
 

 

 

CILAMCE 2016 

Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering 

Suzana Moreira Ávila (Editor), ABMEC, Brasília, DF, Brazil, November 6-9, 2016 

 

COMPUTATIONAL MODELING OF GRANULAR MATERIALS 

Eduardo M. B. Campello
  

campello@usp.br 

Department of Structural and Geotechnical Engineering 

Polytechnic School, University of São Paulo 

P.O. Box 61548, 05424-970, São Paulo, SP, Brazil 

Abstract. This work presents a computational model for the simulation of dry granular 

materials. The approach is based on the discrete element method (DEM), using 

phenomenological models to describe the various forces involved. A few numerical examples 

are provided to illustrate the potentialities of the proposed scheme. Consistent DEM models 

may be a useful tool for the study of granular materials and, in broader sense, many other 

particle systems.  
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1 INTRODUCTION 

Granular materials and flows of granular matter can be found in a myriad of places and at 

various length scales, ranging from stone piles and rock sliding to fine powders and 

particulate flows, from mounds of sand and construction materials to compact aggregates of 

very high-added value in the pharmaceutical, chemical, food and microelectronics industries. 

The physics of such materials has evolved significantly over the past decades, especially with 

the aid of computational methods, but still there is a lot to pursue. The purpose of this work is 

to present, in a summarized and as simple a way as possible, a computational model for the 

simulation of dry granular materials. It is based on the so-called discrete element method 

(DEM), and in this sense can be viewed as one (among many possible) formulation of the 

DEM. For the sake of conciseness, only a brief description of the formulation is provided, 

with the interested reader being referred to Campello (2016) for details and a more rigorous 

representation. A few numerical examples are provided to illustrate the potentialities of the 

scheme. For an early history of the discrete element method, along with reviews on its 

application to the modeling of granular media, see Cundall and Strack (1979), Bicanic (2004), 

Pöschel and Schwager (2004), Zhu et al. (2008), O´Sullivan (2011) and Zohdi (2012), and 

references therein.  

The paper is organized as follows. In Section 2 we describe our DEM formulation, 

including consistent representations for the several forces involved (in particular, a consistent 

stick-slip friction model is presented to properly capture inter-particle rolling motion). In 

Section 3 we present our time integration scheme for the solution of the system’s dynamics, 

including an algorithmic overview. In Section 4 we show three examples of numerical 

simulations to illustrate the applicability of our scheme, and in Section 5 we close the paper 

with some final considerations. Throughout the text, plain italic letters ( ,b, , , , ,A,B,a

) denote scalar quantities, boldface lowercase italic letters ( , , , , ,a b ) denote vectors and 

boldface italic capital letters ( , ,...AB ) denote second-order tensors in a three-dimensional 

Euclidean space. The (standard) inner product of two vectors is denoted by u v , and the 

norm of a vector by u u u .  

2 A FORMULATION OF THE DISCRETE ELEMENT METHOD 

We follow the DEM approach proposed by the author Campello (2015) and Campello 

(2016) and treat collections of particles as discrete dynamical systems in which each particle 

interacts with the others and the surrounding media via a combination of various different 

forces. These are external field forces (from gravity, electric and/or magnetic exterior fields), 

drag forces, near-field forces (attractive and repulsive), adhesion forces, and contact and 

friction forces due to touching and collisions. Although these forces may (and, in the general 

case, do) act in the particles at the same time, the last two are certainly the dominant forces 

once we are concerned with granular materials in this work. Classical dynamics is adopted to 

describe the time evolution of the system, the equations of which are solved via a numerical 

(time-stepping) integration scheme. The particles are allowed to have both translational and 

rotational motions (in this sense, the model presented in this section may be seen as a 

generalization of the models presented by Campello and Zohdi (2014a, 2014b) and Campello 

(2015b), wherein rotations and spins were not considered). For the sake of simplicity, but 

without loss of generality, we consider here only spherical particles. 
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3.1 Equations of motion 

Let the system be comprised of PN  particles, each one with mass im , radius ir  and 

electric charge iq  ( 1,..., Pi N ). Let the center of a particle be designated by Ci , and the 

particle´s rotational inertia relative to it by / 2(2 5)i i ij m r . Let O 1 2 3{ , , , }e e e  be the global 

