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Abstract. Two finite element formulations for the lower bound limit analysis of reinforced soil 
structures in plane strain are described. The material idealization is based on the idea that, 
from a macroscopic point of view, reinforced soil can be treated as a homogeneous material 
with anisotropic properties. The overall behavior of the reinforced soil is controlled by the 
mechanical properties of the soil and the reinforcement, as well as their relative proportions 
and geometrical arrangement. One element satisfies the equilibrium equation, for a constant 
body force, and the mechanical boundary condition, for prescribed traction with linearly 
distributed components, in a strict pointwise sense. The other element satisfies the equilibrium 
equation and the mechanical boundary condition only in a weak sense. The equilibrium 
equation, the mechanical boundary condition and the linearized yield criterion, expressed in 
terms of nodal stresses, are dealt with as constraints of a linear optimization problem whose 
objective function is defined by the loading. Examples are given to illustrate the effectiveness 
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of the proposed procedures for computing lower bounds on the collapse load of reinforced 
soil structures. 
Keywords: Finite Element, Limit Analysis, Optimization, Reinforced soil 
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1  INTRODUCTION 
 

In the design process of geotechnical structures, it is necessary to determine the 
maximum load to be resisted at the impending collapse. The ability of the methods to 
accurately estimate ultimate limit states depends on the fulfillment of theoretical requirements 
derived from continuum mechanics concerning the equilibrium, strain-displacement relations, 
constitutive behavior and boundary conditions. 

The increasing use of reinforced earth in geotechnical engineering requires the 
development of reliable and practical yield design methods for reinforced earth structures. 
Although comprehensive analytical and finite element studies of reinforced soil behavior are 
possible, they are inevitably complicated by the fact that the precise geometry of the 
reinforcement and the elastic-plastic nature of the soil needs to be fully taken into account 
(Yu & Sloan, 1997). 

The limit theorems, which have proved to be a most effective means of predicting the 
plastic collapse of earth structures in many areas of soil mechanics, provide an alternative 
approach for studying the behavior of reinforced soil. We assume that on a macroscopic scale 
reinforced soil behaves as a homogeneous but anisotropic material, whose composite strength 
can be estimated from the strength characteristics of its components. The limit analysis 
procedures derived from this assumption have been successfully applied to predict the 
observed behavior of reinforced foundations and retaining walls in the past: Sawicki (1983, 
1988); de Buhan et al. (1989); de Buhan & Siad (1989); Yu & Sloan (1997). 

In this paper, specific attention is focused on the lower bound approach coupled with the 
finite element method to provide safe lower bound solutions for reinforced soil structures in 
plane strain. To begin the formulation, the conventional isotropic Mohr-Coulomb yield 
criterion is modified to include the effect of anisotropy which is caused by the presence of 
reinforcement. The influence of the soil-reinforcement failure conditions on the overall 
behavior is taken into account by assuming that the shear and normal stresses at the soil-
reinforcement interface are governed by a general Mohr-Coulomb criterion. The numerical 
formulation of the static theorem using the modified anisotropic yield criterion is then 
developed. Using a suitable linear approximation of the yield surface, the application of the 
static theorem leads to a linear programming problem. 

A balance between accuracy, efficiency, clarity of the formulation and simplicity 
distinguishes two three-node triangular finite elements to be used. The first one is the well-
known element proposed by Lysmer (1970). The second one is the element found in Silva et 
al. (1999). The first can provide rigorous lower bound solutions and has been widely used, 
whereas the other has not yet attracted interest possibly for leading to solutions that are not 
strict lower bound. 
 
