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Abstract. The Boundary Element Method (BEM) has excellent performance in applications 
where the variable field is scalar and stationary. However, there is a wide range of issues in 
science and engineering that are difficult to solve by the BEM. Among these issues, there are 
the constitutive non-homogeneous problems, where the physical properties vary sectorally. In 
these kind of problems, the domain techniques, such as Finite Element Method (FEM), Finite 
Volume Method (FVM) or Finite Difference Method (FDM), present considerable 
advantages. However, even for these cases, there is a consistent BEM formulation, the classic 
sub-region technique. This work presents numerical comparisons between the classic sub-
region technique and an alternative BEM technique that is not based on a partition of the 
domain. Results are compared with analytical results and other achieved by domain methods 
using finer meshes. 

Keywords: Boundary Element Method, Inhomogeneous Laplace’s Problems, Sub-regions 
Technique 
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1  INTRODUCTION  

Let a stationary scalar field governing by Laplace’s Equation, in which the physical 
properties are isotropic, but it is different in each sector of domain, such as shown 
schematically in Fig. 1: 

 
Figure 1: Sketch of a domain with sectorial inhomogeneous properties 

 

In this case, the physical property Ke is assumed to be constant on each sub domain. 
There are many important engineering problems in which this model corresponds satisfactory 
with physical situations, such as soil mechanics problems, layered-materials analysis and 
thermal analysis of welding or similar processes of in manufacture in metals. Commonly, in 
this class of problems the domain numerical methods are easily preferred, since the physical 
property can be introduced directly in each sub domain. Oppositely, there is a relative 
difficulty to model these problems using the Boundary Element Method (BEM) in this 
standard form.  

The use of classic sub-regions technique is still the most efficient approach (Brebbia et 
al., 1984) for this situation. The procedure is based on a very simple concept considering 
domain partition. Different sub-domains are analyzed separately and independent systems of 
equations are generated after the discretization procedure. Figure 2 illustrates a domain 
partitioned in two sub-regions:  

 
Figure 2: Division of complete domain in two sub-regions 



Andrade, A. J. C. & Loeffler, C. F.  

CILAMCE 2016 
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering 

Suzana Moreira Ávila (Editor), ABMEC, Brasília, DF, Brazil, November 6-9, 2016 

However, due to the insertion of internal boundaries, an additional numerical 
approximation is introduced by the discretization. Beyond this, in certain complex situations, 
the sub-regions technique is unsatisfactory, because it becomes costly and inadequate for 
programming (Xiaoping and Wei-Liang, 2005).  

There are other important engineering problems in which the partition of domain is 
required of some way, such as fracture analysis and plasticity problems. Despite the higher 
accuracy of the BEM in these cases, commonly resources such as cells are used. 
Unfortunately, there are no other efficient BEM approach regarding the solution of this 
important class of problems and meaningful changes were not observed concerning sub-
regions technique along the time (Brebbia and Dominguez, 1992; Wrobel and Aliabadi, 
2002).  

This work presents an alternative to treat this category of problems that, due to its 
simplicity, can accredit the BEM to further elaborate applications without implementation 
difficulties. In a way the idea of this work is approximately presented in models that consider 
localized domain actions, which consist of another kind of problem for which the BEM 
requires additional auxiliary techniques to become efficient. Loeffler and Mansur (1987) used 
this approach to account for sectorial loads with Dual Reciprocity (Partridge et al., 1992). 

Basically, the alternative procedure connect different sub-domains such as plates with 
columns in structures (Paiva and Venturini, 1993;) using  internal points; however, the 
approach presented here since is more general, since theoretical considerations are presented 
to justify a model where the energy of each sub-domain is computed such as is done with a 
domain source in Poisson's problems. 

Aiming to evaluate the performance of the proposed procedure, simple problems are 
solved and their numerical solutions are compared with results obtained by the classical 
sub-region technique. 

 

2  SUB-REGIONS MODEL 

The BEM inverse integral equation for the Laplace’s problems is well known, being 
given by (Brebbia & Walker, 1980):  

 �[� �����∗�
; ���

 − � �����∗�
;���

 + � �����,��∗ �
;����� ] = �             (1) 
 

In Eq. (1), u(X) is the scalar potential and q(X) is its normal derivative; reciprocally, 
u*(ξ,X) is the fundamental solution for the Laplace equation and q*(ξ,X) is its normal 
derivative; K is the physical property that, for homogeneous problems, could be omitted. The 
coefficient c(ξ) depends on the position of point ξ in relation to the physical domain Ω(X)+ 
Γ(X), and if the point is located on the boundary Γ(X), it also depends on its smoothness 
(Kythe, 1995). 

Considering finite domains, the essential and natural boundary conditions are prescribed 
on closed boundaries Γ(X), given respectively by the following equations: 

)(on),(u)(u u XXX Γ=  ; and  )(on),(q)(n,u qii XXX Γ=                     (2) 
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In Eq. 2 ni is the unit outward normal vector on the boundary Γ(X), that is composed by 
the union of boundary regions Γu(X) and Γq(X). 