(fixed) reference system, with origin at point O, and let C 1, 2, 3,{ , , , }i i i ie e e  be the local (body-

fixed) reference system of particle i , with origin at the particle´s center. We denote the 

position vector of a particle by ix , the velocity vector by iv  and the spin vector by i , as 

depicted in Fig. 1. The rotation vector of a particle relative to the beginning of the motion, 

which furnishes the spatial orientation of the particle with respect to the initial configuration, 

is denoted by i , whereas the incremental rotation vector (i.e., rotation vector relative to two 

consecutive configurations) is denoted by i . The rotational motion between two 

consecutive configurations is described by the incremental rotation tensor iQ , which is a 

function of i  and is given by the Euler-Rodrigues formula 

 
4 1

,
24

i i i
i i

Q I  (1) 

wherein Skew( )i i  is the skew-symmetric tensor whose axial vector is i . One should 

notice that the above expression referrers to a Rodrigues´ parameterization of the rotation 

tensor, instead of the usual one based on the Euler rotation vector. This implies that i  is a 

Rodrigues rotation vector. We refer the reader to Campello (2015) for details. One should 

notice also that, though the particles are assumed to be spherical, the description of their 

rotations may be relevant to their motion, since inter-particle friction may induce rolling and 

thereby any material point P on the particle’s surface (e.g., the contact point of a contacting 

pair) may move between two consecutive configurations – a motion that involves rotation and 

needs to be mapped if one is interested in properly capturing stick-slip phenomena. This issue 

will become clearer in forthcoming equations. In Fig. 1, vector P

ir  is the vector that locates a 

material point P on the surface of the particle with respect to the particle´s center.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Description of a single particle. Point P is on the particle’s surface and may represent, e.g., the point of 

contact with another particle or object 

Let us denote the total force vector acting on particle i  by tot
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(with respect to the particle´s center) by tot
im . According to the Euler´s laws, at every time 

instant t  the following equations must hold for each particle: 

 
,

,

tot
i i i

tot
i i i

m

j

x f

m
 (2) 

where the superposed dot denotes differentiation with respect to time. The total force vector is 

made up of several force contributions as follows 

 ,tot ef drag nf adh con fric
i i i i i i if f f f f f f  (3) 

in which ef
if  are the forces due to external fields (gravity, electric and/or magnetic exterior 

fields), drag
if  is the drag force vector (it stands for viscous effects induced by the surrounding 

medium on the motion of the particle), nf
if  are the forces due to near-field interactions with 

other particles, adh
if  are the forces due to adhesion to other particles and/or objects, con

if  are 

the forces due to mechanical contacts (or collisions) with other particles and/or obstacles, and 
fric
if  are the forces due to friction that arise from these contacts or collisions. The total 

moment vector, in turn, has contributions only from the friction forces, since all other forces 

are assumed to be central forces (i.e., they act with no eccentricity relatively to the center of 

the particle), such that 

 .tot fric
i im m  (4) 

Each one of the force and moment contributions above is (briefly) described in the 

subsections that follow. For more details on these forces, we refer the reader to Campello 

(2016). 

3.2 External fields force 

External fields are defined here by a gravity acceleration vector g , an electric field vector  

E  and a magnetic field vector B , acting on the system. These fields are assumed here to be 

fully uncoupled and static, in the sense that they are not affected by the motion of the 

particles. The forces they induce on particle i  are given by 

 .ef
i i i i im q qf g E v B  (5) 

The sum of the two last terms in (5) is the so-called Lorentz force. We remark that the 

influence of auto-induced electromagnetic fields (i.e., those generated by the particles 

themselves) is considered negligible, since the particles are expected to experience 

translational velocities that are way below the speed of light.  

3.3 Drag force 

The drag force has origins in the friction and pressure that the surrounding medium exerts 

on a particle. It is given here by 

 
1

( ) ,
2

drag
i F D i i F i FC Af v v v v  (6) 
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where F  is the mass-density of the fluid, DC  is the drag coefficient, 2
i iA r  is the 

“frontal” area of the particle with respect to the flow, and Fv  is the (local) velocity of the 

fluid. The drag coefficient is assumed here to be a function of the Reynolds number of the 

flow, according to the model by Biringen and Chow (2011) as follows 

 For , ;10 Re 1 24(Re)DC  (7) 

 For , ;0,6461 Re 400 24(Re)DC  (8) 

 For , ;5400 Re 3 10 0,5DC  (9) 

 For , ;5 6 0,42753 10 Re 2 10 0,000366(Re)DC  (10) 

 For , ,6Re 2 10 0,18DC  (11) 

where Re  is given by 

 ,
2

Re i F i F

F

r v v
 (12) 

with F  as the viscosity of the fluid. The assumption of DC  being dependent on Re  is valid 

for incompressible fluids, which is the case here (we assume that the relative velocity between 

the fluid and the particles is below the speed of sound in the fluid).   