2  FAILURE CONDITIONS FOR REINFORCED SOILS 
 

The reinforced soil is treated as a homogeneous material with anisotropic properties. The 
reinforcement is assumed to be unidirectional with thickness 푑 very small compared to the 
space ℎ between two reinforcements (푑 ℎ ≪ 1⁄ ). Three stress tensors are defined at every 
point in the homogenized continuum (Fig. 1): the tensor 흈 = ⌊휎 휎 휏 ⌋  for 
macrostresses, and the tensors 흈 = ⌊휎 휎 휏 ⌋  and 흈 = ⌊휎 휎 휏 ⌋  for 
microstresses which act on the soil and reinforcement respectively (de Buhan et al., 1989; Yu 
& Sloan, 1997). The tensor components are related by 
 



Finite Element Limit Analysis of Reinforced Soils by the Static Theorem 

CILAMCE 2016 
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering 
Suzana Moreira Ávila (Editor), ABMEC, Brasília, DF, Brazil, November 6-9, 2016 

 
Figure 1. Stresses on reinforced soil 

 
휎 = 휎 + 휎 = 휎 + 휎   
휎 = 휎 = 휎   
휏 = 휏 = 휏                                                                                                                (1) 

 
where 휎 = 푑 ℎ⁄ 휎 . 

The macrostress components in the orthogonal Cartesian coordinate systems 푥푦 e 푡푛 are 
related by 
 

휎 = 휎 cos 휃 + 휎 sin 휃 − 2휏 sin 휃 cos휃  
휎 = 휎 sin 휃 + 휎 cos 휃 + 2휏 sin 휃 cos휃  
휏 = (휎 − 휎 ) sin휃 cos 휃 + 휏 (cos 휃 − sin 휃)                                                      (2) 

 
where 휃 represents the angle between the horizontal axis 푥 and the reinforcement direction 푡, 
measured counterclockwise. Substitution of Eqs. (1) and relations 
 

휎 = 휎 cos 휃 + 휎 sin 휃 + 2휏 sin 휃 cos 휃  
휎 = 휎 sin 휃 + 휎 cos 휃 − 2휏 sin 휃 cos 휃  
휏 = − 휎 − 휎 sin 휃 cos휃 + 휏 (cos 휃 − sin 휃)                                                 (3) 

 
into Eqs. (2) yields 
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휎 = 휎 − 휎 cos 휃  
휎 = 휎 − 휎 sin 휃  
휏 = 휏 − 휎 sin휃 cos휃.                                                                                            (4) 

 
The reinforcement inside the soil is supposed to act merely as tensile load carrying elements, 
and offer no resistance to shear, bending or compression. The constraint 0 ≤ 휎 ≤ 휎  is 
therefore imposed on 휎 , where 휎 = (푑 ℎ⁄ )휎  is the tensile yield strength 휎  of the 
reinforcement times the volume fraction of the reinforcement. 

The soil mass with cohesion 푐 and angle of internal friction 휙 is assumed to obey the 
Mohr-Coulomb yield criterion in plane strain condition and may be expressed as 
 

퐹 = 휎 − 휎 + 2휏 − 2푐 cos휙 − 휎 + 휎 sin휙 = 0.                             (5) 
 
This can be written in terms of the macrostresses and 휎  by using Eqs. (4) to give 
 

퐹 = 휎 − 휎 − 휎 cos 2휃 + 2휏 − 휎 sin 2휃   
										− 2푐 cos휙 − 휎 + 휎 − 휎 sin휙 = 0.                                                          (6) 

 
The soil-reinforcement interface failure condition is expressed as 
 

퐹 =|휏 |−푐 + 휎 tan휙 = 0                                                                                         (7) 
 
where 휏  is the shear stress, 휎  is the normal stress, and 푐  and 휙  denote the interface 
cohesion and interface friction angle, respectively. The above failure criterion can be 
expressed in terms of the macrostress tensor using the inverse of Eqs. (2) (Eq. (3) without 
superscript 푠) to give: 
 

퐹 = 휎 − 휎 sin 2휃 + 2휏 cos 2휃 − 푐   
									+ 휎 sin 휃 + 휎 cos 휃 − 휏 sin 2휃 tan휙 = 0.                                               (8) 

 
3  STATIC THEOREM 
 

The limit analysis relies on the assumption of an elastic-perfectly plastic material with a 
flow rule associated to a convex yield surface, and also on small displacement gradients so 
that the solid does not undergo large deformation at collapse. The lower bound approach 
follows the static theorem, which requires that the assumed stress field must satisfy the 
equilibrium equation, the mechanical boundary condition and the yield criterion everywhere. 
Under these idealized conditions, the computed limit load is a lower bound on the true 
collapse load (Chen, 1975). 
 
