this kind of process is to convert mechanical energy into 

electrical energy. Piezoelectric materials are usually employed to promote mechanical-

electrical conversion. Machines, civil structures, airplanes, oil drilling, human movements, 

transportations, are some examples of applications of this idea. The energy harvested by the 

piezoelectric can be useful for application as small circuits like batteries and wireless 

network. 

Nonlinear energy harvesting systems have been developed to obtain better performances 

over a broad frequency range providing more power than linear systems. In this regard, 

nonlinear effects are of special interest. Different nonlinearities can be incorporated in the 

mechanical, electrical and constitutive system. In order to increase the power generated by the 

piezoelectric. 

 Several research efforts have been dealing with nonlinear mechanical system. Ramlan et 

al. (2010) showed the benefits of using a nonlinear oscillator in an energy harvesting device. 

The use of Duffing-type oscillators with monostable and bistable harvesters has been studied 

for many authors (Mann & Sims, 2009; Sebald et al., 2011; Erturk and Inman, 2011; 

Leadenham and Erturk, 2015). Stanton et al. (2009) validated a nonlinear energy harvester 

capable of bidirectional hysteresis using a piezoelectric beam with a permanent magnet end 

mass. Either the softening or the hardening responses were obtained, allowing frequency 

response to be extended bidirectionally. Stanton et al. (2010) and Cottone (2009) investigated 

bistable configurations of energy harvesting system using an experimental approach. De Paula 

et al. (2015) investigated random aspects on vibration-based energy harvesting of a 

piezomagnetoelastic structure. A comparison between linear, nonlinear bistable and nonlinear 

monostable systems subjected to random excitations showed an enhancement of harvested 

power in a bistable system. Betts et al. (2012) presented a nonlinear device through an 

arrangement of bistable composites combined with piezoelectric elements for broadband 

energy harvesting of ambient vibrations. Results showed that it is possible to improve the 

power harvested over conventional devices.  

Regarding nonlinear constitutive effects, Crawley and Anderson (1990) discussed 

nonlinear aspects related to piezoelectric coupling constants showing that there is a significant 

dependence of strains. Triplett and Quinn (2009) investigated the nonlinear coupling behavior 

of piezoelectric materials and also some aspects related to the mechanical nonlinearities in 

vibration-based energy harvesting. Stanton et. al. (2010) proposed a model for the nonlinear 

piezoelectric response of an electro-elastic energy harvester using a quadratic dependence of 

piezoelectric coupling coefficient on the induced strain. Experimental tests are performed 

showing a good agreement between numerical and experimental data. Silva et al. (2013) 

investigated the influence of hysteretic behavior of piezoelectric coupling comparing results 

with linear models. Results suggest that there is an optimum hysteretic behavior that can 

increase the harvested power output of the energy harvesting systems. Silva et al. (2015) 

showed a comparison among experimental data and models including distinct nonlinear 

piezoelectric couplings. The inclusion of nonlinear terms in the energy harvester models can 

be used to reduce discrepancies predicted by linear models. Moreover, nonlinear aspects as 

dynamical jumps are associated with dramatic changes of system responses. 
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This article analyzes nonlinear effects considering both mechanical and piezoelectric 

aspects. An archetypal model for vibration-based energy harvesting system is considered by 

assuming a mechanical system coupled to an electric circuit by a piezoelectric element. A 

Duffing-type oscillator that can be monostable and bistable represents mechanical 

nonlinearity. Constitutive nonlinearity is investigated considering a piezoelectric element 

described by a quadratic equation. Input and output powers are monitored evaluating the 

energy harvesting system. Periodic and chaotic responses are evaluated in order to verify 

system performance.  

