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Abstract. Recently, scalar damage models based on the micropolar continuum theory have been
proposed, in order to represent the physically non-linear behaviour of quasi-brittle materials.
Due to its regularization properties, widely investigated in elasto-plasticity, the micropolar the-
ory represents a valid alternative for mitigating pathological phenomena that arise in the nu-
merical simulations. In the last years, also the class of mesh-free methods have been shown
to be capable to regularize the response of problems where localization occours. This paper
investigates the coupling of micropolar damage models with mesh-free methods, with specific
attention on the Element Free Galerkin (EFG) method. The micropolar theory is presented in
a tensorial generalized form, and different scalar damage models are derived in a theoretical
and computational unified framework for constitutive models. The computational aspects of the
coupling between micropolar damage and mesh-free approach are also discussed, with specific
attention on the implementation in the INSANE (INteractive Structural ANalysis Enviroment)
system. Numerical simulations are presented in order to illustrate the proposed models.

Keywords: Micropolar continua, Scalar damage, Strain localization, Mesh-free methods, Ele-
ment Free Galerkin
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1 INTRODUCTION

In the past, micropolar (or Cosserat) media (Cosserat and Cosserat, 1909) have been widely
investigated, mainly due to the regularization effects that such models are able to introduce
in the numerical simulations where localization occours. Regarding the physically non-linear
analysis, despite the wide number of applications of the micropolar theory to elasto-plasticity
(see, e.g., de Borst and Sluys (1991); Sluys (1992); de Borst (1993); Iordache and Willam
(1998); Bauer et al. (2012)), only a few works are devoted to its combination with damage
models (Steinmann, 1995; Rahaman et al., 2015; Xotta et al., 2016). Recently, a more general
theoretical and computational framework for micropolar elasto-plasticity and damage, based on
a unified formulation, has been proposed (Gori et al., 2015a,b,c, 2016). Regarding the numerical
investigations on micropolar media, these are mainly based on finite element models, with a few
applications to different numerical methods (see, e.g., Liang and Huang (1996); Rahaman et al.
(2015)).

Recently, it has been shown that, due to their analogy with non-local models, some classes
of mesh-free methods, like moving least square, reproducing kernel approximations, and meth-
ods based on strain smoothing, are able to bring regularization effects on localization problems
(Liu et al., 1999; Chen et al., 2000; Li et al., 2000; Li and Liu, 2000; Chen et al., 2004, 2007;
Wang and Li, 2012; Pozo et al., 2014). This is due to the fact that the approximation functions
are not constructed locally, because of the use of weighting functions which support size is
greater than the nodes spacing; hence, a non-locality is embedded in the numerical discretiza-
tion. However, as pointed out in the cited works, the regularization introduced by mesh-free
methods is not effective in all the situations, hence it should be combined with other regulariza-
tion techniques.

In this paper, the micropolar scalar damage formulation presented in Gori et al. (2015c,
2016) is enriched with damage models derived from the original Mazars model (Mazars and
Cabot, 1989), adapted to the micropolar theory. The proposed models are analized within the
context of the Element Free Galerkin (EFG) approximation (Belytschko et al., 1994), repre-
senting to the authors knowledge one of the first applications of the micropolar theory to such
a numerical method. The first part of the paper recalls the basic equations of the micropo-
lar theory, together with some details on its Voigt representation, that will be used throughout
the numerical formulation. The main aspects of the unified scalar damage formulation are
then briefly resumed, and the proposed damage models are formulated. The problem is then
discretized using an extention to the micropolar theory of the EFG approximation with the La-
grange multipliers method for essential boundary conditions imposition. The proposed models
have been implemented in the software INSANE (INteractive Structural ANalysis Environment
(INSANE Project, 2016)), taking advantage of the existing implementation of the EFG method
(Silva, 2012) and of the linear algebra library SuiteSparse (Davis, 2004, 2006) implemented by
Andrade and Silva (2015). Finally, numerical simulations are presented in order to illustrate the
proposed models and their combination with the meshfree approach.