3.1  Equilibrium equation 
 

Let 훺 be the region occupied by the reinforced soil subjected to the body force 풃 =
⌊푏 	푏 		⌋  expressed in the orthogonal Cartesian coordinate system 푥푦. The macrostress 
흈 = ⌊휎 휎 휏 ⌋  must satisfy the equilibrium equation 
 

푫흈 + 풃 = ퟎ                                                                                                                    (9) 
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throughout the domain 훺, where the differential operator 
 

푫 =
0

0
.                                                                                                       (10) 

 
3.2 Mechanical boundary condition 
 

Let 훤 be the boundary of the domain 훺, with unit outward normal vector denoted by 풏 =
⌊푛 푛 ⌋ . In addition to Eq. (9), the stress field must also satisfy the mechanical boundary 
condition 
 

풕 = 푵흈 = 풕̅                                                                                                                   (11) 
 
on the portion 훤  of 훤 on which the traction (stress vector) 풕 = ⌊푡 푡 ⌋  is prescribed as 
being 풕̅. Matrix 
 

푵 =
푛 0 푛
0 푛 푛                                                                                                       (12) 

 
contains the components of 풏. 
 
3.3 Yield criteria 
 

To assure that the yield conditions are satisfied it is necessary to impose 
 

퐹 ≤ 0          퐹 ≤ 0	          0 ≤ 휎 ≤ 휎 .                                                                      (13) 
 
From Eq. (8), it is readily seen that the second of Eqs. (13) results in two linear constraints on 
the macrostresses. In order to carry out the analysis as a linear programming problem, the first 
of Eqs. (13) should be linearized as described next. 

To proceed with an approximated piecewise linearization of the first of Eqs. (13), the 
change of variables 
 

푋 = 휎 − 휎 − 휎 cos 2휃  
푌 = 2휏 − 휎 sin 2휃  
푅 = 2푐 cos휙 − 휎 + 휎 − 휎 sin휙                                                                         (14) 

 
is introduced so that 퐹 = 0 becomes the circumference 
 

푋 + 푌 = 푅                                                                                                                (15) 
 
of radius 푅 in the 푋푌-space. The circumference is then approximated by an inscribed regular 
polygon of 푝 sides and 푝 vertices, as shown in Fig. 2. 
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Figure 2. Circumference approximated by an inscribed regular polygon of 풑 sides in the representation of 
the yield condition 푭풔 ≤ ퟎ 

 
The first vertex is defined by the angle 휋 푝⁄  rad measured counterclockwise from the 푋-

axis by constraining the last side 푝 to be perpendicular to the 푋-axis. The 푋 and 푌 coordinates 
of two consecutives vertices 푘 and 푘 + 1 are 
 

푋 = 푅 cos(2푘 − 1)                 푌 = 푅 sin(2푘 − 1)  

푋 = 푅 cos(2푘 + 1)             푌 = 푅 sin(2푘 + 1) .                                           (16) 
 
The side 푘, between vertices 푘 and 푘 + 1, has the equation 
 

(푌 − 푌 )푋 + (푋 − 푋 )푌 + 푋 푌 − 푋 푌 = 0								푘 = 1,2, … , 푝.               (17) 
 
The linearized form of the yield criterion is then provided substituting Eqs. (14) and Eqs. (16) 
into Eq. (17): 
 

