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Abstract. The analysis of flexible plates supported on single layered soil usually uses the 

Winkler model to simulate the displacements and soil pressure on the plate. However, this 

model presents serious limitations and it is not able to represent the lateral continuity of the 

soil. In this article a formulation for the analysis of flexible plates under harmonic dynamic 

loading, supported on the soil surface, modeled as homogeneous elastic, transversely 

isotropic half-space is shown. The plate is modeled by rectangular finite elements (FEM) and 

for the soil the indirect boundary element method (IBEM is used). Dynamic influence 

functions are used for the elastic transversely isotropic half-space. Therefore, only the 

interface soil-plate is discretized. The compatibility of the displacements between the plate 

elements and the soil elements is done in the central point of those elements. Hence, the 

discretization of the plate and the soil surface in contact are the same. Numerical results for 

rectangular plates supported by isotropic medium are compared with published results by 

other authors. The anisotropic effect of the soil in the system is also analyzed. 
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1  INTRODUCTION 

The dynamic interaction between slabs and soil is of great interest for the foundation 

engineering; particularly for the design of machine foundations. In the literature is easy to 

find many articles concerning such foundations, but many of them analyze rigid rather than 

flexible plates. Furthermore, models using springs to simulate the soil, like Winkler model, 

are frequently seen. For dynamic analysis, the Winkler model has even more serious 

limitations because the propagation of the vibrations through the soil is not considered. An 

elastic continuum is a much more accurate model, although in this case the formulation 

becomes more complex and the computer implementation more expensive.  

The analysis of dynamic interaction between flexible rectangular plates and the soil 

modeled as an elastic continuum has been presented by Savidis and Richter (1979), Iguchi 

and Luco (1981), Auersch (1996) and Quian et al. (1996). Those articles invariably employ 

the Finite Element Method (FEM) for the plate model and some form of Green's functions for 

the elastic medium bellow. The main differences between them are the medium geometry 

(half-space or layered medium) and the soil-plate compatibilization (forces and 

displacements) strategy. 

For the case of anisotropic soils, only more recent works deal with the dynamic 

interactions between foundations and transversely isotropic (also known as cross-anisotropic) 

soils. Barros (2006) analyzed the dynamic response of  rigid, cylindrical foundations 

embedded in a transversely isotropic, elastic half-space and Amiri-Hezaveh et al. (2013) 

analyzed the dynamic behavior of rectangular, rigid foundations on the surface of a 

transversely isotropic half-space. Also, Labaki (2012) and Labaki et al. (2014) presented the 

dynamic interaction between rigid and flexible circular plates and layered, transversely 

isotropic soils. 

This work presents a method of analysis of flexible, rectangular plates on the surface of a 

transversely isotropic half-space, subjected to a time-harmonic dynamic, transverse load. The 

plate is modeled with four-node, rectangular finite elements and the soil response is obtained 

by the Indirect Boundary Element Method (IBEM) formulation which uses half-space Green's 

functions calculated for loads distributed along circular areas. 

The soil-plate contact is divided in rectangular boundary elements which coincide with 

the plate elements and the soil reaction is assumed to be uniformly distributed along each 

element. By imposing soil-plate displacement compatibility at the center of each element, a 

system of equation is obtained. The solution of this system furnishes both the plate FEM 

nodes displacement and the soil interaction tractions. 

2  PLATE MODEL 

Based on Kirchhoff-Love’s theory, the finite element method is used for the elements of 

the flexible plate. The element is rectangular and has 4 nodes, each node has 3 degrees of 

freedom: vertical displacement in z direction, rotation around the x axis and rotation around 

the y axis.  Hence, the stiffness matrix and mass matrix have 12 degrees of freedom. The 

model uses en  elements and nn  nodes, in which results a total of nn3  degrees of freedom. 