1.1 Notations

Some standard notations used in the body of the paper are summarized here. The symbol
D ⊆ E indicates the domain of the body, i.e., a subset of the three-dimensional Euclidean space
E, in which the orthonormal basis (ēi) is defined. Vectors are indicated as x̄ = xi ēi, while
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second-order and fourth-order tensors respectively as x = xij ēi⊗ēj , and x̂ = xijk` ēi⊗ēj⊗ēk⊗
ē`. The symbol · denotes both the standard dot product between vectors and the total contraction
between tensors like, for example, x̄ · ȳ = xi yi, x · ȳ = xij yj ēi, x̂ · y = xijk` yk` ēi ⊗ ēj
and the other possible combinations. With the symbol ⊗ the standard tensorial product, as
x̄⊗ ȳ = xi yj ēi ⊗ ēj or x⊗ y = xij yk` ēi ⊗ ēj ⊗ ēk ⊗ ē`, is indicated. In the following of the
paper, if not differently specified, spaces will be assumed to be three-dimensional and the latin
indexes will run from 1 to 3. In the case of generalized quantities, defined in six-dimensional
spaces, greek letters will be used to indicate indexes running from 1 to 6. In some applications,
in order to simplify the treatise, the Voigt notation will be used to represent second-order and
fourth-order tensors; once a certain coordinates system has been fixed, a generic second-order
tensor x with dimension three can be represented by means of an array with nine components,
indicated with the symbol {x}. In an analogus way, a fourth-order tensor x̂ with dimension
three can be represented by means of a 9 × 9 matrix, indicated as [x̂]. The same symbols {·}
and [·] are also used in section 4 to indicate, respectively, arrays and matrices in numerical
equations.

2 MICROPOLAR CONTINUUM THEORY

Micropolar continua belong to the family of multi-field continua, i.e., continuum bodies
which configuration is defined by two descriptors, the motion of the material points of the body
and a morphological descriptor (see, e.g., Mariano and Stazi (2005) for further details). In the
peculiar case of the micropolar continuum, such a morphological descriptor corresponds to a
rigid rotation of the material points of the continuum.

In a geometrically linear approach, at each point of the continuum, a displacement field ū
and a micro-rotation field ϕ̄ can be defined, leading to the following strain measures

γ = gradT( ū)− e · ϕ̄ = (uj,i − eijk ϕk) ēi ⊗ ēj (1)

κ = gradT( ϕ̄) = ϕj,i ēi ⊗ ēj (2)

which are referred to, respectively, as strain tensor and micro-curvature tensor, and where e
represents the standard Levi-Civita symbol with three indexes. To these strain measures corre-
spond, respectively, the stress tensor σ and the couple-stress tensor µ, which must satisfy the
local equilibrium equations for forces and moments in the domain D

divT (σ) + b̄ = 0̄ −→ (σij,i + bj) ēj = 0̄ (3)

divT
(
µ
)

+ e · σ + l̄ = 0̄ −→ (µij,i + ejkl σkl + lj) ēj = 0̄ (4)

where b̄ and l̄ represent, respectively, volume forces and volume couples acting in the body
domain. To the previous equations, the following natural and essential boundary conditions are
associated

n̄ · σ = t̄A at ∂Du
n, n̄ · µ = t̄C at ∂Dϕ

n (5)

ū = ū∗ at ∂Du
e , ϕ̄ = ϕ̄∗ at ∂Dϕ

e (6)

where n̄ is the unit outward normal to the boundary ∂D, which parts are such that

∂Du
n ∩ ∂Du

e = ∅, ∂Du
n ∪ ∂Du

e = ∂D, ∂Dϕ
n ∩ ∂Dϕ

e = ∅, ∂Dϕ
n ∪ ∂Dϕ

e = ∂D (7)
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In the field of elasticity, the different stress and strain measures are related by the following
constitutive equations

σ = Â0 · γ (8)

µ = Ĉ0 · κ (9)

where Â0 and Ĉ0 are the elastic constitutive operators for the micropolar continuum theory.