퐹 = 퐴 휎 + 퐵 휎 + 퐶 휏 − 퐷 휎 − 2푐 cos휙 cos 							푘 = 1,2, … , 푝                    (18) 
 
where 
 

퐴 = cos + sin휙 cos    퐵 = sin휙 cos − cos  

퐶 = 2 sin                        퐷 = cos 2휃 cos + sin 2휃 sin + sin휙 cos .      (19) 
 
It is clear from Fig. 2 that a no-yield condition for 퐹  approximated by Eq. (18) is also a no-
yield condition for the original 퐹  given by Eq. (6). The linearized yield condition 퐹 ≤ 0 
imposes 푝 inequality constraints at any given point. 
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Figure 3. Lysmer finite element 훀풆 has the edge ퟏퟐ: (a) in the interior of the body; (b) on the body 

boundary with prescribed traction (only the traction component 풕̅풙 is shown) 
 

Similarly, the failure criterion for the soil-reinforcement interface, given by the second 
of Eqs. (13), leads to two linear inequality constraints: 
 

퐹 = 퐴 휎 + 퐵 휎 + 퐶 휏 − 푐 							푘 = 푝+ 1,푝+ 2                                                (20) 
 
where 
 

퐴 = sin 휃 tan휙 − sin 2휃        퐵 = cos 휃 tan휙 + sin 2휃 

퐶 = − sin 2휃 tan휙 + cos 2휃      퐴 = sin 휃 tan휙 + sin 2휃 

퐵 = cos 휃 tan휙 − sin 2휃       퐶 = − sin 2휃 tan휙 − cos 2휃.                     (21) 
 
4  FINITE ELEMENT FORMULATION 
 

We suppose that the soil mass is divided into a number of triangular elements and treated 
as an assembly of them. To apply the above equations to a finite element the definition of the 
boundary should be extended to include the traction continuity on the interelement portion Γ : 
 

(풕) + (풕) = ퟎ                                                                                                            (22) 
 
where the superscripts “+” and “−” denote the two sides of this boundary. In this section, the 
strong form of the equilibrium equation and mechanical boundary condition is used to derive 
Lysmer element, while a corresponding weak form is used to derive the other element. 
 
4.1 Lysmer Finite Element 
 

The macrostress field is linearly approximated over the Lysmer element Ω  shown in Fig. 
3 by 
 

흈 = 푁 흈 + 푁 흈 + 푁 흈                                                                                            (23) 
 
where 
 

흈 = ⌊휎 휎 휏 ⌋              푁 = (훼 + 훽 푥 + 훾 푦)              푖 = 1,2,3             (24) 
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are the macrostress nodal values and the shape functions, respectively, with 퐴 standing for the 
triangle area. To evaluate 
 

훼 = 푥 푦 − 푥 푦         훽 = 푦 − 푦         훾 = 푥 − 푥                                                 (25) 
 
from the node coordinates, the indices 푖, 푗, 푘 should be permuted in a natural order (푖 ≠ 푗 ≠
푘). 

Substitution of Eq. (23) into Eq. (9) yields the discrete equilibrium equation 
 

[푳 푳 푳 ]
흈
흈
흈

= −풃,                                                                                            (26) 

 
where 
 

퐿 =
푦 − 푦 0 푥 − 푥
0 푥 − 푥 푦 − 푦                                                                                     (27) 

 
is defined by proper permutation of indices 푖, 푗, 푘. Eq. (9) is then satisfied pointwisely for a 
constant body force 풃. 

On the element edge which is in the interior of the soil (edge 12 shown in Fig. 3a), the 
traction 푵흈 should be continuous. Since 흈 varies linearly within each element, continuity of 
푵흈 at the interelement nodes guarantees the continuity of 푵흈 along the entire interelement 
boundary, which means, in fact, the enforcement of Eq. (22): 
 

푵흈| 	 + 푵흈| 	 = ퟎ
푵흈| 	 + 푵흈| 	 = ퟎ ⇒ 푹 ퟎ −푹 ퟎ

ퟎ 푹 ퟎ −푹

흈ퟏ
흈ퟐ
흈ퟏ
흈ퟐ

= ퟎ                              (28) 

 
where 
 

푅 = cos휃 0 sin휃
0 sin휃 cos휃 .                                                                                                (29) 

 
As the continuity of 푵흈 across the edge does not mean continuity of 흈, the stress field 
generated by a mesh of Lysmer elements is discontinuous at the interfaces between elements. 