3.4 Near-field forces 

The forces due to near-field (electromagnetic) interactions with other particles are given 

by 

 
1,

,
PN

nf nf
i ij

j j i

f f  (13) 

where nf
ijf  is the near-field force that acts on particle i  due to particle j . This force has the 

general expression 

 1 2

1 2 ,nf
ij i j ij i j ijf x x n x x n  (14) 

in which the ´s and ´s are scalar parameters dictating the intensity of the force for the pair 

{ ,i j } and ijn  is the unit vector that points from the center of particle i  to the center of 

particle j , i.e.,  

 .j i
ij

j i

x x
n

x x
 (15) 

This vector will be referred to as the pair´s central direction from now on. In equation (14), 

scalars 1  and 1  are related to the attractive part of the force, whereas 2  and 2  to the 

repulsive part. This expression may be understood as derived from a generalized Mie´s 

potential (force potential for atomic and molecular interactions), of which the classical 
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Lennard-Jones potential (see Lennard-Jonnes (1924)) is a special case. It can be used to 

model e.g. van de Waals effects, electrostatic interactions, etc.  

3.5 Adhesion forces 

The forces due to adhesion to other particles and/or objects are given here by 

 
1

,

adh
iN

adh adh
i ij

j

f f  (16) 

where adh
iN  is the number of particles and/or objects that are adhered to particle i  and adh

ijf  is 

the adhesion force on particle i  due to particle or object j . This force has the general 

expression 

 , ,( )adh adh
ij ij ij ij ckf n  (17) 

where adhk  is a parameter related to the stiffness of the force,  is a material parameter and 

ij  is a measure of the local deformation of the pair { , }i j  at their point of adhesion, given 

here by 

 ,
ij

ij
i jr r

 (18) 

where ij  is the amount of overlap or penetration between the pair. This, it turn, is given by 

 .( )ij i j i jr rx x  (19) 

In expression (17), c  is a critical value of the deformation that dictates whether the adhesion 

force is turned on or off. It must be pre-specified. 

3.6 Contact forces 

The forces due to contacts or collisions with other particles and/or objects are described 

here with an overlap-based scheme (also usually called a soft-sphere model). Accordingly, 

they are a function of the amount of overlap between the pair in contact. We follow Hertz´s 

elastic contact theory (see e.g. Johnson (1985)) and adopt the following expression for con
if : 

 

with
1

3/2

,

4
,

3

con
iN

con con
i ij

j

con
ij ij ij ij ijr E d

f f

f n n

 (20) 

where con
iN  is the number of particles and/or objects that are in contact with particle i , con

ijf  

is the contact force that acts on particle i  due to particle or object j ,  

 and
2 2(1 ) (1 )

i j i j

i j j i i j

r r E E
r E

r r E E
 (21) 
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are the effective radius and the effective elasticity modulus of the contacting pair { ,i j } (in 

which ,i jE E  and ,i j  are the elasticity modulus and the Poisson coefficient of i  and j , 

respectively), ij  and ij  are the overlap and overlap velocity between the pair, and 

 
1/4

2 2n ijd E m r  (22) 

is a damping constant that is introduced to allow for energy dissipation in the pair´s central 

direction. This constant is taken here following the ideas of Wellmann and Wriggers (2012), 

wherein n  is the damping rate of the collision (which must be specified) and m  is the 

effective mass of the contacting pair, i.e., 

 .i j

i j

mm
m

m m
 (23) 

The value of n  may be related to an equivalent coefficient of restitution e  (a simplified way 

is through 2 2 1/2ln / ( ln )n e e , which is derived by assuming constant stiffness and 

constant damping throughout the collision, leading to a velocity-independent e  –  this is 

arguable but commonly adopted). We refer the interested reader to Pöschel and Schwager 

(2004) for several possibilities and a thorough discussion on the subject. Fig. 2 (top part) 

provides a schematic illustration of the contact/collision for a contacting pair. 

