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Rogério J. Marczak

cristiano.ubessi@ufrgs.br

rato@mecanica.ufrgs.br

Departamento de Engenharia Mecânica - Universidade Federal do Rio Grande do Sul - RS

Sarmento Leite 425, 900.00-000, Porto Alegre , RS, Brazil

Abstract.

This paper presents the implementation of an algorithm for the solution of 3D elastic
contact problems with friction using the Boundary Element Method (BEM) with discontinuous
elements. A standard BEM implementation is used, and the coupling of the potential contact
zone is imposed through a projection function which treats each region independently, and
is updated along with the changes to the contact state. The contact restrictions are fulfilled
through the augmented Lagrangian, and the solution is found using the Generalized Newton
Method with line search. With this method is possible to avoid the calculation of the non-linear
derivatives, allowing for a fast solution of the problem. A classic contact problem is solved to
evaluate the accuracy of the method and to provide a comparison with analytic solution.

Keywords: Frictional Contact, Boundary Element Method, Discontinuous Elements, General-
ized Newton Method with line search
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1 INTRODUCTION
Contact type problems are too often found in engineering applications. While some could

be simplified or even assumed to be irrelevant, there exists cases where it is the reason of
existence of the engineering problem by itself. Wear, tear, fatigue, friction, among others, are
all problems which could arise by the contact occurrence. With the fast growth on the use of
advanced and high performance materials in engineering, rises the need to predict the contact
conditions when using these materials.

Also called the Signorini problem, since the works published by Fichera (1963), Fichera
(1973), the simple unilateral contact problem imposes an ambiguous boundary condition, since
the contact area and, hence the equilibrium configuration, may have a non linear dependency
of the loads acting on the structure. On its series of works, the author have obtained analytical
solutions for an elastic sphere lying on a rigid plane, without and with friction, considering
gravitational loads.

One of the difficulties on deriving and solving frictional contact problems is that they are
governed by a multivalued tribological law which does not derive from a natural potential (even
non-differentiable), meaning they cannot be formulated as standard optimization problems us-
ing inequality constraints (Alart & Curnier, 1991).

The Boundary Element Method is well known for its ability to solving contact problems,
since its formulation intrinsically treats the displacements and tractions with same order of ap-
proximation. This enables the direct application of the contact constraints without the need
of penalty parameter or Lagrangian multipliers. Since the pioneer work of Andersson (1981),
which used that property to develop an incremental loading technique to solve contact prob-
lems on 2D, a few other works are also found on the literature using the same principles, such
as Andersson (1981), Paris & Garrido (1989), Garrido et al. (1991), Man et al. (1993a), Man
et al. (1993b) and Paris et al. (1995). Another works are found such as Yamazaki et al. (1994),
Rodrı́guez-Tembleque et al. (2008), which use the Lagrangian multiplier or the penalty param-
eter methods, which are mandatory to treat contact problems with FEM. Though they could be
used, are not needed to treat contact with pure BEM discretization.

More recently, motivated by González et al. (2008), which treated FEM-BEM coupled
problems, Rodrı́guez-Tembleque & Abascal (2010), based on the works of Pang (1990), Alart &
Curnier (1991), used the Augmented Lagrangian formulation, which circumvents some weak-
nesses existing on Lagrangian multiplier and penalty methods, and which convergence is in-
dependent of the penalization parameter used on it. The contact restrictions are imposed in
the form of projection functions, resulting on a very robust framework to both FEM and BEM
frictional contact analysis. The resulting non linear system of equations is then solved by the
Generalized Newton Method with line search (GNMls), which is simply a generalization of
the standard Newton method to B-differentiable functions, with an unconstrained optimization
between each step to accelerates its convergence. The resulting equations can be further simpli-
fied with the properties of complementarity of normal tractions and gap, reducing the number of
DOFs needed on the SLE solution. The method was also used by Rodriguez-Tembleque et al.
(2011) to study 3D frictional contact on anisotropic media using BEM.

