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Abstract. The present paper is part of a research line to implement, test and apply a novel
numerical tool that can simulate on a personal computer and in just a few minutes a problem
of potential or elasticity with up to tens of millions of degrees of freedom. We have already
developed our own version of the fast-multipole method (FMM), which relies on a consistent
construction of the collocation boundary element method (BEM), so that ultimately only poly-
nomial terms are required to be integrated – and in fact can be given as a table of pre-integrated
values – for generally curved segments related to a given field expansion pole and no matter
how complicated the problem topology and the underlying fundamental solution. The simplified
hybrid BEM has a variational basis and in principle leads to a computationally less intensive
analysis of large-scale 2D and 3D problems of potential and elasticity – particularly if imple-
mented in an expedite version. One of the matrix-vector products of this formulation deals with
an equilibrium transformation matrix that comes out to be the transpose of the double-layer
potential matrix of the conventional BEM. This in principle requires a reverse strategy as com-
pared to our first developed (and reverse) FMM. The effective application of these strategies
to any high-order boundary element and any curved geometry needs to be adequately assessed
for both numerical accuracy and computational effort. This is the subject of the present inves-
tigations, which are far from a closure. A few numerical examples are shown and some initial
conclusions can already be drawn.

Keywords: Boundary elements, Hybrid boundary elements, Fast multipole method, Variational
methods
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1 INTRODUCTION

The present research work is part of the studies carried out by Peixoto (2014) together with
Novelino (2015) to develop a robust and efficient fast multipole code applicable to problems
with generally curved boundaries, in a framework that is almost completely independent from
the underlying fundamental solution (Dumont & Peixoto, 2016; Peixoto & Dumont, 2016).
The basic concept of the fast multipole method (FMM), with the expansion of the fundamental
solution about successive layers of source and field poles, is described in a compact algorithm
that is more straightforward to lay out and promises to be more efficient than the ones available
in the technical literature (Dongarra & Sullivan, 2000; Liu, 2009; Liu et al., 2012).

In the proposed FMM implementation, a hierarchical tree of poles is built upon a topologi-
cal concept of superelements inside superelements, which in part circumvents the need of eval-
uating geometrical distances between nodes as well as the need of concepts such as quadtrees
or octrees for 2D or 3D problems. This FMM - which differs from the formulations classically
presented in the literature not only because it follows a reverse strategy - has been already as-
sessed for a variety of patch and cut-out tests for 2D potential problems and is being presently
implemented for elasticity and 3D problems. It has not been inserted into an iterative solver
yet, since our goal has consisted in first to validate and assess the isolated FMM algorithm for
accuracy, computational effort and storage allocation. The code is written in C++ and can au-
tomatically deal with elements of any order - although only linear and quadratic elements have
actually been tested. (A separate code for constant elements is also implemented.)

The simplified hybrid BEM has a variational basis and leads to a computationally less in-
tensive implementation, which may become relevant for large-scale 2D and 3D problems of
potential and elasticity. One of the matrix-vector products of this formulation deals with an
equilibrium transformation matrix that comes out to be the transpose of the double-layer poten-
tial matrix of the conventional BEM. This in principle requires a reverse strategy as compared to
our first implemented FMM, which has already turned out to be a reverse strategy as compared
to the implementations given in the literature. The FMM for the simplified hybrid BEM can
be implemented in a further simplified version, called expedite, in such a way that only matrix-
vector products directly related to nodal values of the fundamental solution needs to be obtained
and is seamlessly applicable to any high-order boundary element and curved geometry, which
may come out as of further computational advantage. On the other hand, our initially proposed
implementation of the fast multipole, collocation boundary element method seems to be al-
ready extremely fast and accurate, which makes it questionable whether further improvements
are feasible. This is the core of the present paper and, although the required implementations
are far from definitive, the conclusions that can be drawn so far are of conceptual and practical
relevance. A few numerical results are shown to support the conceptual developments.