3.7 Friction forces 

The forces due to friction (which arise from the contacts/collisions) are given by  

 
1

,

con
iN

fric fric
i ij

j

f f  (24) 

where fric
ijf  is the friction force that acts on particle i  due to particle j . This force is applied 

at the contact point P on the surface of particle i  (see Fig. 2, bottom part), and is modeled 

here by assuming that sliding and rolling may occur between the contacting pair (whether it is 

pure sliding, sliding with rolling or pure rolling depends on the motion and properties of the 

pair). To describe such phenomena, we devise a scheme that is based on a tangential spring-

dashpot system, placed at the contact point in the contact´s tangential direction. Consistent 

with stick-slip friction models, first we assume that sticking is to occur between the contact 

points of the contacting pair. The friction force that will cause such sticking is then applied 

gradually by the spring-dashpot system, being called a trial friction force, with the condition 

that the static friction limit is not violated. In case a violation is observed, sliding is to occur 

and thereby the friction force is the dynamic friction. The model reads as follows: 

 ,,trial trial( )fric fric fric
ij ij ijk df x v  (25) 

where frick  is the stiffness of the spring, is the damping constant of the dashpot, trial
ijx  is the 

trial elongation of the spring and ijv  is the elongation velocity. The trial elongation is given 

by 

 ,trial accum trial
ij ij ijx x x  (26) 
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Fig. 2 Contact/collision between two particles 

where accum
ijx  is the accumulated elongation until then (i.e., elongation acquired in previous 

configurations, which must be stored) and trial
ijx  is the trial incremental elongation, i.e., is the 

increase in the elongation observed at the current configuration, whose expression will be 

shown shortly below. The elongation velocity is taken as the relative velocity of the contact 

points of i  and j  in the tangential direction, i.e.,   

 P P P ,, ( )ij rel t rel rel ij ijv v v v n n  (27) 

where 

 P P P

rel i jv v v  (28) 

and, in turn, 

 andP P P P .i i i i j j j jv v r v v r  (29) 

The direction of the trial friction force, denoted by trialijt , is given by  

 .

,trial
trial

,trial

fric
ij

ij fric
ij

f
t

f
 (30) 

In order to verify whether the sticking assumption is valid or not, we define a sliding criterion 

function F , given by 

 ,( )fric fric con
ij ij S ijF f f f  (31) 

such that 

  i j 
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the assumption is valid (sticking occurs)

the assumption is not valid (sliding occurs).

;,trial

,trial

( ) 0

( ) 0

fric
ij
fric
ij

F

F

f

f
 (32) 

In (31), S  is the static friction coefficient. If the assumption is valid, then ,trialfric fric
ij ijf f , 

trial
ij ijx x  and trial

ij ijt t ; otherwise, fric con
ij D ij ijf f t , wherein D  is the dynamic 

friction coefficient and trial
ij ijt t  is the sliding direction, which is equal to the direction of the 

trial friction force. In the latter case, the elongation of the spring is not the trial elongation. 

However, it may be obtained from the trial elongation by means of a correction term corr
ijx , 

such that the maximum elongation possible (which is the elongation corresponding to the 

static friction limit) is not exceeded: 

 .

,trial ,trial
trial corr trial trial

fric fric con con
ij ij S ij S ij

ij ij ij ij ijfric fric fric
ijk k k

f f f f
x x x t t   (33) 

This is analogous to the return mapping schemes of plasticity models. At the end, the 

elongation experienced by the spring must be stored as follows 

 ,accum
ij ijx x  (34) 

such that it may be available for computations of subsequent configurations of the system. 

Additionally, in order to account for the rotation of the tangent contact plane between two 

successive configurations, the accumulated elongation must be projected onto the current 

tangent plane as below 

 .accum accum accum( )ij ij ij ij ijx x x n n  (35) 

The only missing quantity in this model is the trial incremental elongation trial
ijx  of 

equation (26). This is given here by 

 P ,trial
, ( )

pr

t

ij rel tt
dx v  (36) 

where prt  is the time instant of the previous configuration at which the accumulated 

elongation accum
ijx  is known, and t  is the time at the current configuration. The integration 

above is computed here as follows 

 P P , .trial
, ,(1 ) ( ) ( ) ( ) 0 1ij rel t pr rel t prt t t tx v v  (37) 

The stiffness of the tangential spring is taken here following Mindlin´s solution for elastic 

tangential deformation of contacting spheres, such that 

 with,
1/2

8 i jfric
ij

i j

GG
k G r G

G G
 (38) 

(G  is the effective shear modulus of the contacting pair), whereas the damping constant of 

the dashpot is 

 ,2fric fric
td m k  (39) 

with t  as the tangential damping rate. More details can be found in Campello (2016). 
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3.8 Friction moment 

The moment generated by the friction forces on particle i  (relatively to the center of the 

particle) is given by 

 P

1

,

con
iN

fric fric
i i ij

j

m r f  (40) 

where we recall that P

ir  is the vector that connects the center of the particle to the contacting 

point P with particle j  (see Fig. 2, bottom part). 