Application of mathematical procedures typical of BEM that includes a scanning on the 
boundary integrations, taken different source points located on the nodes, and also the 
discretization process, matrices H and G are generated as indicated below: 

 [H]�u� = [G]�q�																																																																										(3) 
 

Considering two sub-regions for sake of simplicity, as illustrate in Fig. 3, equation (3) is 
generated separately for each sub-region, as written below:  

 

[H� H��] �U�U��! = [G� G��] �Q�Q��!                                             (4) 

 

[H# H�#] �U#U�#! = [G#, G�#] �Q#Q�#!                                              (5) 

 

 

Figure 3: Domain partition in two sub-regions 

 

In equation (4) and (5) H1 and G1, are submatrices related to nodes at external boundary 
1; H2 and G2 are sub matrices related to nodes at external boundary 2; H1

I and G
1
I are sub 

matrices generated by integrations related to nodes at interface 1; and H2
I and G

2
I are 

submatrices generated by integrations related to nodes at interface 2.  

The sub regions are linked by using compatibility and equilibrium conditions between in 
nodes of common interfaces (Ramachandran, 1994), that is:  
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																																																								U�� = U�# = U�                                                               (6) 
 Q�� = −$%$&Q�# = Q�                                                           (7) 

 

Appling conditions given by Eq. (6) and (7) at the interface nodes, a complete matrix 
system is achieved: 

    

'H� H�� 00 H�# H#) *U
�U�U#+ = 'G� G�� 00 −G�# G#) ,Q

�Q�Q#-																																			 (8) 

 

Remembering that both the potentials and their normal derivatives at the interface are 
considered as unknowns, the system given by Eq. can be rewritten as: 

 

																																	'H� H��		−G�� 00 H�#					G�# H#) .
U�U�Q�U#/ = 0G� 00 G#1 �Q�Q#!																																										(9) 

 

Notice that the final system matrix for sub-region technique is a banded matrix. This 
feature of matrix is increase for a greater number of sub-regions.  

3  THE SUPERPOSITION TECHNIQUE  

For instance, consider a domain composed by two regions with different physical 
properties, as shown in Fig. 4:    

 

 

 Figure 4: Complete and sectorial domains with homogeneous properties  
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In Fig. 4, the complete domain Ω(X) is composed by the sum of Ωe and Ωi; both Ke and 
Ki are physical properties, constant inside each sub-domain. In this formulation, unlike what 
is done in sub-regions, a complete or surrounding domain is elected; such is shown above, 
with homogeneous properties, e.g., Ke.  

Consider that the kernel of the integrals is comprised by integrable functions. Supposing 
then Ki=Ke+K*, the following equations can be written:  
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                     (10)  

Now, the property Ke comprises the complete domain and thus no interface exist inside it; 
consequently, in this homogeneous model there is no additional numerical approximation 
beyond the usual ones carried on the external boundary. Eliminating K*, it results: 

 

      )(d);(*u(X),u)KK()(d);(*uu(X),K
i

i
ii

iie
ii

e XXXX ∫∫
ΩΩ

Ωξ−=Ωξ                        (11)  

Equation 11 could have been proposed and interpreted by energy principles. In the BEM, 
the integral equation is related to the equilibrium of energy in the system. As it stands, there is 
equilibrium of diffusive energy and work of fluxes on both sides of equality given by Eq. 11. 
In the proposed method it is necessary only the evaluation of the quantity the diffusive energy 
present in the involved sub-domain, such as is done in the accounting of the work due to a 
source or any external action in Poisson’s problems. 

For clarify ideas, the right hand side of Eq. 11 is rewritten in boundary integral form, 
considering the source points located externally to Ωi(X) for sake of simplicity: 

 

         
])(d);(*q)(u
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i

ii

ii

iiiei
ii

iie

∫
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Γ
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                 (12) 

The first boundary integral on the right hand side of Eq. 12 represents the work of fluxes 
qi(X), while the other integral represents the diffusive energy that is expressed as a function of 
potentials ui(X). Together, these integrals are self-compensated, because the work of fluxes 
that reach the border is balanced by changes in the diffusive energy inside the Ωi domain. The 
purpose of this method is to evaluate just one of these kinds of energy. This is much easier to 
make if is considered only the diffusive energy, since it is given as a function of the potentials 
at internal points, whilst dealing with normal fluxes is more cumbersome. 
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Thus, in this proposed model the energy stored in the non homogeneous sector is given 
just by the internal potentials ui(X). The complete integral equation will be in the form as 
follows: 
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                         (13)  

Notice that the work of fluxes in internal boundaries is not null, but the energy 
contribution of non homogeneous sector in the energy balance in the whole system - 
which is not yet known – is done just advantageously by the diffusive energy. The two 
integrals and the point function on the left hand side of Eq. 13 are affected by the 
diffusive energy introduced by the sub-domain, so that the system responds as a whole, 
i.e., potential and fluxes calculated by the final system of equations take into account the 
effect of all the sub-domains and the surrounding domain as well.   