This paper describes part of our research on contact analysis using BEM, where the GNMls
was implemented on the resolution of contact problems using discontinuous elements. The
paper is presented on the following methodology: First the contact problem is described along
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with the restrictions it imposes. The boundary integral formulation leading to BEM equations
is presented. The contact variables on the discrete form, along with the projection functions and
the Augmented Lagrangian variables which imposes the restrictions on the discrete form. The
resulting non linear system of equations is presented with an analogy to problems with multiple
regions . The GNMls is described with the linearized Jacobian. On Results section, the classical
Hertz contact problem, considering two elastic regions, is analyzed using two BEM meshes and
the solution obtained is compared with the analytical one. Final considerations are made, which
closes the present work.

2 METHODOLOGY

2.1 The elastic contact problem

The problem of contact between two linear elastic bodies, is a problem which occurs at the
boundary, between two bodies or two regions of same body, and a problem where the linear
elasticity equations remains valid. Consider the simple problem of two separated elastic bodies,
which may come in to contact, as illustrated on Fig. 1. Treating this as a classical Bound-
ary Value Problem (BVP), one knows by anticipation the prescribed conditions at the bodies
boundaries: Tractions are null on the contours which are free to displace in any direction, and
are unknowns on this regions (Γt0); Displacement are generally prescribed as null in some direc-
tions, also called restrictions, but can also be different from zero, and in both cases the tractions
will be unknowns on those regions. The contact boundary, Γc have conditions which depends
on the contact state, defined by the distance between the two bodies, which cannot be negative.
When it is positive, the surfaces are free and the tractions are null. Compatibility conditions
must be set when the distance is zero.
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t
Γu
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Figure 1: Solid under consideration

The conditions relate the displacement and the tractions on the contact surface, and will
depend on the existence of friction or not.

Kinematic variables

In this work the BEM formulation is assuming small strains and displacements, and node
on node contact. The nodes are assumed to be positioned in a conforming scheme, i.e., the
slave nodes are positioned as closely as possible to the master, or matching the displacement
path performed by the contact pair. The contact variables in the discrete form will then be
related to the possible contact node pairs. The contact frame is based on the master nodes, and
the gap variable g is obtained through the following relation
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g = BT (x2 − x1) + BT (u2 − u1), (1)

where x1 and x2 are master and slave nodal coordinates, u1 and u2 are the respective nodal
displacement vectors, on the global Cartesian coordinate system, and B is a change of base
matrix constructed with the three unit vectors which form a local coordinate system with origin
at x1, the master node position, i.e.,

B =
[
t1 t2 n

]
. (2)

2.2 Boundary Element Method formulation

The BEM formulation derived for a homogeneous media with tractions and displacements
prescribed on its boundary, as shown in Fig. 2, starting from the elasticity equilibrium equations:


σkj,j + bk = 0 in Γ

σ · n = t in Γ

u
Γu

= ū in Γu

t
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Figure 2: Solid under consideration.

By means of the principle of virtual work, is possible to obtain the Somigliana’s well known
identity (Brebbia et al., 2012):

uil(y) +

∫
Γ

p∗lk(x,y)uk(x)dΓ =

∫
Γ

u∗lk(x,y)pk(x)dΓ +

∫
Ω

u∗lk(x,y)bk(x)dΩ, (4)

where y is the source point inside the domain and x represents the field points on the boundary.
The symbols u∗ and p∗(x,y) are the fundamental solutions for the displacement or traction in
the direction k on point x when a unit load is applied in the direction l at point y. When the
source point is taken to the boundary, a limit has to be taken, which leads to a free term cilk,
which will depend on the shape of the boundary at y, resulting in the following BIE:
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cilku
i
k(y) +

∫
Γ

p∗
lk(x,y)ukdΓ =

∫
Γ

u∗
lk(x,y)pkdΓ +

∫
Ω

u∗
lk(x,y)bkdΩ. (5)

where, in the case of this work, the boundary at y is always smooth due to the use of discontin-
uous elements, i.e., cilk = 1

2
.