On the element edge that falls on the body boundary with prescribed traction, the 
continuity of 푵흈 should be replaced by the mechanical boundary condition given by Eq. (11). 
For the edge 12 shown in Fig. 3b, one writes 
 

푹 ퟎ
ퟎ 푹

흈
흈 = 풕̅

풕̅ .                                                                                                     (30) 

 
The mechanical boundary condition is satisfied pointwisely if the components of 풕̅ vary 
linearly along the edge. 

Unlike the usual form of the finite element method, each Lysmer element has its own 
nodes and several nodes in a mesh may share the same coordinates. 
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Figure 4. Weak equilibrium finite element 훀풆 with the unit normal vector 풏 on its boundary 횪풆 

 
4.2 Weak Equilibrium Finite Element 
 

Equation (9), Eq. (11) and Eq. (22) can be enforced to be satisfied on average over the 
triangular element of Fig. 4 by means of 
 

∫ 풘 (푫흈 + 풃) 푑푥 푑푦 − ∫ 풘 (풕 − 풕̅)푑푠 − ∫ 풘 풕 푑푠 = 0,                                   (31) 
 
where 풘 = ⌊푤 푤 ⌋  is an arbitrary weight function that is continuous across the element 
interfaces. The last integral, when considered jointly with those of the neighborhood 
elements, enforces Eq. (22). 

In view of the divergence theorem 
 

∫ 퐰 (퐃훔)푑푥 푑푦 = ∫ 퐰 퐭 푑푠 − ∫ (퐃 퐰) 훔푑푥 푑푦,                                            (32) 
 
Eq. (31) reduces to 
 

∫ 퐰 퐭푑푠 + ∫ 퐰 퐭̅ 푑푠 + ∫ 퐰 퐛푑푥 푑푦 − ∫ (퐃 퐰) 훔 푑푥 푑푦 = 0.                     (33) 
 
The portion 훤  of the element boundary Γ  falls on the soil boundary with prescribed 
displacement. 

Substitution of Eq. (23) and the linearly varying weight function 
 

풘 = 푁 풘 + 푁 풘 + 푁 풘 ,                                                                                        (34) 
 
with nodal values 
 

퐰 = ⌊푤 푤 ⌋ 								푖 = 1, 2, 3,                                                                            (35) 
 
into Eq. (33) yields 
 

풘
풘
풘

푭− [푮 푮 푮]
흈
흈
흈

= 0                                                                             (36) 

 
where 
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푮 =

⎣
⎢
⎢
⎢
⎢
⎡
푦 − 푦 0 푥 − 푥

0 푥 − 푥 푦 − 푦
푦 − 푦 0 푥 − 푥

0 푥 − 푥 푦 − 푦
푦 − 푦 0 푥 − 푥

0 푥 − 푥 푦 − 푦 ⎦
⎥
⎥
⎥
⎥
⎤

  

 
퐅 = ∫ [휨 휨 휨 ] 풕̅	푑푠 + ∫ [휨 휨 휨 ] 풃	 푑푥 푑푦                                     (37) 

 
and 
 

횴 = 푁 0
0 푁 .                                                                                                              (38) 

 
Since Eq. (36) holds for any arbitrary weight function, it follows that 
 

[푮 푮 푮]
흈
흈
흈

= 푭.                                                                                                   (39) 

 
The integral over 훤  is zero because 풘 will be chosen to be null over there in order to 
eliminate reaction force. The element enforces the equilibrium equation, given by Eq. (9), and 
the mechanical boundary condition, given by Eq. (11), to be satisfied by the discrete equation, 
given by Eq. (39), on average according to Eq. (33). 