2  ENERGY HARVESTING SYSTEM 

A vibration-based energy harvesting system consists of a mechanical system connected 

to an electrical circuit by a piezoelectric element, Fig. 1. Mechanical system is an oscillator 

with a mass m that presents a displacement y; the base excitation is represented by u=u(t) 

while z represents the mass displacement relative to the base. In addition, the oscillator has a 

linear viscous damping with coefficient b, and a restitution element that provides a force 

ℱ(𝑧). Electro-mechanical coupling is provided by a piezoelectric element with coupling 

coefficient Θ̂. This element is connected to an electric circuit represented by an electrical 

resistance Rl and capacitance C; V is the voltage across the piezoelectric element. 

. 

 

 

Figure 1. Archetypal model of the vibration-based energy harvesting system. 

 

The dimensionless mathematical model for the energy harvesting system is as follows, 

where a spatial and electrical new coordinates as 𝑥 = 𝑧/𝑙, 𝑣 = 𝑉/𝑉̂ is employed with l is a 

reference length and 𝑉̂ is a reference voltage and 𝜙 = (𝑙 𝐶𝑉̂⁄ )Θ̂ is the piezoelectric coupling 

term. 

 

𝑥′′ + 2𝜁𝑥′ + 𝑓 − 𝜖𝜙𝑣 = 𝛾sin (𝜔̅𝜏)                       (1) 

 

𝜙𝑥′ + 𝑣′ + 𝑣
𝜌⁄ = 0                                           (2) 

y(t) 
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where 𝜁 is the dissipation parameter, 𝜌 is a time constant, 𝑓 is the restitution force, 𝛾 is the 

forcing amplitude and 𝜔̅ is the forcing frequency. In addition, (∎′) ≡ 𝑑(∎)/𝑑𝜏 is the 

derivative with respect to nondimensional time. 

A Duffing-type restitution force that represents the general behavior being expressed by 

the following equation: 

 

𝑓(𝑥) = 𝛽𝑥 + 𝛼𝑥3                                                                                                                     (3) 

 

And piezoelectric coupling nonlinearity is given by: 

 

𝜙 = 𝜃(1 + 𝜉1|𝑥| + 𝜉2𝑥2)                                                                                    (4) 

 

Note that when β <0, the system has a bistable aspect and when β >0 the system is 

nonlinear monostable. The monostable system oscillates around one equilibrium point and the 

bistable around one or three. Linear system is characterized by β >0 and α=0. Values of  

define different types of nonlinearity. Figure 2 (a) shows the corresponding restitution force 

for different values of these parameters The general behavior of the nonlinear electro-

mechanical coupling can be observed in Fig.2 (b) for different parameters. There is a strong 

dependence between the piezoelectric coupling and strain as showed in Crawley and 

Anderson (1990). This nonlinearity has a significant influence on energy hasvesting response. 

  
Figure 2. (a) Duffing type system: force for different values of α and β. (b) Electro-

mechanical behavior as function of induced strain. 

 

The system can be evaluated considering the output and input powers, or in other 

words, electrical and mechanical powers. The definitions are as follows, 

𝑃𝑜𝑢𝑡 = √
1

𝜏
∫ (𝑣2 𝜌⁄ )2𝑑𝜏

𝜏

0
  and 𝑃𝑖𝑛 = √

1

𝜏
∫ (𝑥′(𝛿sin (𝜔̅𝜏)))2𝑑𝜏

𝜏

0
. 

The electrical instantaneous power of the energy harvesting system is defined as  

𝑃 = 𝑣2 𝜌⁄ , and average power, defined as 𝑃𝑎𝑣𝑔 =
1

𝑇
∫ 𝑃(𝑡)𝑑𝜏

𝑇

0
, where 𝑇 = 2𝜋. The 

conversion efficiency, 𝜂 = 𝑃𝑜𝑢𝑡 𝑃𝑖𝑛⁄ , establishes a relation between electrical and mechanical 

powers.  
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3  NUMERICAL SIMULATIONS 

Numerical simulations are carried out to explore the energy harvesting system dynamics 

considering different nonlinearities and excitations. The fourth order Runge-Kutta method 

implemented in FORTRAN 9.0 is applied in all simulations considering time steps smaller 

than 10
-4

. 