The complex formulation of the collocation boundary element method is shown in the fol-
lowing Section as applicable to a potential problem. (The formulation for an elasticity problem
is almost as straight forward and is the subject of an implementation in progress in the frame of
the fast multipole method.) The equations of the hybrid simplified boundary element method
are shown next and the further simplification related to an expedite evaluation of the integrals
required in the boundary element methods is presented in a separate subsection. After this intro-
duction of the BEMs we present the steps and algorithms related to the fast multipole method,
so that a general discussion is made possible.
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2 Complex formulation of the two-dimensional potential problem

The fundamental solution for a potential problem is written, in complex notation, as

θ∗s = <
( −1

2πk
ln (z − zs)

)
≡ <

(
θCs
)

, (1)

valid in the open domain (that is, with global support) for a unit point source applied at zs,
where z = x + iy stands for the complex representation of the Cartesian coordinate system
(x, y) and k is a material property, such as the conductivity for a steady state heat propagation
problem in a homogeneous and isotropic medium.

One checks that, in fact,

−1

2πk
ln (z) =

−1

2πk
ln (r) + i arctan(y, x) (2)

where r =
√
x2 + y2.

For a general potential θ, the flux components in the Cartesian coordinates are defined as

qx = −k ∂θ
∂x
≡ −<

(
k
dθC

dz

)
qy = −k∂θ

∂y
≡ −=

(
k
dθC

dz

)
,

(3)

where the superscript C stands for complex notation. Then,

qx + iqy ≡ −k
dθC

dz
. (4)

Using the complex expression of the boundary outward unit vector

η = ηx + i ηy ≡
1

|J |

(
dy

dξ
− idx

dξ

)
≡ η̃

|J | , (5)

the general expression of a boundary normal flux q = −qxηx − qyηy leads to the complex
representation of the boundary normal flux q∗s due to the potential defined in Eq. (1) for a unit
point source applied at zs:

q∗s = k
∂θ∗s
∂x

ηx + k
∂θ∗s
∂y

ηy ≡ <
(
k
dθCs
dz

η

)
≡ <

(
qCs
)

. (6)

2.1 Basic equations of the conventional, collocation boundary element
method

In the collocation boundary element method, a generic potential problem is formulated,
in the absence of domain sources just for the sake of simplicity, as the compatibility matrix
equation

Hd = Gq, (7)
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for the vectors of boundary nodal potentials d and normal fluxes q applied as mixed boundary
conditions. The double layer and single layer potential matrices H and G are defined as

H ≡ Hsf = <
(
HC

sf

)
and G ≡ Gs` = <

(
GC

s`

)
, (8)

with

HC
sf = k

∫
Γ

dθCs (z(ξ)− zs)
dz(ξ)

η(ξ) uf (ξ)dΓ(ξ) =
−1

2π

∫
Γ

1

z − zs
η ufdΓ ≡

∫
Γ

qCs ufdΓ (9)

GC
s` =

∫
Γ

θCs (z(ξ)− zs)t`(ξ)dΓ(ξ) =
−1

2πk

∫
Γ

ln(z − zs)t`dΓ ≡
∫

Γ

θCs t`dΓ. (10)

In the above definitions of H ≡ Hsf and G ≡ Gs`, the subscript s denotes a node at which a
point source is applied, f is a field node to which a nodal potential df is attached and ` is a point
on the boundary corresponding to the nodal normal flux q`. Integration is carried out along a
boundary segment in terms of a parametric variable ξ, as indicated in the latter two equations, in
which it is also shown that, for the sake of notation simplicity, the argument ξ may be dropped.

While the fundamental solution defined in Eq. (1) has global support, both potential and
normal flux quantities θ and q are piecewise approximated along the boundary (with local sup-
port):

θ = uf (ξ)df and q = t`(ξ)q`, where t` = u`
|J |at `

|J | , (11)

where uf (ξ) and u`(ξ) stand for the same type of real polynomial interpolation functions of a
given order (constant, linear and quadratic quadratic functions are implemented in our code).
Since uf (ξ) and u`(ξ) have local support, there is no need to make explicit that the integrations
indicated in the evaluation of Hsf and Gs` are carried out segment by segment along the bound-
ary. The expression of t` for the interpolation of the normal flux along an element segment (as
well as for boundary traction forces in an elasticity problem) stems from a consistent boundary
element formulation proposed by Dumont (2010) for generally curved elements.