It should be noted that the components of the micro-curvature tensor κ and of the couple-
stress tensor µ are not characterized by the same units of measure of, respectively, the strain
tensor γ and the stress tensor σ. In a number of applications it is convenient to scale such
operators in order to obtain a dimensional compatibility. The micro-curvature and couple-stress
tensors are then replaced by the scaled operators κ∗ and µ∗ defined as κ∗ = L̂·κ and µ∗ = L̂−1·µ,
where L̂ is a fourth-order tensor containing the characteristic lengths of the micropolar medium.
The constitutive relation for the scaled operators, analogous to the one of Eq. (9), is expressed
as µ∗ = Ĉ∗0 · κ∗, with Ĉ∗0 = L̂−1 · Ĉ0 · L̂−1.

2.1 Weak form

Following the standard weighted residual method, the following weak form of the coupled
boundary value problem that governs a micropolar medium can be obtained: find the fields
ū ∈ U and ϕ̄ ∈ V such that∫

D
gradT(w̄ ) ·

(
ÂS · gradT( ū)

)
dV +

∫
D

gradT(w̄ ) ·
(
ÂS · (−e · ϕ̄)

)
dV+ (10)

−
∫
∂Dun

w̄ · t̄A dA−
∫

D
w̄ · b̄ dV = 0, ∀w̄ ∈ U0∫

D
gradT( ω̄ ) ·

(
ĈS · gradT( ϕ̄)

)
dV −

∫
D
ω̄ ·
(
e ·
(
ÂS · gradT( ū)

))
dV+ (11)

−
∫

D
ω̄ ·
(
e ·
(
ÂS · (−e · ϕ̄)

))
dV −

∫
∂Dϕn

ω̄ · t̄C dA−
∫

D
ω̄ · l̄ dV = 0, ∀ω̄ ∈ V0

where U and V are the spaces of trial functions, and U0 and V0 are the spaces of test functions,
defined as

U :=
{
ū|ū ∈ H1(D), ū = ū∗ at ∂Du

e

}
, V :=

{
ϕ̄|ϕ̄ ∈ H1(D), ϕ̄ = ϕ̄∗ at ∂Dϕ

e

}
(12)

U0 :=
{
w̄|w̄ ∈ H1(D), w̄ = 0̄ at ∂Du

e

}
, V0 :=

{
ω̄|ω̄ ∈ H1(D), ω̄ = 0̄ at ∂Dϕ

e

}
(13)

where H1(D) is an Hilbert space over the domain D.

2.2 Voigt notation

The Voigt notation for the micropolar theory, that will be used in Sec. 4, is here briefly
exposed for a plane-stress case. The displacement and micro-rotation fields are expressed as the
arrays

{ū} = (ux uy)
T , {ϕ̄} = ϕz (14)
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while stress and strain measures are expressed as

{σ} = (σxx σxy σyx σyy)
T , {γ} = (γxx γxy γyx γyy)

T (15)

{µ} = (µxy µyx)
T , {κ} = (κxy κyx)

T (16)

The scaled couple-stress and micro-curvature tensors are related to the unscaled ones by

{µ∗} = (µxy/Lf µyx/Lf )
T , {κ∗} = (κxyLf κyxLf )

T (17)

where Lf is the bending length of the micropolar medium (see, e.g., de Borst and Sluys (1991)).
Equations (1) and (2) are then rewritten as

{γ} = [LA]{ū} − [e]{ϕ̄} =


∂x 0

0 ∂x

∂y 0

0 ∂y


ux
uy

−


0

1

−1

0

ϕz (18)

{κ∗} = [L∗C ]{ϕ̄} =

Lf ∂x
Lf ∂y

ϕz (19)

where the derivative operator [L∗C ] already embeds the characteristic bending length Lf .