Since the element has 12 degrees of freedom, it is selected a 12-term polynomial in x and y to 

represent vertical displacement over the entire surface of the plate. 
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The polynomial is an incomplete quartic and complete up to the third order. In the Pascal 

triangle is easy to see the two fourth-degree terms, which were included to keep the element 

geometrically isotropic. The stiffness matrix, the mass matrix and the vector of equivalent 

nodal forces for a constant pressure applied on the plate in the z direction are given by the 

usual process that derives them from energy principles. This element is called MZC element 

because it was originally developed by Melosh (1961), Zienkiewicz and Cheung (1964). An 

explicit form for the stiffness and mass matrices is given in Przemienieki (1968). After the 

assembly of the global stiffness and mass matrix of the plate, as well the vector of equivalent 

nodal forces and neglecting the structural damping, the equation obtained is:  

}{}{}]){[]([ 2

sffuMK  . (2) 

where the matrix ][K  is the global stiffness matrix, the matrix ][M is the global mass matrix, 

  is the frequency of the dynamic load. The vector }{u  consists in the displacements and 

rotations at the nodes. The vector }{ sf  contains the equivalent nodal forces that result from 

the soil tractions applied to the plate. Vectors }{u  and }{ sf  are given by: 
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where ix  and iy  are coordinates of the node i . 

The equivalent nodal forces that the half-space applies to the plate are given by: 

}]{[}{ qAf s  . (4) 

where }{q  is the vector of applied loads by the half-space to the plate surface in each element. 

Assuming that these loads consist of normal tractions to the plate with uniform distribution on 

the element, the vector }{q  is given by: 
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It should be noted that the soil traction component tangent to the soil-plate interface is not 

considered in this analysis. This assumption implies that the soil-plate interface has zero 

friction and the interface is free to slide. 

The matrix ][A  is assembled by the columns, each column corresponding to an element 

and the row positions in that column corresponding to the element degrees of freedom. The 

values to be filled in those positions are the equivalent nodal forces due to an uniformly 

distributed load; the values in the remaining positions are zero. Then, the matrix  takes the 

form: 
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where xil  and yil  are the lengths of the element i. 

The final form of the equation of the plate results: 

}{}]{[}]){[]([ 2 fqAuMK  . (7) 

3  HALF-SPACE MODEL 

The boundary element method has two varieties, called direct and indirect formulations. 

In this study, the half-space is represented by the indirect formulations. The contact area 

between the plate and the half-space is divided in rectangular areas according to the exact 

division of the plate elements. 

The present work introduces a formulation for the boundary element method, which is 

based on Green’s functions (influence functions), which are the elastic medium response to 

applied loads. Influence functions for dynamic loads distributed along disks applied on a 

transversely isotropic half-space were derived by Rajapakse and Wang (1993). These loaded 

disks are used in place of rectangular elements, with an equivalent radius for each element 

given by: 



yxll
r  . (8) 

Transforming rectangular elements into equivalent circular elements may cause an error. 

Depending on the relation between the sides of the element, the error increases affecting the 

final result, but if it is chosen an adequate element with 5.1/ BL  or less, this error can be 

extremely low, without influencing the final results. The Table 1 below illustrates the 

difference of the displacements at the center of the loaded area, between a rectangular area 

and its equivalent circular area, where a static uniformly distributed load was considered. For 

those conditions an analytical solution is quite simple and easily found in the literature. 
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Table 1. Relation between circular plate and rectangular plate 

L/B Re/B Ip Ip’ Difference 

1 0.564 1.122 1.128 0.53% 

1.5 0.691 1.358 1.382 1.77% 

2.0 0.798 1.532 1.596 4.18% 

3.0 0.977 1.783 1.954 9.59% 

Under axisymmetric conditions, the stress-strain relationship for the transversely 

isotropic medium, is given by: 

zzrrrr cc  1311  . (9) 

zzrrzz cc  3313  . (10) 

rzrz c  442 . (11) 

The isotropic case is a special one, with  23311  cc , 13c  and 44c , where 

  and   are the Lamè’s constants. The anisotropy of the material under axisymmetric 

loading may be expressed by two anisotropy indices 1n  and 3n  given by: 