System analysis considers a Duffing type restitution force for different parameters  e  

considering monostable and bistable characteristics. Constitutive nonlinearities of the 

piezoelectric element are also investigated by comparing with a linear constitutive model 

(𝜉1 = 𝜉2 = 0). The main focus of the analysis is the average power and efficiency of the 

system. Some parameters are adopted in all simulations: 𝜁 = 0.01, 𝜖 = 0.1, 𝜃 = 0.5 and 

1/𝜌 = 0.05.  

 

3.1 Influence of the Forcing Frequency  

Initially, the system efficiency is evaluated changing the forcing frequency with 𝛾 = 0.1 

(amplitude forcing) and adopting different parameters for the restitution force (𝛽 = 1.0, 𝛼 =
0.4 and 𝛽 = −1.2, 𝛼 = 0.3) with a linear piezoelectric constitutive model (𝜉1 = 𝜉2 = 0). 

There is a special interest on the resonant conditions. Nevertheless, nonlinearities are 

associated with complex responses that need to be properly investigated.  

Figure 3 shows the system efficiency considering different characteristics of the 

mechanical system and variations of the forcing frequency. The second one is related to 

jumps, pointing to a typical nonlinear resonance. 

In general, for these sets of parameters, monostable systems (associated with positive ) 

have better efficiency than the bistable ones (associated with negative ). Note that the 

maximum efficiency occurs at different frequencies, and this conclusion is more evident for 

bistable systems. Note that a better efficiency occurs under the resonance condition for both 

systems, but the monostable system has a larger band of frequencies with high performance. 

 

 

Figure 3. Efficiency versus forcing frequency for linear piezoelectric coupling ( 

𝜉1 = 𝜉2 = 0). Monostable, 𝛽 = 1.0 and 𝛼 = 0.4 (black line) and bistable, 𝛽 = −1.2 and 

𝛼 = 0.3  (red line). 
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Figure 4 presents a comparison between input and output powers for monostable and 

bistable systems. Note that monostable systems have better efficiency than the bistable ones 

for these sets of parameters. Besides, monostable systems have hardening trend while the 

bistable ones present softening behavior.  

 

Figure 4. Input power and output power for different parameters. (a) 𝛽 = 1.0, 𝛼 = 0.4 and (b) 

𝛽 = −1.2, 𝛼 = 0.3 

 

Energy harvesting system response is now investigated assuming nonlinear piezoelectric 

couplings (𝜉1 = 0.5 and 𝜉2 = −0.1). Figure 5 shows a significant increase in efficiency for 

the nonlinear piezoelectric constitutive model compared with linear constitutive model. 

Details can be observed in Fig.6, where the monostable and bistable results are displayed 

together, comparing the effect of linear and nonlinear piezoelectric couplings.  

 

Figure 5. Efficiency versus forcing frequency with 𝜉1 = 0.5 and 𝜉2 = −0.1. 

(b) 
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Figure 6. Efficiency versus forcing frequency comparing linear and nonlinear piezoelectric 

couplings with (a) 𝛽 = 1.0, 𝛼 = 0.4 and (b) 𝛽 = −1.2, 𝛼 = 0.3. 

 

3.2 Influence of the Forcing Amplitude 

The influence of the forcing amplitude for different excitation conditions are now 

investigated and exploited. Basically, it is considered the system response under a constant 

forcing frequency, varying the forcing amplitude. Initially, a monostable system (𝛽 > 0) is 

treated considering linear piezoelectric coupling (𝜉1 = 𝜉2 = 0) with 𝜔̅ = 1.5. Figure 7 

presents bifurcation diagrams considering power and average power for different values of the 

excitation forcing amplitude and adopts the previous parameter response as initial conditions.  