Remark. The effect of Magnus forces on the motion of the particles are assumed to be 

negligible in this work, although they could have been easily incorporated. In such case, one 

extra term mag
i i iSf v  (S  given constant) would have to be added to equation (3). 

Magnus forces arise whenever a particle has non-zero spin and non-zero translational 

velocity, as an effect of unequal drag forces experienced by the particle throughout its surface 

(the relative velocity between the particle surface and the surrounding fluid varies for each 

point of the particle´s surface, due to the contribution of the particle’s spin). 

3 TIME INTEGRATION SCHEME 

Our scheme for solution of the system´s dynamics starts by performing time integration of 

equation (2) between time instants t  and t t , which furnishes 

 

1
( ) ( ) ,

1
( ) ( ) .

t t
tot

i i it
i

t t
tot

i i it
i

t t t dt
m

t t t dt
j

v v f

m
 (41) 

The integrals on the right-hand side of (41) are then approximated by using a generalized 

trapezoidal rule: 

 
( ) (1 ) ( ) ,

( ) (1 ) ( ) ,

t t
tot tot tot
i i it

t t
tot tot tot
i i it

dt t t t t

dt t t t t

f f f

m m m
 (42) 

in which 0 1 . When 0 , the integration amounts to an (explicit) forward Euler 

scheme; when 1 , to an (implicit) backward Euler one; and when 0.5 , to an (implicit) 

classical trapezoidal rule. By inserting (42) into (41), we have 

 

( ) ( ) ( ) (1 ) ( ) ,

( ) ( ) ( ) (1 ) ( ) .

tot tot
i i i i

i

tot tot
i i i i

i

t
t t t t t t

m
t

t t t t t t
j

v v f f

m m
 (43) 

On the other hand, by time integration of the velocity and incremental rotation vectors 

between t  and t t  we have 
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( ) ( ) ,

( ) .

t t

i i it
t t

i it

t t t dt

t t dt

x x v
 (44) 

The generalized trapezoidal rule is then invoked again to approximate the integrals on the 

right-hand side of (44), rendering 

 
( ) (1 ) ( ) ,

( ) (1 ) ( ) .

t t

i i it
t t

i i it

dt t t t t

dt t t t t

v v v
 (45) 

By introducing (45) into (44), we arrive at 

 
( ) ( ) ( ) (1 ) ( ) ,

( ) ( ) (1 ) ( ) .
i i i i

i i i

t t t t t t t

t t t t t t

x x v v
 (46) 

Expressions (43) and (46) constitute a set of equations for 1,..., Pi N  particles, with 

which the velocity, spin, position and incremental rotation vectors of each particle at t t  
may be computed once ( )i tv , ( )i t  and ( )i tx  are known. This computation, however, cannot 

be performed directly, since (43) requires the evaluation of ( )tot
i t tf  and ( )tot

i t tm , 

which in turn are functions of all unknown position, velocity, spin and incremental rotation 

vectors at t t , i.e., 

 
ˆ( ) ( ), ( ), ( ), ( ) ,

ˆ( ) ( ), ( ), ( ), ( ) ,

tot tot
i i j j j j
tot tot
i i j j j j

t t t t t t t t t t

t t t t t t t t t t

f f x v

m m x v
 (47) 

wherein 1,2,..., Pj N  (the notation with a superposed hat above has been introduced to 

indicate that the quantity is a function of the arguments inside the parentheses). This means 

that all equations are strongly coupled and a recursive solution strategy is thereby necessary. 

We adopt here a fixed-point iterative scheme, following the ideas that have been proposed by 

Campello and Zohdi (2014a, 2014b) for irrotational particles (i.e. particles without rotational 

DOFs). The main steps are as summarized in Algorithm 1 below. The scheme is relatively 

easy to be implemented and it is noteworthy that no system matrix is required.  

Finally, after convergence, the total rotation vector of the particles is updated by means of 

the Rodrigues expression (see Campello (2015) and Campello (2016)): 

 
4 1

( ) ( ) ( ) ( ) ( ) .
24 ( ) ( )

i i i i i
i i

t t t t t t t t
t t t

  (48) 

Remark. According to what is described in Algorithm 1, one may find that velocities, spins, 

positions and incremental rotations of all particles are updated only after one complete loop of 

step (3). This would correspond to a Jacobi-type of scheme and is presented like so only for 

the sake of algebraic simplicity. What we actually do in step (3) is: for each particle i , we 

compute , 1( )tot K
i t tf  and , 1( )tot K

i t tm  using the velocities, spins, positions and 

incremental rotations of the particles that have just been updated within the current loop, that 

is, using 1( )K
j t tv , 1( )K

j t t , 1( )K
j t tx  and , 1( )K

j t t , 1,2,..., 1j i . 