The subscripts used in Eq. (8) and subsequently play an important role in a consistent
formulation. Let oe = 1, 2, 3, ... be the order of a generic boundary element, that is, linear,
quadratic, cubic and so on, with oe + 1 = 2, 3, 4, ... nodes in an element. If a given problem
is discretized with ne boundary elements, then the number of source points s is ne × oe, which
is also the number of field points f : the double layer potential matrix H is square and of order
ne × oe, which is also the size of the vector of nodal potentials d. On the other hand, since two
adjacent elements are in general discontinuous at their connecting nodes (maybe unwillingly,
as the result of the imprecise geometry representation of a curved boundary), the left and right
normals at these points should be considered explicitly in a generic formulation, so that the size
of the vector of normal fluxes q becomes ne × oe + ne, which is also the number of columns of
the single layer potential matrix G and which is also why the differentiating subscript ` is used.
By the way, it is worth remarking that the concepts of continuous or discontinuous nodes at
corner points are considered by the first author as inconsistent and should not take place in a
consistent formulation (Dumont, 2010).
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2.2 Basic equations of the simplified hybrid boundary element method

The simplified hybrid boundary element method has been well explained by Oliveira (2009),
for example. For the simplest case of a potential problem, it relies on the assumption that the
potential θ and its gradients θ,j inside a domain can be described in terms of a series of point
source parameters p∗s applied along the boundary plus some arbitrary particular solution θp,

θ = (θ∗s + Cs) p
∗
s + θp, θ,j = θ∗s,j p

∗
s + θp,j , (12)

where θ∗s is a fundamental solution of the corresponding differential equation of the problem,
as given in Eq. (1). In the present case, ∇2θ∗s = 0 except for the point of application of p∗s,
when θ∗s becomes undetermined. Moreover, θ∗s is obtained except for a constant Cs (Dumont,
2010; Dumont & Aguilar, 2012). This belongs to the basic theory of the conventional boundary
element method only bearing in mind that in a variational formulation θ∗s is used as a numerical
approximation of the actual problem and not just as a weighting function (Dumont, 2010).
Assigning subscriptsD andN to subvectors of nodal potentials d and equivalent nodal gradients
p to characterize whether the boundary conditions are of Dirichlet or Neumann type, the final
matrix equation system of the simplified hybrid boundary element method is expressed asHT

N

HT
D

p∗ =

pN − pp
N

pD − pp
D

 ,

U∗
N

U∗
D

p∗ =

dN − dp
N

dD − dp
D

 , (13)

where the quantities with superscript p stand for nodal potentials or gradients belonging to an
assumed, arbitrary particular solution of the problem. H is the same double-layer potential
matrix of the conventional, collocation boundary element method and U∗ represents the fun-
damental solutions θ∗s evaluated at the boundary nodal points, that is, U∗ ≡ θ∗s(zf − zs). The
vector p ≡ pf of equivalent nodal normal flux is obtained from the distributed normal flux
q ≡ q` introduced in Eq. (7):

p = LTq, with L ≡ L`f =

∫
Γ

uf (ξ)t`(ξ)dΓ(ξ). (14)

The above transformation matrix L can be expressed as

L`f ≡ L̃`f |J |(at `), (15)

where |J |(at `) is defined as in Eq. (11) and L̃`f is a pre-evaluated result given as the block
matrices below for linear, quadratic and cubic elements:

L̃`f =


1
3

2 1

1 2

 1
15


4 2 −1

2 16 2

−1 2 4

 1
840


128 99 −36 19

99 648 −81 −36

−36 −81 648 99

19 −36 99 128



 . (16)

Equation (13) can be firstly solved for p∗ in terms of the known nodal quantities pN − pp
N

and dD − dp
D, provided that the problem is well posed, with the subsequent evaluation of the
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remaining boundary potentials and gradients. Then, the equation to be implemented in the
frame of the fast multipole method isHT

N

U∗
D

p∗ =

pN − pp
N

dD − dp
D

 . (17)

Results at internal points are obtained directly by using Eq. (12). Results close to or at nodal
points can also be obtained (Dumont, 2010). The implemented 2D boundary element code
works with linear, quadratic or cubic elements.