Note that for  = 0.05, it is possible to collect a maximum power around 0.002282. Similar 

situation can be observed for  = 4.23 where 0.118328 in terms of maximum power and 

0.05254 in terms of average power.  

 

Figure 7. Power energy (P) and average power energy for different values of forcing 

amplitude 𝜉1 = 𝜉2 = 0 using different initial conditions for each parameter (monostable 

system). 

 

The system response is now investigated assuming linear and nonlinear piezoelectric 

couplings using ω̅ = 1.5. This frequency is close to resonant conditions of both cases. Figure 

8 presents bifurcation efficiency diagrams. Once again, nonlinear piezoelectric coupling tends 
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to increase the efficiency. It is noticeable a general low efficiency and a jump close to γ =
1.0.  

 
Figure 8. Efficiency for different values of forcing amplitude for linear (ξ1 = ξ2 = 0) and 

nonlinear (ξ1 ≠ 0 and ξ2 ≠ 0) monostable model. 

 

Bistable system (𝛽 < 0) is investigated considering linear coupling terms (𝜉1 = 𝜉2 = 0) 

with 𝜔̅ = 1.5. Figure 9 present bifurcation diagrams considering power and average power 

for different values of the excitation forcing amplitude and adopts the previous parameter 

response as initial conditions. Chaotic regions are observed in regions associated with cloud 

of points, being related to good performance in terms of generated power and therefore, are of 

special interest in terms of harvested energy. The maximum power value varies as follows: 

0.173352 ( = 0.74), 0.23520 ( = 1.944), and 0.281445 ( = 4.966). 

 
 

Figure 9. Power energy (P) and average power energy for different values of forcing 

amplitude 𝜉1 = 𝜉2 = 0 using different initial conditions for each parameter (bistable system).  
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Figure 10 presents details of the system dynamics for some set of parameters with 

𝜔̅ = 1.5 and different kinds of solutions. Note that periodic solutions that oscillate around 

one equilibrium point, around three equilibrium points (around the two-well) and chaos are 

all highlighted.  

 

Figure 10. Details of bistable system dynamics (β = -1.2; α = 0.4; 𝜔̅ = 1.5; 𝜉1 = 𝜉2 =

0). 

Figure 11 presents bifurcation efficiency diagrams for comparing linear (𝜉1 = 𝜉2 = 0) 

and nonlinear (𝜉1 ≠ 0 and 𝜉2 ≠ 0) piezoelectric couplings. Under these conditions, it is 

possible to observe chaotic regions close to dynamical jumps. These regions are associated 

with good efficiency when compared with others.  
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Figure 11. Efficiency for different values of forcing amplitude for linear (𝜉1 = 𝜉2 = 0) 

and nonlinear (𝜉1 ≠ 0 and 𝜉2 ≠ 0) bistable model. 

 

Figure 12 presents the difference between the average power of monostable and bistable 

system with the same sets of parameters. It is observed that the bistable system generates 

greater average power values when the system is around three equilibrium points. 

 

 

Figure 12. Average power energy for different values of forcing amplitude 𝜉1 = 𝜉2 = 0 using 

different initial conditions for each parameter (monostable and biestable system).  

 

4  CONCLUSIONS 

This article investigates nonlinear effects regarding vibration-based energy harvesting 

system. Mechanical nonlinearity is treated considering a Duffing-type oscillator analyzing 

either monostable or bistable systems. Piezoelectric electro-mechanical nonlinearity is treated 

considering a quadratic constitutive equation. Rich response is observed including chaotic and 
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periodic solutions. Monostable system presents better performance under resonant conditions. 

On the other hand, bistable system presents better results. Situations where the system 

oscillates around three equilibrium points tend to be better due to their greater amplitudes. In 

general, chaotic response has an interesting amount of harvested power but bistable system 

presents an efficient generation in other situatios. Results show that piezoelectric nonlinearity 

has a significant influence on the system performance in terms of the harvested power and can 

enhance the power harvesting performance. 
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