11331 / ccn  . (12) 

1344113 /)2( cccn  . (13) 

The displacements in the z direction }{ sw  in the center of each rectangular element due 

to a distributed vertical load are given by: 

}]{[}{ qUws  . (14) 

where: 
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and ][U  is the influence matrix. Each element  ijU  of this matrix corresponds to the 

displacement in the center of the element i  due to a distributed unitary load applied at the 

element j . The Green’s functions for a load applied on the surface of a transversely isotropic 

half-space have the general form, in cylindrical coordinates (Rajapakse and Wang, 1993): 





0

)(*)(*)(  dpwrw . (16) 

where )(rw  is the vertical displacement on the half-space, *w  is a function of the elastic 

constants, the frequency and of the distance r  from the load center to the observation point; 

and *p  is the Hankel transform of the applied load. 
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The displacements }{ sw  are related to the total nodal displacements and rotations of the 

corresponding plate element. Thus: 

}]{[}{ uDws  . (17) 

where ][D  is assembled by rows, with each row corresponding to an element and filled in the 

corresponding positions to the degrees of freedom of the element. The values are the nodal 

displacements and rotations equivalent to a vertical displacement in the center of the element. 
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The equation for the half-space becomes: 

0}]{[}]{[  qUuD . (19) 

4  GLOBAL SYSTEM OF EQUATIONS 

Assuming the vertical displacements at the center of the rectangular elements on the half-

space are equal to the vertical displacements at the center of the plate elements and the normal 

stress in the interface between the plate and the half-space can be approximated by the 

composition of uniform distributed load rectangles, a global system of equations can be 

assembled: 
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The solution of the global system of equations furnishes the displacements and rotations 

at the FEM model nodes and the soil-plate interface tractions. Figure 1 shows the connectivity 

between the plate elements and the soil elements. 

 

 

Figure 1. Finite elements and soil elements discretized and the coupled system 

For the case of a perfectly rigid plate, the FEM model is not necessary. Displacement 

compatibility between plate and soil; along with plate equilibrium reduces Eqn. (20) to: 
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where m is the plate mass, {S} is a line vector with the area of each boundary element, {1} is 

a column vector filled with ones, and P is the total force applied on the plate.  

5  NUMERICAL RESULTS 

In this section, some results are presented in their normalized form. Thus, it is necessary 

to show how is the arrangement of the relative stiffness between, the plate and the soil, the 

dimensionless frequency factor, the mass ratio and the magnification factor. The relative 

stiffness is expressed through the dimensionless factor  , relating the Young’s modulus of 

the soil (isotropic case) and the plate, whereby: 
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where t  is the thickness of the plate, sE  and pE  are the Young’s modulus of the soil and the 

plate, s  and p  are the Poisson’s ratio of the soil and the plate and xL  and yL  are the side 

lengths of the plate. 

The frequency is expressed through the dimensionless factor 0a , as it is shown below: 

44
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 . (23) 

where   is the circular frequency of the dynamic load and s  is the soil density. 

The plate mass is given by a non-dimensional mass ratio zB : 
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where m is the total mass of the plate and  is the shape factor. For square plates 065,1 . 

The magnification function V  is the dynamic displacement amplitude divided by the 

displacements in the z direction for the static case of the rigid plate for the same load. For the 

analysis, some values are chosen according to the literature of what is the most relevant in 

machine foundations. Thus, the dimensionless frequency varies from 0 to 4 and three different 

relative stiffness were used: rigid plate, 36,0log10  , flexible plate, 36,3log10  ,  and 

very flexible plate, 27,4log10  . For the mass ratio, 00.2zB  is used. 

A square plate is analyzed, with side length yx LL  . The plate is divided along the x and 

y axes into 8 elements. For each plate element, there is a soil nodal point, counting 64 plate 

and soil elements. A concentrated load in the center of the plate is applied and the 

magnification factor is measured at the middle (VM) and at the corner (VE) of the plate. 