2.3 Basic equations of the expedite boundary element method

The matrices H and G of the conventional, collocation boundary element method and, in
a similar reasoning, the matrix HT of the simplified hybrid boundary element method, may be
obtained in an expedite way that consists in approximating the fundamental solution along a
boundary segment by using the same interpolation functions introduced in Eq. (11). Equation
(7) can be developed – in its complex version as ready to be implemented in the frame of a fast
multipole algorithm – according to the following equation, which uses in the second row the
definitions of Eqs. (9) and (10) and then approximates the fundamental solutions themselves
along each boundary segment according to Eq. (11), thus resulting in a very simplified (thus
the term expedite) form in terms of the transformation matrix L of Eq. (14):

HC
sfdf = GC

s`q`(∫
Γ
qCs ufdΓ

)
df =

(∫
Γ
θCs t`dΓ

)
q`

TC
`s

(∫
Γ
t`ufdΓ

)
df ≈ θCsf

(∫
Γ
uf t`dΓ

)
q`

TC
`sL`fdf ≈ UC

sfL`fq`

or

TC
`sL`fdf ≈ UC

sfpf

(18)

In this development, TC
`s expresses the evaluation of the complex fundamental solution qCs at

node ` (and corresponding outward normal for the considered boundary segment) and UC
fs ≡

UC
sf is the result of θCs evaluated at node f . The expedite integration scheme represented as

HC
sf ≈ TC

`sL`f and GC
s` ≈ UC

sfL`f (19)

only applies if the source point given by s is sufficiently far from the boundary segment where
an integration should be carried out.

3 A kernel-independent fast multipole method

The following basic definitions are used in the present developments to represent a general
function in the complex domain f(z):

• z − zs = difference between the source point zs and the field point z.
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• zck , k = 1, 2, ...nc: hierarchical levels of poles about which the fundamental solution will
be successively expanded for the field point z (then, by definition, zc0 ≡ z).

• zLl , l = 1, 2, ...nL : hierarchical levels of poles about which the fundamental solution will
be successively expanded for the source point zs (by definition, zL0 ≡ zs).

The above definitions of a pole zck that is close (lower case c) to the field point z and of a
pole zLl that is local (upper case L) to the source point z0 follow the notation introduced by Liu
(2009). In the following developments, each close pole zck and each local pole zLl are actually
array representations of different hierarchical levels of poles, as illustrated in Fig. 1, where the
attached superscripts (here omitted, for simplicity) denote an individual pole in the array.

The expression of a generic fundamental solution for 2D problems is initially expanded
about the close pole zcnc (of highest level, as developed next) using n terms:

f(z − zs) =
n∑

i=0

1

i!
(z − zcnc )iD(i)f(zcnc − zs) +O(z − zcnc )n+1 (20)

where D(0)f(z) = f(z) and D(i)f(z) = dif(z)/dzi .

The truncated form of Eq. (20) is conveniently written as

f(z − zs) =
n+1∑
i=1

1

(i− 1)!
Pi(z − zcnc )Qi(zcnc − zs) (21)

for truncation order O(z − zcnc )n+1 and with the arrays of functions P (z) and Q(z) defined for
a generic argument z as

P (z) =
{

1 z z2 z3 · · · zn+1

}
(22)

Q(z) =
{
f(z) df(z)

dz
df2(z)
dz2

df3(z)
dz3

· · · dfn+1(z)
dzn+1

}
. (23)

Expansions about the source point are also possible. Let the derivatives D(i)f(zcnc − zs) be
also expanded for the source point zs about the local point zLnL (of highest level, as to be also
shown subsequently) using m terms:

D(i)f(zcnc − zs) =
m∑
j=0

1

j!
(zLnL − zs)jD(i+j)f(zcnc − zLnL ) +O(zLnL − zs)m+1 (24)

Substituting for D(i)f(zcnc − zs) in Eq. (20) according to above, it results

f(z − zs) =
n∑

i=0

1
i!
(z − zcnc )i

m∑
j=0

1
j!