3 SCALAR DAMAGE IN MICROPOLAR MEDIA

A scalar damage model based on the micropolar theory is characterized by the following
total relations (Gori et al., 2015c, 2016)

σ = (1−D)Â0 · γ (20)

µ = (1−D)Ĉ0 · κ (21)

where D is a scalar damage variable, assumed to vary from 0 (undamaged material) to 1 (com-
pletely damaged material). Adopting the same compact enhanced tensorial representation al-
ready used in Gori et al. (2015c, 2016), the previous equations can be rewritten as

Σ = (1−D)Ê0 · Γ (22)

where the generalized stress operator Σ and the generalized strain operator Γ, both represented
by second-order tensors with dimension six, are defined by

Σ =

σ 0

0 µ

 , Γ =

γ 0

0 κ

 (23)

and where Ê0 is a fourth-order tensor with dimension six containing the components of both Â0

and Ĉ0.
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Suzana Moreira Ávila (Editor), ABMEC, Brası́lia, DF, Brazil, November 6-9, 2016



Scalar damage based on micropolar continua – Mesh-free approximation

The different phases of the loading process are described by a single loading function
f(γ, κ,D), depending on both the strain and micro-curvature tensors and on the scalar dam-
age variable; in the specific case of a scalar damage model it assumes the expression

f(γ, κ,D) = g(γ, κ)−K(D) ≤ 0 (24)

where g(γ, κ) is a function depending only on the deformation, that represents the loading
condition of the continuum and that is a characteristic of each peculiar model, while K(D)
is an historical parameter that depends on the damage variable. The historical parameter is
representative of the maximum level of deformation reached during the loading process of the
model.

Focusing on a strain-based approach for the scalar damage formulation, the stress and
couple-stress rates can be additively decomposed into elastic and degrading parts as

σ̇ = σ̇e + σ̇d (25)

µ̇ = µ̇e + µ̇d (26)

where the elastic parts σ̇e and µ̇e are such that

σ̇e = ÂS · γ̇ (27)

µ̇e = ĈS · κ̇ (28)

and the degrading parts σ̇d and µ̇d are defined by the degradation rules

σ̇d = λ̇ m∗A = −λ̇ Â0 · γ = −λ̇ σ0 (29)

µ̇d = λ̇ m∗C = −λ̇ Ĉ0 · κ = −λ̇ µ0 (30)

where λ̇ is the inelastic multiplier, defining the magnitude of the inelastic rates, while the op-
erators m∗A and m∗C represent, respectively, the directions of degradations of the stress and
couple-stress rates.

Making use of these elements, from Eqs. (20) and (21), the following expressions for the
stress and couple-stress rates can be obtained

σ̇ =

(
(1−D) Â0 − 1

∂K
∂D

σ0 ⊗ ∂g

∂γ

)
· γ̇ −

(
1
∂K
∂D

σ0 ⊗ ∂g

∂κ

)
· κ̇ (31)

µ̇ =

(
(1−D) Ĉ0 − 1

∂K
∂D

µ0 ⊗ ∂g

∂κ

)
· κ̇−

(
1
∂K
∂D

µ0 ⊗ ∂g

∂γ

)
· γ̇ (32)

The previous expressions can be condensed into the equation

Σ̇ = Ê t · Γ̇ (33)

introducing the generalized tangent operator

Ê t = (1−D) Ê0 − 1
∂K
∂D

Σ0 ⊗ ∂f

∂Γ
(34)

with

Σ0 =

σ0 0

0 µ0

 ,
∂f

∂Γ
=

∂f
∂γ

0

0 ∂f
∂κ

 (35)
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3.1 Mazars damage model
From the previous general representation for scalar damage models based on the micropolar

theory, specific constitutive models can be defined once the function g(γ, κ), usually known as
equivalent deformation, and the damage function D(Γeq) are fixed.

An extention of the original Mazars damage model (Mazars, 1984) is proposed, represented
by the equivalent deformation

Γeq := g(γ, κ) =

√√√√[ 3∑
k=1

(< ε(k) >+)
2

]
+ κ∗ · κ∗ (36)

where ε(k) is the k-th eigenvalue of the symmetric part of the strain tensor (ε = γsym), while the
operator < · >+ indicates the positive part of a quantity

< ε(k) >+=
ε(k) + |ε(k)|

2
(37)

With this equivalent deformation, the gradients of the loading function, represented in Voigt
notation, are expressed as{

∂f

∂γ

}
g

=
1

Γeq
[Tε]

T < {ε}` >+ (38){
∂f

∂κ∗

}
g

=
1

Γeq
{κ∗}g (39)

where with the subscripts g and `, the global coordinate system and the local principal system of
the tensor ε are indicated, respectively, and where the matrix [Tε] represents the transformation
matrix of the symmetric part of the strain tensor between the two systems, {ε}` = [Tε] {ε}g.