For j i , the values of the previous iteration, i.e., ( )K
j t tv , ( )K

j t t , ( )K
j t tx  and 

, ( )K
j t t , are used.  This resembles a Gauss-Seidel scheme, which, as it is well known,  
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Algorithm 1. Time integration scheme for solution of the system´s dynamics 

1. Known (given) quantities:  

known known known0, , , ( ), ( ), ( ), ( )i i i it t t t t tx v  

2. Initialize time step: 

iteration counter

(predictor)

,

0 ( )

( ) ( ),

( ) ( ), ( ) ( )

( ) ,K
i i

K K
i i i i

K
j

K

t t t

t t t t t t

t tx x

v v

o  

3. Loop over particles: FOR 1,..., Pi N  DO 

i. Compute force and moment vectors at t t : 

, 1 ,

, 1 ,

ˆ( ) ( ), ( ), ( ), ( )

ˆ( ) ( ), ( ), ( ), ( )

tot K tot K K K K
i i j j j j

tot K tot K K K K
i i j j j j

t t t t t t t t t t

t t t t t t t t t t

f f x v

m m x v
 

ii. Update velocity and spin vectors: 

1 , 1

1 , 1

( ) ( ) ( ) (1 ) ( )

( ) ( ) ( ) (1 ) ( )

K tot K tot
i i i i

i

K tot K tot
i i i i

i

t
t t t t t t

m

t
t t t t t t

j

v v f f

m m

 

iii. Update position and incremental rotation vectors 

1 1

, 1 1

( ) ( ) ( ) (1 ) ( )

( ) ( ) (1 ) ( )

K K
i i i i

K K
i i i

t t t t t t t

t t t t t t

x x v v
 

4. Check for convergence 

i. Compute errors and( ), ( ), ( ) ( )err err err errv x  

ii. IF iterate( ) 1, (3) ( )ANY error TOL K K GOTO  

iii. IF update and next time step( ) , (2) ( )iALL errors TOL t t t GOTO  

converges at a faster rate than the Jacobi method (if the Jacobi method converges) or diverges 

at a faster rate (if the Jacobi method diverges). 

Remark. The error measures in step (4) of the algorithm are taken as normalized 

(nondimensional) measures, and are given by  

 and

1
1

1
1

( ) ( )
( ) , , , .

( ) ( )

p

p

N K K
i ii

N K
i ii

t t t t
err

t t t

a a
a a x v

a a
 (49) 

In cases where the denominator in (49) vanishes or approaches zero, we use 

 and/or ,

1
1

1
1

( ) ( )
( ) , , ,

( )

p

p

N K K
i ii

N K
ii

t t t t
err

t t

a a
a a x v

a
 (50) 

instead. 

4 NUMERICAL EXAMPLES 

In this section, we provide a few examples of numerical simulations to illustrate how our 
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DEM formulation may be used to study granular materials. We adopt 0.5  in the time 

integration scheme throughout, meaning that an implicit classical trapezoidal rule is utilized 

in all cases. Selection of the time step size is made according to the duration of a typical 

contact/collision for the problem at hand. We use the following criterion: 

 

1/5
2

2

( )
2.87 ,

20( )
con

con
rel

tm
t t

r E v
 (51) 

where cont  is the duration of a typical contact or collision and relv  is the relative velocity of 

a typical contacting pair in the pair´s central direction immediately before the 

contact/collision is initiated. This is based on Hertz´s formula for the duration of elastic 

collisions and, according to our experience, allows for a good accuracy in the integration of 

the contact forces. The convergence tolerance used within the iterations (step 4 of Algorithm 

1) is 610TOL . 