(zLnL − zs)jD(i+j)f(zcnc − zLnL )

+ O(z − zcnc )n+1 +O(zLnL − zs)m+1

(25)

The truncated form of Eq. (25) is conveniently written as

f(z− zs) =
n+1∑
i=1

1

(i− 1)!
Pi(z − zcnc )

m+1∑
j=1

1

(j − 1)!
Pj(zLnL − zs)Qi+j−1(zcnc − zLnL ) (26)

for truncation order given by max
(
|(z − zcnc )/(z − zs) |n+1, |(zLnL − zs)/(z − zs) |m+1).
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3.1 Adjacency search

The adjacency information is based on a hierarchical refinement of the boundary geometry.
This scheme consists in splitting an element – be it linear, quadratic or cubic – into two smaller
ones and sequentially assigning a global numbering to the new nodes as they are created (Fig. 1).

1 3 2


1

2

3

4
5


1

2 3

4

5
6

7

a) linear element b) quadratic element c) cubic element

Figure 1: Schemes for splitting a general element into two sub-elements.

Figure 2 shows three cases of possible refinements, with 2, 4 or 8 child elements (nc) per
element. As each element is split into two new elements, nc is always a power of 2 for a 2D
problem.

1 

1 

2 

1 2 3 4 

3 4 1 

1 2 

1 

2 

1 2 3 4 5 6 7 8 

1 

1 

2 

1 2 3 4 

1k 

2k 

3k 

1k 

2k 

3k 

4k 

(a) (b) 

(c) 

Figure 2: Schematic pole expansions using numbers of child poles nc = 2, 4 or 8 (constant elements).

This splitting scheme provides a direct way of assessing adjacency by node numbering
(topological adjacency), which is adequate in the case of a convex domain – or when its shape
is not too irregular. For domains with holes, sharp corners or notches, for instance, a geometry-
based adjacency assessment is required, which may become computationally expensive. The
proposed adjacency search uses the hierarchical refinement shown in Fig. 2 to reduce the num-
ber of possible adjacent elements, therefore reducing the need of evaluating distances geomet-
rically.

Figure 3 shows a square domain with a hole to be assessed at two different refinement
levels. If the topological adjacency were to be considered in such a domain for the refinement
level k = 0, on the left, element 5 would not be detected as adjacent to element 1, as they
are 4 elements apart. This illustrates a case that requires a geometry-based assessment. Using
the hierarchical refinement, it is possible to assign to a given element at level k its child, split
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AdjTOL L
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4 
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7 

L

9 

14 

11 

12 

13 

10 

15 

16 

AdjTOL L

AdjTOL L

Figure 3: Schemes for the adjacency search at the coarser refinement level k = 0 (left) and at the next
refinement level k = 1 (right). AdjTOL × L is the search radius. The red elements are the ones being
assessed and the green circles represent the search radius. The yellow elements are the adjacent elements
at the previous level (only these are considered for the search). The blue nodes are adjacent, and thus the
elements they belong are adjacent as well.

elements at level k + 1. This information is used to reduce the number of possible adjacent
nodes, and therefore, the number of distance evaluations.

As illustrated on the left of Fig. 3 for the level k = 0, a search is carried out for element 1
using the two green circles centred on its nodes, and it comes out that the nodes marked as blue
(corners of the square hole) are adjacent. Then, any element that contains at least one of theses
nodes is considered adjacent to element 1. The search radius is AdjTOL × L, where L is the
length of the reference element. Good numerical results have been obtained in the frame of the
implemented fast multipole algorithm using 0.7 ≤ AjdTOL ≤ 2.

The red element on the right of Fig. 3 corresponds to a level k = 1 and has been generated
from element 1 at level k = 0. Since the adjacent elements of element 1 at level k = 0, on the
left figure, are already known, they are the candidates to have adjacent child elements at level
k = 1, as shown in yellow. Once more, search circles with radius proportional to the element
length are drawn and nodes inside them are marked as adjacent.

An element’s adjacency list is build as the hierarchical mesh refinement proceeds up to the
highest level. This list is generated and stored for just one element at a given refinement level.