As in the orginal work of Mazars, the damage variable is obtained as a combination of two
different traction and compression damage variables

D := αt Dt + αc Dc (40)

Such damage variables are defined as the following functions of the equivalent deformation

Dt(Γeq) := 1− 1

Γeq
(1− At)K0 −

1

eBt(Γeq−K0)
At (41)

Dc(Γeq) := 1− 1

Γeq
(1− Ac)K0 −

1

eBc(Γeq−K0)
Ac (42)

where K0 is a threshold value for the equivalent deformation, representing the onset of damage,
and where the parameters At, Ac, Bt and Bc assume the role of material parameters. The
weighting functions αt and αc are evaluated as

αt :=
3∑

k=1

Hk

εt(k)(ε
t
(k) + εc(k))

Γ2
eq

(43)

αc :=
3∑

k=1

Hk

εc(k)(ε
t
(k) + εc(k))

Γ2
eq

(44)
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where the terms εt(k) and εc(k) represent, respectively, the eigenvalues of the strain tensors εt and
εc obtained using the positive and negative parts of the stress tensor σ0 = Â0 · ε, represented in
its principal system

σ0 =< σ0 >+ + < σ0 >− (45)

εt : =
(
Â0
)−1

· < σ0 >+ (46)

εc : =
(
Â0
)−1

· < σ0 >− (47)

and where the parameters Hk are given by

Hk :=

 1 if εt(k) + εc(k) ≥ 0

0 if εt(k) + εc(k) < 0
(48)

From Equation 40, the inverse of the post-critical modulus can be evaluated as

1

H∗
=
∂D

∂K
=

∂D

∂Γeq

∂Γeq
∂K

=
∂D

∂Γeq
(49)

Simplified Mazars model

As suggested in de Borst and Gutiérrez (1999), the Mazars equivalent deformation (Eq.
(36)) can be combined with different functions for the damage evolution rather than the one
of Eq. (40), in order to obtain simplified models. In this case, a simplified model is obtained
combining the equivalent deformation of Eq. (36) with the following exponential damage law

D(Γeq) = 1− K0

Γeq
(
1− χ+ χe−β(Γeq−K0)

)
(50)

where K0 is a threshold value for the equivalent deformation, representing the onset of damage,
and where χ and β are parameters that define, respectively, the maximum allowed damage level
and the damage evolution intensity.

4 EFG APPROXIMATION

The problem described in the previous sections is discretized with an Element Free Galerkin
(EFG) approximation, based on Moving Least Square (MLS) shape functions. Due to the lack of
delta Kronecker property of such shape functions, the Lagrange multipliers method is adopted
to impose essential boundary conditions (Eq. (6)), resulting in the following modified weak
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form, directly expressed in Voigt notation∫
D

([LA]{w̄})T [Â] ([LA]{ū}) dV +

∫
D

([LA]{w̄})T [Â] (−[e]{ϕ̄}) dV+ (51)

−
∫
∂Dun
{w̄}T{t̄A} dA−

∫
D
{w̄}T{b̄} dV −

∫
∂Due
{w̄}T{λ̄A} dA = 0, ∀w̄ ∈ U0

−
∫
∂Due
{r̄A}T ({ū} − {ū∗}) dA = 0, ∀r̄A ∈ L0

A (52)∫
D

([L∗C ]{ω̄})T [Ĉ∗S] ([L∗C ]{ϕ̄}) dV +

∫
D

(−[e]{ω̄})T [ÂS] ([LA]{ū}) dV+ (53)

+

∫
D

(−[e]{ω̄})T [ÂS] (−[e]{ω̄}) dV −
∫
∂Dϕn
{ω̄}T{t̄C} dA+

−
∫

D
{ω̄}T{l̄} dV −

∫
∂Dϕe
{ω̄}T{λ̄C} dA = 0, ∀ω̄ ∈ V0

−
∫
∂Dϕ
{r̄C}T ({ϕ̄} − {ϕ̄∗}) dA = 0, ∀r̄C ∈ L0

C (54)

where λ̄A and λ̄C are, respectively, the Lagrange multipliers for the fields ū and ϕ̄, while r̄A ∈
L0
A and r̄C ∈ L0

C are their test functions.