The conversion of the forces 풕̅ and 풃 into the element nodal force 푭 is identical to that for 
the well-known constant strain triangular (CST) element (Reddy, 2006). For a constant 
prescribed traction 풕̅ = ⌊푡̅ 푡̅ ⌋  acting on an element edge of length 퐿, 
 

∫ [휨 휨 휨 ] 풕̅	푑푠 = 푡̅ 푡̅ 푡̅ 푡̅ 0 0 .                                            (40) 
 
For a constant body force 풃 = ⌊푏 푏 ⌋ , 
 

∫ [휨 휨 휨 ] 풃푑푥 푑푦 = 푏 푏 푏 푏 푏 푏 .                                (41) 
 
If 풘 is viewed as the virtual displacement field, 푫 풘 is the virtual strain and Eq. (33) 
becomes the principle of virtual displacements adopted by Silva et al. (1999). The first 
formulation of the static theorem which satisfies the equilibrium equation and the mechanical 
boundary condition according to the principle of virtual displacements seems to have been 
proposed by Anderheggen and Knöpfel (1972). Their formulation was addressed to plate 
problems. 
 
5  OPTIMIZATION PROBLEM 
 

In the lower bound analysis, the equilibrium equation, the mechanical boundary condition 
and the yield criterion, expressed in terms of nodal stresses, are constraints of an optimization 
problem for the applied load maximization. The optimal solution 
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휆∗ = {max 휆	|	풍흈 = 휆풇 + 풇 , 품ퟏ(흈,흈 ) ≤ ퟎ, 품ퟐ(흈) ≤ ퟎ, ퟎ ≤ 흈 ≤ 흈 }             (42) 
 
identifies the collapse load, where the applied load has been splitted into two parts: 휆풇  which 
is adjusted during the optimization by means of the load factor 휆 and 풇  which is kept 
constant. The design variables are the nodal macrostresses 흈 and reinforcement stresses 흈 . 

The equality constraint 
 

풍흈 = 휆풇 + 풇                                                                                                               (43) 
 
arises from the assembly of Eq. (26), Eq. (28) and Eq. (30) for Lysmer finite elements, and 
from the assembly of Eq. (39) for weak equilibrium finite elements. The inequalities 
constraints 
 

품ퟏ(흈,흈 ) ≤ ퟎ            품ퟐ(흈) ≤ ퟎ                                                                                 (44) 
 
stem from the evaluation at each element node of the yield criteria, given by Eq. (18) and Eq. 
(20), and ퟎ ≤ 흈 ≤ 흈  is the evaluation at each element node of the reinforcement stress. It 
can be demonstrated that enforcing the yield criteria at the element nodes is sufficient to 
satisfy them throughout the element. 

For a given mesh, the weak equilibrium finite element leads to a much smaller problem 
size. The number of equality constraints is 2퐸 + 4(퐼 + 퐵) for Lysmer formulation, where 퐸 is 
the number of elements, 퐼 is the number of interfaces between elements and 퐵 is the number 
of element loaded boundaries. The number of equality constraints is 2푁 for the weak 
equilibrium formulation, if the mesh has 푁 nodes and the reduction due to the geometric 
boundary conditions is not taken into account. The numbers of inequality constraints and 
nodal stresses in one formulation may be quite different from the other. There will be 
3(푝 + 2 + 2)퐸 inequality constraints and 12퐸 nodal stresses for Lysmer formulation, while 
these numbers reduce to (푝+ 2 + 2)푁 inequality constraints and 4푁 nodal stresses for the 
weak equilibrium formulation. 

The optimization problem solution is carried out following the steps: (a) formation of 
relevant quantities to set up the linear programming problem in MATLAB; (b) production of 
an MPS (Mathematical Programming System) file in MATLAB; (c) solution by FICOTM 
Xpress Optimization Suite, which contains a powerful LP optimizer composed by Newton 
Barrier, primal Simplex and dual Simplex methods. 
 