4 Some numerical results

4.1 Assessment of the expedite approximation of the conventional bound-
ary element method

Computation cost and numeric accuracy of the expedite approximation of the CBEM are
assessed in this section by means of a few simulations using either linear or quadratic (and
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curved) elements. The proposed approximations of the single- and double-layer potential ma-
trices are given in Eq. 19.

Two different domains, as depicted in Fig. 4, are considered. The square domain on the
left is discretized with either linear or quadratic elements with up to 1024 degrees of freedom.
On the right of Fig. 4 is shown an irregularly shaped domain defined by 16 initial nodes and
discretized with quadratic elements with up to 1024 degrees of freedom. Both domains are
submitted to a logarithmic field due to a point source applied at zs = 12.5 + i15 and nodal po-
tentials d as well as normal fluxes q are evaluated along the boundary nodes to assess accuracy
the accuracy of Eq. (12) by applying the Euclidean error norm

ε =
|Hd−Gt|
|Gt| . (27)

−2 0 2 4 6 8 10 12
−2

0
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1 2
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Figure 4: Regular square and deformed quadrilateral domains used for the numerical assessments of Sec-
tions 4.1 and 4.1.

Results for the square domain

The times required to run the simulations for the square domain (left of Fig. 4) with linear
and quadratic discretizations are shown on the left and right graphics of Fig. 5. Four AdjTOL
parameters, as presented in Section 3.1, are studied: 10−4, 3, 6, and 10. The value AdjTOL =
10−4 leads to the same results of a topological adjacency.

In both sets of simulations it may be seen that the CBEM takes by far more time to run
than the ones carried out with the EBEM, even for large AdjTOL values (when an element has
a large number of adjacent elements and thus few expedite approximations take place). If the
AdjTOL parameter is large enough all elements of a problem end up located inside the search
circles and the EBEM simulation performs as a CBEM one. This threshold case happens for
the first two quadratic discretizations with AdjTOL = 10. The results of Fig. 5 show that the
computational costs with the EBEM in general increase at a by far lower rate then in the case
of the CBEM.

Euclidean error norms, evaluated as in Eq. 27 for either case of linear or quadratic element,
are shown in Fig. 6 for several mesh refinements. As expected, the EBEM simulations lead
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Figure 5: Execution times for the linear (left) and quadratic (right) discretization of the square domain in
the left of Fig. 4.

to larger errors when compared to the CBEM simulations, except for some trivial cases when
they actually coincide computationally. For small values of AdjTOL – that is, more expedite
approximations –, it may be seen that the errors are not satisfactory. In fact, the errors for
simulations with the EBEM using the topological adjacency (equivalent to AdjTOL = 10−4)
are at least one order larger then with the CBEM whether using linear or quadratic elements.

If one weighs computational effort and accuracy convergence in Figs. 5 and 6 it is reason-
able to conclude that the CBEM and the EBEM are equivalent in terms of performance if a not
too high accuracy is pursued.

Results for the curved domain

In a second assessment, the curved domain on the right of Fig. 4 is discretized with quadratic
elements in order to keep its original shape. Figure 7 presents both the execution times (left) and
the Euclidean error norms (right) for a numerical analysis carried out with up to 1024 nodes.
The same four vales of AdjTOL of the preceding study are used.

As the adjacency search radius increases, the time needed to execute the simulations with
the EBEM also increases, although with significant accuracy improvement, as shown on the
right of Fig. 7. In the results for AdjTOL = 10, that is, for a search radius ten times an element
length, the simulation with 1024 nodes shows an error ε = 6× 10−7 after about 1.2s execution
time. To achieve such a precision with the CBEM, it is needed to run a simulation with 230
DOFs, which takes about the same computational time. This analysis shows that the EBEM
is capable of delivering small errors, with competitive computational time. This method may
be recommended as a fast means of obtaining a fair approximation of a complex problem in a
reduced amount of time, which may prove to be a useful means of evaluating initial results for
iterative methods, as well as for initial mesh approximations in highly convoluted domains.
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Figure 6: Euclidean error norms for the linear (left) and quadratic (right) discretizations of the square
domain on the left of Fig. 4.
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Figure 7: Assessment results for the curved domain in the right of Fig. 4. Execution time (left) and Euclidian
error norms for the quadratic discretization (right)