The results in Figure 3 compares the results obtained by Savidis and Ritcher (1979), in 

which another formulation is used. 
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Figure 2. Comparison between two different formulations 

The two formulations lead to similar behavior for a dynamic load. For rigid plate, the 

results are very close, but the more the plate increases the flexibility, more different the 

results are. After comparing the two different formulations, the anisotropic effect is analyzed. 

The isotropic and the anisotropic soils elastic constants are shown in table 2. 

Table 2. Characteristics of the materials 

Material 
4411 / cc  4413 /cc  4433 /cc  1n  3n  

Isotropic 

( 25.0 ) 

3 1 3 1 1 

Anisotropic 6 2.648 3 0.5 0.378 

The isotropic material has a Poison ratio ν = 0.25 and the anisotropic material is chosen 

to have approximately the same vertical stiffness and the same Rayleigh wave-speed of the 

isotropic material. The damping factor was incorporated into the influence functions 

evaluation by considering complex valued elastic constants. 

The plate stiffness and the soil stiffness are two components that influence the 

displacement w . Therefore, the displacement is divided in two parts: fr www  . The first 

part rw  is the displacement of a rigid plate, which depends on the soil properties and on the 

plate dimensions. This part can be expressed in a dimensionless form: 

P

Lcw
w xr

r
44 . (25) 

where P is the concentrated load value. 

The second part fw  is the plate flexibility effect, which depends on the plate stiffness and 

on the dimensions. Then, it can be represented by: 
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where )]1(12/[ 23
pptED   is the stiffness of the plate and P  is the concentrated load. The 

displacement w  also depends on the mass that is represented by the mass ratio zB .  

In terms of the dimensionless parameters, the results comparing the isotropic and the 

anisotropic soil are presented below, where the displacement fw , the contact pressure 

)/( yxLLqq   and the plate bending moments Pmm xx /   and Pmm yy /  are evaluated for 

one dimensionless frequency 10 a  and three different relative stiffness used in the previous  

results. In order to get more accurately the anisotropic effect, the plate of side lengths yx LL   

is divided into 20 elements in both sides, resulting 400 elements. The results are measured 

alongside a straight line from the center to the border of the plate. 

The plots in Figure 4 show the displacement of a rigid plate with 2zB  for the two types 

of soils. The effect of anisotropy is relatively small, but distinctive. It is worth noting that 

once the displacement for a particular mass value is obtained, the displacement for any other 

mass can be easily obtained. 

 

Figure 4. Comparison between the values of the real and imaginary parts measured at the center of the 

plate of the dimensionless rigid displacements (wr) for different frequencies. 

 

The plots in Figures 5-7 show the normalized displacement fw , interface stress q  and 

moments xm   and ym  profiles along xLxx /  for 10 a  and three different relative stiffness 

 . The effect of anisotropy is very clear in all components. 
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Figure 5. Comparison between the values of the real and imaginary parts of the dimensionless 

displacements (flexible effect), contact pressure and moments in x and y direction for a rigid plate 
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Figure 6. Comparison between the values of the real and imaginary parts of the dimensionless 

displacements (flexible effect), contact pressure and moments in x and y direction for a flexible plate 
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Figure 7. Comparison between the values of the real and imaginary parts of the dimensionless 

displacements (flexible effect), contact pressure and moments in x and y direction for a very flexible plate 
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6  CONCLUSIONS 

A numerical method for the analysis of flexible plates supported on homogeneous soil, 

using an indirect formulation of the Boundary Element Method with half-space influence 

functions was presented. The method was applied to a set of different cases of plate stiffness 

and soil characteristics, comparing with results in the literature. 

The comparison between the anisotropic and isotropic soil for the chosen frequency, in 

the analyzed cases shows that the anisotropy had more influence in the rigid plate and the soil 

pressure varied according to the relative stiffness. 

The formulation used is relatively simple and does not require great computational effort. 

It may be used different shapes for the plate according to the demanded of a real problem, not 

necessarily rectangular. 
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