6  NUMERICAL EXAMPLES 
 

In this paper we consider two kinds of reinforced structures: strip footings (Fig. 5) and 
earth walls (Fig. 6), analyzed using the finite element meshes of Fig. 7 and Fig. 8, 
respectively, with 푝 = 200. 
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Figure 5. Strip footing with horizontal reinforcement 

 

 
Figure 6. Earth wall with horizontal reinforcement 
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Figure 7. Strip footing mesh with ퟖퟑퟐ finite elements 

 

 
Figure 8. Earth wall mesh with ퟔퟒퟎ finite elements 

 
6.1 Bearing capacity of a strip footing on cohesive-frictional reinforced soil 
 

The advantages of having horizontal reinforcement on cohesive-frictional soils can be 
assessed by comparing the bearing capacities of reinforced and unreinforced soils. Figure 9 
shows how the relative bearing capacities between reinforced and unreinforced soils vary with 
a dimensionless measure of the tensile strength of the reinforcement. Results are presented for 
friction angles of 10º, 20º and 30º and are derived from the weak equilibrium finite element 
with a perfect rough soil-reinforcement interface (푐 = 푐, 휙 = 휙). As expected, for a given 푐 
the advantage of the reinforcement increases as the strength of the reinforcement is increased. 
Indeed, the bearing capacity ratio 푞 푞⁄  increases almost linearly with the 
ratio 휎 푐⁄ . It is interesting to note, however, that the benefit from horizontal reinforcement is 
not strongly dependent on the soil angle of internal friction and is slightly less for soils with 
high angles of internal friction. At the scale of Fig. 9, results are indistinguishable for the 
weak equilibrium formulation and Lysmer’s. 
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Figure 9. Effect of rough soil reinforcement (풄풊 = 풄, 흓풊 = 흓) on bearing capacity for strip footing on 

cohesive-frictional soil with the weak equilibrium finite element 
 
6.2 Stability of a cohesive-frictional reinforced wall 
 

To assess the benefits of having horizontal reinforcement for cohesive-frictional walls, 
analyses were also performed for cases with and without reinforcement. The results are 
presented in Fig. 10 for the weak equilibrium finite element, where the ratio of the critical 
heights is plotted against a dimensionless measure of the tensile strength of the reinforcement. 
As expected, for a given 푐 the critical height ratio 퐻 퐻⁄  increases almost 
linearly with the measure of reinforcement strength 휎 푐⁄ . The results for three different 
fiction angles (10º, 20º and 30º) shown in Fig. 10 indicate that, unlike the footing problem 
discussed previously, the benefits of the horizontal reinforcement actually increase more 
significantly with the soil angle of internal friction. At the scale of Fig. 10, results are 
indistinguishable for the weak equilibrium formulation and Lysmer’s. 
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Figure 10. Effect of rough soil reinforcement (풄풊 = 풄, 흓풊 = 흓) on height for retaining wall in cohesive-

frictional soil with the weak equilibrium finite element 
7  CONCLUSIONS 
 

Two general finite elements based on the lower bound theorem has been presented for 
analysis of reinforced soil structures. We do not have knowledge of results in this field with 
the weak equilibrium finite element. The results with this triangular element and Lysmer’s are 
quite similar for cohesive-frictional soil structures with a perfect rough soil reinforcement 
interface and the adopted meshes, although the number of equality and inequality constraints 
and the number of stress variables with the weak equilibrium formulation is much smaller 
than those with Lysmer formulation. In the case of the strip footing, for instance, the weak 
equilibrium formulation generates 846 equality constraints, 46,280 inequality constraints and 
1,780 stress variables, while Lysmer formulation provides 6,684 equality constraints, 
259,584 inequality constraints and 9,984 stress variables. It is believed that the combination 
of the weak equilibrium finite element with a powerful adaptive mesh generator can be an 
excellent tool for finite element limit analysis in this field. 
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