The displacement and micro-rotation fields are approximated with the same MLS shape
functions ΦI , resulting in the following expressions in Voigt notation

{ū} =


ux

uy

uz

 ' {ūh(x̄)} =
∑
I∈Sn

[ΦI(x̄)]{d̄uI} =
∑
I∈Sn


ΦI 0 0

0 ΦI 0

0 0 ΦI



duIx

duIy

duIz

 (55)

{ϕ̄} =


ϕx

ϕy

ϕz

 ' {ϕ̄h(x̄)} =
∑
I∈Sn

[ΦI(x̄)]{d̄ϕI } =
∑
I∈Sn


ΦI 0 0

0 ΦI 0

0 0 ΦI



dϕIx

dϕIy

dϕIz

 (56)

where the terms duIi and dϕIi are the nodal parameters of the fields ū and ϕ̄, respectively, and Sn
is the set of support nodes in the neighbourhood of the point x̄. The Lagrange multipliers are
instead approximated with Lagrange interpolant NI as

{λ̄A} ' {λ̄hA(x̄)} =
∑
I∈Sen

[NI(x̄)]{d̄λAI } =
∑
I∈Sen


NI 0 0

0 NI 0

0 0 NI



dλAIx

dλAIy

dλAIz

 (57)

{λ̄C} ' {λ̄hC(x̄)} =
∑
I∈Sen

[NI(x̄)]{d̄λCI } =
∑
I∈Sen


NI 0 0

0 NI 0

0 0 NI



dλCIx

dλCIy

dλCIz

 (58)
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where the terms dλAIi and dλCIi are the nodal parameters of the fields λ̄A and λ̄C , respectively,
and Sen is the set of support nodes, belonging to the essential boundary, in the neighbourhood
of the point x̄. The test functions w̄, ω̄, r̄A and r̄C are approximated in the same way as their
respective field functions.

Introducing these approximations in the weak form and accounting for the arbitrariness of
the test functions, Eqs. (51) and (53) can be rewritten as

nt∑
I=1

nt∑
J=1

[KIJ ]

{d̄uJ}
{d̄ϕJ}

+
nt∑
I=1

nλ∑
K=1

[GIK ]

{d̄λAK }
{d̄λCK }

 =
nt∑
I=1

{F̄I} (59)

while Eqs. (52) and (54) result in

nλ∑
K=1

nt∑
I=1

[GIK ]T

{d̄uI}
{d̄ϕI }

 =

nλ∑
K=1

{q̄K} (60)

where nt is the total number of nodes in the domain, and nλ the total number of nodes in the
essential boundary. The operators appearing in the previous equations are defined as in the
following

[KIJ ] =

∫
D
[BI ]

T [ÊS][BJ ] dV (61)

[BI ] =

[LA][ΦI ] −[e][ΦI ]

[0] [L∗C ][ΦI ]

 , [ÊS] =

[ÂS] [0]

[0] [Ĉ∗S]

 (62)

[GIK ] =

− ∫∂Due
[ΦI ]

T [NK ] dA [0]

[0] −
∫
∂Dϕe

[ΦI ]
T [NK ] dA

 (63)

{F̄I} =

∫∂Dun
[ΦI ]

T{t̄A} dA+
∫

D[ΦI ]
T{b̄} dV∫

∂Dϕn
[ΦI ]

T{t̄C} dA+
∫

D[ΦI ]
T{l̄} dV

 (64)