4.1 Particle size segregation in a vertically vibrated container  

This example is proposed by Pöschel and Schwager (2004) and is reproduced here with 

some slight modifications. A granular material comprised of 1000PN  spherical particles is 

deposited by gravity in a container wherein a large particle rests at the bottom, as shown in 

Fig. 3, top left. The dimensions of the container are 0.4 m (base) and 1.0 m (height), whereas 

the radii of the particles follow a Gaussian distribution of mean value 0.01r  m and 

standard deviation 0.001r  m (the distribution is truncated at two standard deviations from 

the mean, such that all radii lie in the interval [0.008 m, 0.012 m]). The larger particle has 

0.06r  m. As in Pöschel and Schwager (2004), the walls of the container are modeled by 

particles whose relative positions (w.r.t. each other) are held fixed, as in the case of a 

prescribed “boundary condition”. This allows for the representation (though in a very 

simplified way) of the roughness of the container. Once the material is at rest, the container is 

set to vibrate vertically according to ( ) sen( )y t A t , with amplitude 0.02A  m and 

angular frequency 30  rad/s. Other data are as follows: 

 wall particles radii: 0.01Wr  m;  

 mass-density of the particles: 8000  kg/m
3
;  

 elastic properties of the particles: 910E  N/m
2
 and 0 ;  

 friction coefficients (between all particles, including wall particles): 0.5S D ; 

 damping rates: 0.0002n  and 0.02t ; 

 gravity acceleration: 9.81g  m/s
2
 (y-direction);  

 time-step size: 52.5 10t  s (with time adaptivity, wherein maxt t  and 

min 0.1t t ). 

 Drag, near-field and adhesion forces are not considered. We remark that the damping 

parameters here are different from those of Pöschel and Schwager (2004), for in this reference 

different contact and friction models are adopted. Figure 3 shows snapshots of the system´s 

configuration at selected time instants, as obtained with our simulation. One can see how the 

larger particle advances toward the top of the container and, at around 20t  s, emerges at 

the “surface” of the material. Figure 3, bottom part, depicts the time evolution of the vertical 

coordinate of the particle, wherein it can be observed that the ascending motion is cyclic (as 
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Fig. 3 Particle size segregation in a vertically vibrated container. Problem definition and analysis results 

expected) and occurs with varying velocity over time (this can be explained by the variation 

in the material´s bulk density along the container´s height). This example illustrates a 

phenomenon that is typical of granular materials: the size segregation of grains by shaking or 

vibration. In the physics of granular materials, this is known as the Brazil nuts effect. It is 

instructive to observe that, if this problem is analyzed with no rotational degress-of-freedom, 

size segregation does not show up (see Campello (2016)). 
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4.2 Dismantling of a pile of grains 

A certain amount of granular material is piled vertically (with lateral constraints) over a 

flat rigid surface, forming a prism of squared base as shown in Fig. 4, top part (the lateral 

constraints are not shown for simplicity). Gravity acts in the vertical (-y) direction. With the 

grains at rest, the constraints are removed abruptly and the pile experiences a small avalanche, 

dismantling into a mound of grains shortly thereafter. The size and shape of this mound 

depends fundamentally on the friction of the grains, and this aspect is briefly investigated 

here. The pile has initial dimensions of 1.0 m (sides) and 0.7 m (height). The grains, in turn, 

are spherical and have their radii following a Gaussian distribution of mean 0.02r  m and 

standard deviation 0.002r  m (the distribution is truncated at three standard deviations 

from the mean, such that all radii lie in the interval [0.014 m, 0.026 m]). The volume fraction 

of the pile (ratio of total volume of the particles to the volume of the prism) is 0.57. Five 

different simulations are conducted, each one corresponding to a different set of friction 

parameters for the grains:  

 simulation 1: 0S D  and 0R ;  

 simulation 2: 0.15S D  and 0.05R ;  

 simulation 3: 0.25S D  and 0.1R ; 

 simulation 4: 0.5S D  and 0.45R ; 

 simulation 5: 1S D  and 0.9R . 

In the above, R  stands for the rolling resistance coefficient (see Campello (2016) for 

details). Other data are as follows: 

 mass-density of the particles: 2500  kg/m
3
;  

 elastic properties of the particles: 72 10E  N/m
2
 and 0.25 ;  

 friction parameters of the particles with the rigid surface: 0.65S D , with R  

taken as the same as the particle-particle corresponding case; 

 damping rates: 0.1n t ; 

 gravity acceleration: 9,81g  m/s
2
 (y-direction); 

 time-step size: 41 10t  s (with time adaptivity, wherein maxt t  and 

min 0.1t t ); 

 total number of particles in the pile: 12360PN .  