To obtain a numerical solution from Eq. (5), the boundary is discretized in to a finite number
of elements, forming an algebraic system of equations. The geometry of the body will be
calculated by means of shape functions in terms of the parametric coordinates ξ = (ξ1, ξ2):

x =
N∑
n=1

φn(ξ)xjn, (6)

where N is the number of nodes of the element and φn is a vector containing the geometric
shape functions. To simplify the discretization and formulation of the problem, discontinuous
elements are used, and so the physical variables of the problem will be calculated in physical
nodes that are offset relative to the geometrical nodes. Displacements and tractions will be
interpolated with the discontinuous interpolation functions, φ̄:

u =
N∑
n=1

φ̄n(ξ)ujn, p =
N∑
n=1

φ̄n(ξ)pjn. (7)

In this work, discontinuous rectangular elements were used, and the interpolation functions
for the linear element are

φ̄n =
1

4d2
o

(d0 + ξ1ξ̄
n
1 )(d0 + ξ2ξ̄

n
2 ), n = 1 . . . 4, (8)

where (ξ̄n1 , ξ̄
n
2 ) are the nodal coordinates of the n-th geometrical node (e.g., (ξ̄1

1 , ξ̄
1
2) =

(−1,−1)), (ξ1, ξ2) are the coordinates where the function is being calculated, and d0 is the
distance from the center of the element to the nodes in the local coordinates Beer et al. (2008).
This distance can be related to the percentile offset (a) by:

d0 =
(1− a)

100
, (9)

which returns the continuous functions φn when a = 0. Following the same notation as the
latter, the interpolation functions for the 8-node element could be summarized on the following
equations:

φ̄n =
1

4d3
o

(d0 + ξ1ξ̄
n
1 )(d0 + ξ2ξ̄

n
2 )(ξ1ξ̄

n
1 + ξ2ξ̄

n
2 − do), n = 1 . . . 4,

φ̄n =
1

2d3
o

(d0 + ξ1)(d0 − ξ1)(d0 + ξ2)(d0 − ξ2)

(do − ξ1ξ̄n1 − ξ2ξ̄n2 )
, n = 5 . . . 8.

(10)
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Writing Eq. (5) in matrix notation, including the Jacobian J (omitting the body forces)
results in the following equation:

Ciui +
∑
j

{∫
Γξ

p∗ijΦJdΓξ

}
uj =

∑
j

{∫
Γξ

u∗ijΦJdΓξ

}
pj (11)

where the summation over j spans over all elements. With discontinuous elements, the free
term coefficients matrix will be ci = 1

2
I when the node belongs to the element being integrated,

and null otherwise. Equation (11) is valid for a source node i, and further combination of the
terms computed after a collocation process over all boundary nodes will result in the algebraic
system of equations that leads to the BEM solution, i.e.,

Hu = Gt. (12)

2.3 Contact constraints

The well known frictional contact restrictions are:


tn ≤ 0; gn = 0; ġt = 0; Contact - Stick,
tn ≤ 0; gn = 0; ‖tt‖ = µ |tn| ; ġt · ṫt = −‖ġt‖

∥∥ṫt∥∥ ; Contact - Slip,
tn = 0; gn ≥ 0; tt = 0; Separated.

(13)

The frictional contact law is fulfilled by means of projection operators, i.e. functions which
project the the contact variables in to the admissible solution region (Rodrı́guez-Tembleque &
Abascal, 2010).

Normal operator

The normal tractions projector function takes the form: PR−(·) : R → R−, PR−(x) =
min(x, 0). The mixed variable, augmented normal traction t∗n is defined as: t∗n = tn + rngn,
where rn ∈ R+ is a positive penalization parameter.

Tangential operator

The tangential projector function takes the form: PCg(·) : R2 → R2,

PCg(x) =

{
x if ‖x‖ < |µtn| ,
|µtn| et if ‖x‖ > |µtn| ,

(14)

where et = x/ ‖x‖. The tangential contact restriction then is written as

tt − PCg(t
∗
t ) = 0, (15)

and the augmented tangential traction is defined as: t∗t = tt − rtġt where the positive penaliza-
tion parameter rt ∈ R+ could differ from the normal one.
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Normal-Tangential operator

The constraints of the combined normal-tangential contact problem can be formulated as:
t− PCf (t∗) = 0. The contact operator PCf is then defined as

PCf (t
∗) =

[
PCg(t∗t )

PR−(t∗n)

]
, (16)

where the region Cg is the augmented friction circle with radius
∣∣µPR−(t∗n)