4.2 Basic, target results for the implemented fast multipole method

A multiply connected domain with a very irregular boundary is shown in Fig. 8 to illustrate
the excellent results we can achieve with the proposed fast multipole algorithm implemented in
the frame of the conventional, collocation boundary element method (Dumont, 2010; Dumont &
Peixoto, 2016). The boundary is discretized with quadratic elements up to 5×218 = 1, 310, 720
degrees of freedom as a cut-out test for the open domain submitted to a logarithmic field given
by ln |z − zs1| + ln |z − zs2|, where z = x + iy is a domain point and zs1 = 12.5 + 14i and
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zs2 = 20 + 10i are source points, represented by (∗) in the figure. The execution time and error
results are given in Fig. 9 for several levels of mesh refinement. The solid circles refer to the
evaluation of the matrix-vector products of Eq. (7) using the conventional, collocation boundary
element method without the fast multipole algorithm. We see on the left that the computational
time is proportional to N2, where N is the number of degrees of freedom. The graphics on the
right present the Euclidean error norm of Eq. (27) to assess the accuracy of results. Blue squares
mark the time and accuracy results for the simulation when N = 5 × 210. On the other hand,
several simulations are shown for the same problem run in the frame of the implemented fast
multipole method with several numbers n of the series expansion given in Eq. (20). The results
for n = 17 terms are marked with red circles to show that, for the same level of accuracy of
the conventional boundary element method, as given on the right, only approximately 1/1000
of computational time was required. As a matter of fact, a dash line proportional to NlogN and
a dot line proportional to N are also drawn on the left graphic to show that the computational
costs – in this example as well as in several other numerical tests – grow rather proportional to
N .
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Figure 8: Curved domain, with a random noise on its boundary generation, discretized with quadratic
elements and submitted to a logarithmic field with two sources (asterisks).

4.3 Assessment of the expedite fast multipole boundary element method

The Fast Multipole technique briefly presented in Section 3 – but thoroughly discussed in
Peixoto (2014), Novelino (2015), and Dumont & Peixoto (2016) – may be applied together with
the EBEM in order to push even further the gain in the algorithm speedup delivered solely by
the EBEM. Since the FMM relies on polynomial expansions of the fundamental solution in the
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Figure 9: Execution times for the linear (left) and quadratic (right) discretization of the square domain in
the left of Fig. 4.

complex z direction and the EBEM consists in approximating the same fundamental solution
along boundary segments, it is worth assessing the error when these two methods are combined.

The expansion of the fundamental solution of Eq. (1) as in Eq. (26), when applied to the
matrices of Eq. (19), leads to the fast multipole expansions for the boundary element method
when the expedite approximation is also used:

HC
sf ≈ TC

`sL`f = qCs η
∣∣

(at`)L`f = qCs η̃
∣∣
(at`)L̃`f

≈ η̃|(at`)L̃`f

n+2∑
i=2

1

(i− 1)!
Pi−1(z` − zc)Qi(zc − zs)

(28)

GC
s` ≈ UC

sfL`f = UC
sf L̃`f |J |(at `)

≈ L̃`f |J |(at `)

n+1∑
i=1

1

(i− 1)!
Pi(zf − zc)Qi(zc − zs).

(29)

Equations (4) and (5) have also been used in the above transformations. These expansions are
only carried out when the source point s is sufficiently far from the field points f or `, as both
the expedite and the fast multipole methods depend on a sufficient distance in order to arrive at
a reasonable accuracy. Otherwise the integrals indicated in Eqs. (9) and (10) are to be evaluated
as usually, which includes the correct consideration of the cases when the integrals become
singular or improper.

Some numeric results for the FMM applied to the EBEM

The square domain on the left of Fig. 4 is used to assess both accuracy and computational
cost for the FMM applied to the EBEM (FMEBEM). The domain is discretized with linear and
quadratic elements, and two adjacency parameters (AdjTOL) are studied for each discretiza-
tion: 0.1 and 5. The parameter AdjTOL = 0.1 corresponds to the topological distance, for
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which computational time is very low at the expense of accuracy. The same logarithmic field
of Section 4.1 for a source at point (zs = 12.5 + i15) is applied. The discretizations with linear
and quadratic elements goes up to 262144 and 137072 degrees of freedom, respectively.