 These values are taken from Yan et al. (2015), who also studied piles of grains (though 

from a different perspective and problem setting). Drag, near-field and adhesion forces are not 

considered. Figure 4 depicts snapshots of the system´s configuration at selected time instants 

as obtained in a typical simulation (the case shown is for simulation 5; results for the other 

simulations are not shown for brevity). As it can be seen, after collapsing and attaining static 

equilibrium, the pile turns into a mound with the shape of a shallow cone, as expected. The 

aspect ratio of such cone can be characterized by the angle of repose , which is computed 

here as the average of the slopes of the mound, as obtained in two orthogonal cross-sections 

aligned with the reference axes. Table 1 shows the values of  obtained in each one of the 

five simulations, and Fig. 4, bottom part, shows the final configuration for each case (side 

view). 
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Fig. 4 Dismantling of a pile of grains. Problem definition and analysis results  
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Table 1. Dismantling of a pile of grains. Angle of repose.   

Friction parameters Average slope ( tan )  Angle of repose ( ) 

Simulation 1
 

0 0 

Simulation 2 0.15 8.5º 

Simulation 3 0.26 14.5 º 

Simulation 4 0.51 27.0º 

Simulation 5 0.89 41.7º 

4.3 Deposition of particles onto a rigid surface 

A jet of particles is projected onto a rigid surface with the aim that they adhere and 

provide a protective layer to the surface, as indicated in Fig. 5, top part. We want to 

investigate what is the appropriate projection velocity xv  such that good adherence and good 

visual aspect are observed for the deposited layer. The jet consists of 1500PN  spherical 

particles (placed randomly within a fictitious prism of dimensions 15 cm x 2.5 cm x 2.5 cm), 

the radii of which follow a Gaussian distribution of mean 2.0r  mm and standard deviation 

0.2r  mm (the distribution is truncated at three standard deviations from the mean such 

that all radii lie in the interval [1.4 mm, 2.6 mm]). The jet moves in the positive y-direction at 

a constant speed of 5 m/s. The adhesion of the particles with the surface (and also with 

themselves) is represented by forces in the form of equations (16)-(17). Drag forces given by 

equation (6) are also considered (the medium surrounding the particles is the air). Other 

parameters are: 

 mass-density of the particles: 1000  kg/m
3
; 

 elastic properties of the particles: 71 10E  N/m
2
 and 0.25 ;  

 friction coefficient between particles: 0.05S D ; 

 friction coefficient between particles and the rigid surface: 0.4S D ; 

 rolling resistance coefficient between particles: 0.1R ; 

 rolling resistance coefficient between particles and the rigid surface: 0.25R ; 

 damping rates (particle-particle and particle-rigid surface): 0.8n  and 0.1t ; 

 adhesion force parameters: 310adhk  N/m and /3 2 ; 

 fluid mass-density and viscosity (air): 1.2F  kg/m
3
 and 51.8 10F  Pa·s; 

 jet projection velocity: and1, 5, 10 20xv  m/s;  

 gravity acceleration: 9.81g  m/s
2
 (y-direction); 

 time-step size: 41 10t  s; 

 time at the end of the simulation: 1.0Ft  s. 

Figure 10 shows snapshots of the simulation at selected time instants for each one of the 

projection velocities considered. As it can be observed, the case with 1xv  m/s is not able to 

enforce adherence. For the other cases, however, there is practically complete adherence plus 

good coherence, though the visual aspect of the layer is quite different for each velocity. 

When 5xv  m/s, the layer is long, narrow and thin; when 10xv  m/s, it is less long and a 

bit wider and thicker than the previous case; and when 20xv  m/s, it has a very compact 

aspect, being also thicker. Each one of these characteristics may be more or less desirable, 

depending on the application one is interested in. Table 2 provides values of the mean 

thickness and length of the layer for each case. 
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Fig. 5 Deposition of particles onto a rigid surface. Problem definition and analysis results 
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Table 2. Deposition of particles onto a rigid surface. Layer properties. 

Projection velocity 
Layer mean thickness (standard 

deviation in parentheses) 
Layer length 

1 m/s
 

-- -- 

5 m/s 0,9 cm (0,42 cm) 34 cm 

10 m/s 1,4 cm (0,61 cm) 18 cm 

20 m/s 1,6 cm (0,72 cm) 13 cm 

5 CONCLUSIONS 

The main purpose of this work was to present a simple computational model for the 

simulation of real problems involving granular materials. Many natural phenomena and 

industrial applications may be studied with models of such type. A few numerical examples 

were provided to illustrate the potentialities of the scheme. The interested reader is referred to 

a recent work by the author in Campello (2016) for more details on the formulation and a 

more complete set of numerical examples. The author believes that consistent DEM models 

are a very useful tool for the study of granular materials and, in a broader sense, of particle 

systems. 
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