{q̄K} =

− ∫∂Due
[NK ]T{ū∗} dA

−
∫
∂Dϕe

[NK ]T{ϕ̄∗} dA

 (65)

Introducing the arrays {U}, {λ}, {F} and {q} collecting the different nodal parameters
{d̄uI}, {d̄

ϕ
I }, {d̄

λA
I }, {d̄

λC
I }, {FI} and {qI} of all the nodes of the model, Eqs. (59) and (60) can

be condensed in the global equation [K] [G]

[G]T [0]

{U}
{λ}

 =

{F}
{q}

 (66)

5 NUMERICAL RESULTS
The combination of the proposed micropolar scalar damage models with the Element Free

Galerkin method, and their implementation in the INSANE system, are illustrated with the
numerical simulation of the experimental test of Fig. 1(a) (Winkler et al., 2004).
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Figure 1: L-shaped panel

The material is characterized by an elastic modulus E = 25850 N/mm2, a Poisson’s modulus
ν = 0.18, tensile and compressive uniaxial strengths ft = 2.70 N/mm2 and fc = 31.00 N/mm2,
and a fracture energy Gf = 0.065N/mm2. The Cosserat’s shear modulus is assumed to be α =
2000 N/mm2, while two bending lengths are considered, Lf = 5 mm and Lf = 10 mm. The
coefficients of the damage laws are resumed in Table 1

Table 1: Damage laws parameters

Mazars Simplified Mazars

At 0.90 χ 0.95

Ac 1.00 β 1100

Bt 4750 K0 1.05 × 10−4

Bc 1950

K0 7.0 × 10−5

The EFG model (Fig. 1(b)) consists in 225 regulary spaced nodes, with linear basis func-
tions and cubic spline weighting functions; the square influence domains at each node have
sides of approximately 2.1 times the nodal spacing. The analysis model is a plane-stress state,
with a thickness of 100 mm. The loading process is driven by the generalized displacement
control method (Yang and Shieh, 1990), assuming a reference load q = 28 N/mm, loading factor
increments of 0.02 and a tollerance for the convergence in displacement of 1× 10−4.

The results of the analysis are presented, for both the Mazars and the simplified Mazars
damage models, in Fig. 2, where the relation between the vertical displacement of the top left
point and the load factor is presented (point A in Fig. 1(a)).

In the same figure, the experimental data obtained by Winkler et al. (2004) are also reported.
As it can be observed, both the models are in good agreement with the experimental values,
regarding the load factor peak. The post-peak behaviour is well represented by the simplified
model, while the original Mazars damage law presents a faster degradation of the material
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Figure 2: L-shaped panel - Equilibrium paths

properties. Both the models present an initial stiffness higher than the one observed in the
experiment; however, this issue is common to all the simulations of such a test that can be
found in the literature, and it can be observed also in the original paper of Winkler et al. (2004).

In Fig. 3 the damage distribution corresponding to a vertical displacement of the top left
point (point A in Fig. 1(a)) equal to 27 mm is represented, for both the Mazars and the simplified
Mazars models, assuming a bending length Lf = 5 mm.

(a) Mazars - Lf = 5mm (b) Simplified Mazars - Lf = 5mm

Figure 3: Damage distribution at dy = 0.27 mm (point A in Fig. 1(a))

6 CONCLUSIONS

The theoretical and computational framework for micropolar scalar damage models pro-
posed in a previous paper (Gori et al., 2015c, 2016), and implemented in the INSANE system,
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has been extended in order to accomodate additional damage models. The proposed models and
their combination with the Element Free Galerkin method have been evaluated with the numer-
ical simulation of an experimental test, showing a good agreement with the empirical results.
As discussed in the introduction, both the micropolar theory and the mesh-free approximation
methods are capable to regularize the behaviour of numerical simulations where localization
occours. However, as pointed out by a number of authors, the regularization effect of both the
methods is not effective in a number of situations. Hence, the coupling of the EFG method with
the micropolar theory, described in this paper, could represent the basis for future analyses that
should be devoted to the investigation of the regularization effects introduced by the different
methods and their interaction.
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