For the simulation using linear elements, time and error results, evaluated as in the pre-
vious examples, are presented in Figs. 10 and 11 for the rather topological adjacency search
with (AdjTOL = 0.1) as well as for (AdjTOL = 5). In both cases, the execution times for
the CBEM are shown to be proportional to N2, while the fast multipole simulations present
an execution time proportional to N . Independently of the AdjTOL value, all fast multipole
simulations perform faster then the CBEM, even for a small number of DOFs.

The execution times for the FM algorithm applied to the CBEM and to the EBEM are
visually indistinguishable, but the EBEM runs always slightly faster. This is an expected result,
as instead of evaluating polynomial integrations in a CBEM context, the EBEM pre-evaluates
only polynomial interpolations, according to the table of results given in Eq. (16).

Although the simulations with the EBEM run slightly faster, accuracy is definitely worse
then the with the CBEM, as it is shown on the right of Figs. 10 and 11.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

↑
∝ N

∝ N logN →

←∝ N2

T
im

e
 (

s
)

 

 

2
4

2
6

2
8

2
10

2
12

2
14

2
16

2
18

Number of degrees of freedom

CBEM
EFMM
FMM
n = 5
n = 7
n = 9
n = 11
n = 13

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
rr

o
r

 

 

2
4

2
6

2
8

2
10

2
12

2
14

2
16

2
18

Number of degrees of freedom

CBEM
EFMM
FMM
n = 5
n = 7
n = 9
n = 11
n = 13

Figure 10: Execution time (left) and error measure (right) for the square domain in the left of Fig. 4 dis-
cretized with linear elements and with AdjTOL = 0.1 (topological distance).

Results for a quadratic discretization are shown in Figs. 12 and 13 for (AdjTOL = 0.1)
and (AdjTOL = 5). The same behaviour observed for the linear discretization is seen in these
results. The error norms are of a smaller order of magnitude, just as expected when comparing
linear and quadratic elements.

5 CONCLUDING REMARKS

This paper assesses the main issues of an attempt to further improve the fast multipole
method already proposed by the authors by implementing an expedite version of the way the
matrices of the boundary element method are evaluated. Several basic concepts of a consistent
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Figure 11: Execution time (left) and error measure (right) for the square domain in the left of Fig. 4 dis-
cretized with linear elements and with AdjTOL = 5.
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Figure 12: Execution time (left) and error measure (right) for the square domain in the left of Fig. 4 dis-
cretized with quadratic elements and with AdjTOL = 0.1 (topological distance).

implementation of the boundary element method are reviewed and the basic features of the
proposed fast multipole algorithm are discussed particularly as concerning an efficient element
adjacency search.

The fast multipole implementation in the frame of a consistent version of the conventional,
collocation boundary element method leads to high accuracy of results while keeping the com-
putational cost extremely low, as presented in a first group of results. Although the proposed
expedite implementation of the boundary element matrices seems to be competitive in a con-
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Figure 13: Execution time (left) and error measure (right) for the square domain in the left of Fig. 4 dis-
cretized with quadratic elements and with AdjTOL = 5.

ventional formulation, as shown for some examples, its use in the frame of a fast multipole
method does not seem to lead to a substantial gain in computational time and presents a bad
convergence rate. As already mentioned, this method may be recommended as a fast means of
obtaining a fair approximation of a complex problem in a reduced amount of time, such as in
the evaluation of initial results for iterative methods, as well as for initial mesh approximations
in highly convoluted domains.

The simplified hybrid boundary element method, briefly outlined in Section 2.2, is being
presently implemented in the frame of the proposed fast multipole algorithm. As shown, this
method makes use of the transpose of the double-layer potential matrix of the conventional
method, which requires special care for a fast multipole implementation. This is being presently
developed. The conclusions regarding an expedite evaluation of the matrices of the conventional
method should apply to the simplified hybrid boundary element method as well.
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