∣∣.
2.4 Contact treatment with Boundary Element Discretization

One of the well known advantages of BEM in contact problems is that the contact tractions
are already part of the unknowns. The SLE for the contact problem will be formed by in
a similar mode as it is done for multiple-region problems (e.g., Brebbia et al. (2012)), i.e.,
considering the geometry illustrated on Fig. 1, the following system arise,

HΓ1uΓ1 −GΓ1tΓ1 + HΓ1cuΓ1c + GΓ1ctΓ1c = ḠΓ1t̄Γ1 − H̄Γ1ūΓ1

HΓ2uΓ2 −GΓ2tΓ2 + HΓ2cuΓ1c −GΓ2ctΓ1c = ḠΓ2t̄Γ2 − H̄Γ2ūΓ2
(17)

where the bonded connections on the interface between the two regions was set by the
displacement and traction compatibility conditions.

Equation (17) is sufficient to calculate a bonded problem, where is assumed the interface
region support tractions in all directions and remains constant. To incorporate contact restric-
tions on a similar equation system one have to write Eq. (17), along with two additional sets
of equations: The kinematic relations which arise from the gap, i.e., Eq. (1), and the projection
operators, which represent the contact restrictions, depending on the contact state of the node
pair, resulting in a system Θ(z) = Rz− f , composed by the following equation


AΓ1 0 A1

pC̃
1 0

0 AΓ1 −A2
pC̃

2 0

C1T −C2T 0 Cg

0 0 Pλ Pg





x1

x2

Λ

k


=



b1

b2

Cgkgo

0


, (18)

where AΓn are the matrices relative to the independent unknowns (mixed tractions and dis-
placements) for the nth region, including the displacement unknowns on the possible contact
region, An

p are the matrices relative to the traction unknowns on the possible contact region.
The tractions on the contact interface (Λ) as well as the gap (k) are considered on their local
coordinate system, by the incorporation of the rotation matrices on the system of equations,
i.e., Eq. (2), which are assembled for each contact pair on the main rotation matrix presented
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as C̃n on Eq. (18). The Cn matrices are the same rotation matrices, but assembled only on the
positions of AΓn corresponding to displacement unknowns of the contact regions. the matrix
Cg = I, and kgo is the initial gap. The projector matrices are also assembled for each contact
pair, and will depend on the contact pair state:

• Free: λ∗n I > 0

(Pλ)I =


1 0 0

0 1 0

0 0 1


I

, (Pg)I =


0 0 0

0 0 0

0 0 0


I

, (19)

• Stick: λ∗n I < 0 and ‖λ∗t I‖ < µ |λ∗n I |

(Pλ)I =


0 0 0

0 0 0

0 0 0


I

, (Pg)I =


rt 0 0

0 rt 0

0 0 rn


I

, (20)

• Slip: λ∗n I < 0 and ‖λ∗t I‖ < µ |λ∗n I |

(Pλ)I =


1 0 µω∗

t1

0 1 µω∗
t2

0 0 0


I

, (Pg)I =


0 0 0

0 0 0

0 0 −rn


I

, (21)

where ω∗
t I = λ∗

t I/ ‖λ∗
t I‖.

Generalized Newton Method

As suggested in Rodrı́guez-Tembleque & Abascal (2010), the non linear system of equa-
tions is solved using the Generalized Newton Method with line search. This method was
first proposed by Pang (1990), where the mathematical properties of B-differentiable func-
tions are described, they essentially are functions which are non Fréchet-differentiable (F-
differentiable), the major difference on those functions is the absence of linearity on the B-
derivative. The author presents an example of complementarity function H : Rn → Rn,
H(x) = min(h(x), f(x)), which is non F-differentiable, the same case as the normal projection
operator. Contrary to the Uzawa method, the GNMls does not need damping or stabilization
parameters, and its convergence is independent of the penalization factor used in the augmented
Lagrangian (Alart & Curnier, 1991). The GNMls algorithm could be resumed on the following
steps:

1. Let z(0) be an arbitrary initial vector, and

Θ(z(n)) = R(n)z(n) − f (22)
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2. Given z(n) with Θ(z(n)) 6= 0, the direction ∆z(n) is obtained solving:

Θ(z(n)) + BΘ(z(n),∆z(n)) = 0 (23)

3. Find the first integer m = 1, 2, . . . which fulfills the decreasing error condition:

Ψ(z(n) + α∆z(n)) 6 (1− 2σα(n))Ψ(z(n)),

with α = βm, β ∈ (0, 1), σ ∈ (0, 1/2), and

Ψ
(
Θ(z(n))

)
=

1

2

∥∥Θ(z(n))
∥∥2
. (24)

4. New solution vector: z(n+1) = z(n) + αn∆z(n)

5. Finish if Ψ(z(n+1)) ≤ ε1 Otherwise n=n+1, and return to (2).

3 RESULTS

The problem analyzed in this work is the Hertz classical one, with the particularity of
both solids being elastic, not so commonly seen on the literature, since generally one of the
bodies is considered rigid and a half space on the plane region with BEM, in favor of a simpler
solution and a closer geometry to that assumed on the closed form solution. The half space
representation is numerically simpler to solve, and the use of a rigid indenter is closer to a pure
prescribed displacements problem, than to an elastic contact problem, as the final displacements
of the contact regions are known a priori. This classical problem also permits the evaluation of
the algorithm when a small region of the solids are transferring the load, concentrating the
contact stress in a small area.

Figure 3: Mesh used on the Hertzian contact example

The mesh used for the the sphere and the cube on this problem has 888 and 468 8-node
quadratic elements respectively, and is illustrated on Fig. 3. The prescribed displacements uz
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applied on the lower face of the half sphere and the cube upper face was restricted on the z
direction. On all elements at the zx and zy plane a symmetry boundary condition was applied,
restricting the displacements on the outward normal direction, and freeing it on the tangential
direction. The offset used on the discontinuous elements (Eq. (9)) was a = 15%, and all
material and geometrical properties considered on this example are shown on Table 1. Also is
brought the predicted maximum contact pressure from Johnson & Johnson (1987), which do
not consider frictional effects on its formulation, so the coefficient of friction was set to µ = 0.

Table 1: Hertz contact problem data

E 1.0× 104 Pa Bulk Modulus

ν 0.3 m/m Poisson Ratio

k0 5× 10−2 m Initial separation

r1 1.0 m Sphere radius

L 1.0 m Cube length

p0 146.3281 Pa Maximum contact pressure

ū0z 1.8× 10−3 m Displacement applied on the sphere center

The load was applied on a single step, and the algorithm convergence is brought on Fig. 4.
The initial parameters used on the GNMls were β = 0.95, r = 0.80. To accelerate the solution
time, an iterative sover (GMRES) was used, and a lower initial tolerance was set, along with an
adaptive tolerance reduction lower than the last solution residual. As can be seen on the graph,
although the solver could not converge to the desired tolerance on the final iterations, the final
GNMls residual Ψ was lower than the desired value.

103

10−2

10−7

10−12

10−17

Ψ
(z
n
)

Ψ
tol
res

1 5 10 15
0.00
0.50
0.95

n

α

Figure 4: Newton method convergence: Residual for each iteration(Ψ), solver tolerance (tol), relative solver
residual (res), and α obtained on line search.
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On figure 5a, the obtained displacements on the contact region are plotted as a function
of the radius from the center of the sphere along with the analytical solution. Both numerical
and analytical displacements were normalized with the prescribed displacements ū0z. The mesh
nodes were disposed on a rectangular grid, so the results are scattered along their relative radius
r =

√
x2
i + y2

i . On figure 5b, the obtained normal tractions on the contact region are plotted in
the same way as the displacements, and normalized with the maximum analytic contact pressure
p0. As can be seen, the normal displacements and tractions agree with the analytical solution.
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(a) Displacements along contact region relative to
displacement applied.
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Figure 5: Traction and displacements along the possible contact region selected for the problem

4 CONCLUSION

On this work it was possible to evaluate the use of discontinuous BEM to resolve a classical
contact problem. A brief review of BEM contact literature was presented. The GNMls presented
a good convergence rate, needing a few iterations to start converging at a logarithmic rate.
Results obtained for displacements and tractions on the contact regions show a good agreement
with the analytical solution.
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