Since the sectorial energy is represented exclusively through potential values at 
internal points rather than potential derivatives, the assembly of the complete system of 
equations is facilitated. It is important to observe that in this numerical procedure, the 
values at internal points should be calculated simultaneously with boundary nodal points. 
Notice that internal points unknowns appear explicitly in the final BEM system, that is, 
together with boundary nodal points, as shown in Eq. 14, by submatrix Hic: 
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In the above equation, ui are the potential at internal points that define the sectorial 
boundary Γi(X) of the region Ωi(X); u and q are values at nodal points on the boundary 
Γ(X). Such as occur with the sectorial body loads, it is necessary to transmit information 
from the sectorial domain Ωi(X) to the complete domain Ω(X); thus, the submatrix Hci 
represents coefficients generated by integration on internal boundaries Γi(X) with source 
points based on boundary nodes belonging to surrounding boundary Γ(X). 

Although Eq. 11 has been written for the source points located externally to Ωi(X), 
such source points are also positioned internally, performing a typical BEM scanning on 
the sub-domain boundaries, represented in Eq. 14 by submatrix Hii. Differently from 
what occurs with the sub-regions technique, since all internal and boundary source points 
interact each with other, the matrix H is completely filled. 

Finally, for source points located exclusively outside the sectorial domain, the values 
of c(ξ) for the integral equation related to Hci are null. However, in the cases where some 
part of the involved boundary Γi(X) has an intersection with Γ(X), the coefficients c(ξ) 
can be calculated by standard BEM procedures.  

For better understanding, the components of complete matrix H generated by a 
simple mesh that represents a square domain with four straight constant boundary 
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elements and four internal points are shown in Fig. 5. In this matrix easily can be 
observed the diagonal components of submatrices Hcc, Hci and Hii (see Eq. 14), which 
reflect clearly the use of constant boundary elements. 

 

 

Figure 5:   H matrix concerning a discretization of a square domain using four boundary 
elements and four internal points 

In the proposed model, all points, boundary and internal points, are taken as source 
points. Differently from what occurs with the sub-regions technique, since all internal and 
boundary source points interact each with other, the matrix H is completely filled. This is 
one reason to justify the better accuracy of proposed technique. The size of final matrices 
in the proposed technique is slightly smaller than size of sub-regions matrices, since the 
fluxes in internal points are not included.  

 

 

Figure 6 – Internal points are arranged to define the shape of the boundary of the 
heterogeneous region Ωi(X). 

 

The second reason for better accuracy is related to absence of internal discretization 
in the complete or surrounding domain. Indeed, an internal interpolation is created by 
generation of sub-domains through linkage between adjacent internal points (see Fig. 6); 
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however, one part of problem, that is, the surrounding domain, is solved such as a 
homogeneous Laplace’s problem.

 

4  NUMERICAL SIMULATION

Simple problems with regular geometry were chosen to comparison between the Sub
regions Technique and proposed methodology. 
for simulations. As measure of error, it was used the following formula, in which the 
maximum value of reference was used as denominator and the modulus of the difference 
between the reference and numerical va

Error =
 

Values of reference were composed by the analytical solution, if available, or then by 
results given by the Finite Element Method, using a finer mesh with lin
Boundary element meshes with different level of refinement were solved to generate a 
suitable average error curve. 

4.1 First Example 

The first simulation shows a bar with two sectors with different properties. 
of the problem, as well as the boundary conditions and property values of each sector are 
shown in Figure 7. 

 

Figure 7: Unitary bar with two different sectors 

 

The number of boundary nodes for each mesh is shown on the abscissa of the graph 
of figure 8, while the ordinate indicates the relative error committed in the potential 
calculated on the vertical lines.
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however, one part of problem, that is, the surrounding domain, is solved such as a 
homogeneous Laplace’s problem. 

NUMERICAL SIMULATIONS 

ems with regular geometry were chosen to comparison between the Sub
regions Technique and proposed methodology. It is used straight constant boundary elements 
for simulations. As measure of error, it was used the following formula, in which the 
maximum value of reference was used as denominator and the modulus of the difference 
between the reference and numerical values comprises the numerator:   
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Values of reference were composed by the analytical solution, if available, or then by 

results given by the Finite Element Method, using a finer mesh with lin
Boundary element meshes with different level of refinement were solved to generate a 

The first simulation shows a bar with two sectors with different properties. 
well as the boundary conditions and property values of each sector are 

 

Figure 7: Unitary bar with two different sectors Ω1 e Ω

The number of boundary nodes for each mesh is shown on the abscissa of the graph 
ordinate indicates the relative error committed in the potential 

calculated on the vertical lines. 
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however, one part of problem, that is, the surrounding domain, is solved such as a 

ems with regular geometry were chosen to comparison between the Sub-
It is used straight constant boundary elements 

for simulations. As measure of error, it was used the following formula, in which the 
maximum value of reference was used as denominator and the modulus of the difference 

Values of reference were composed by the analytical solution, if available, or then by 
results given by the Finite Element Method, using a finer mesh with linear interpolation. 
Boundary element meshes with different level of refinement were solved to generate a 

The first simulation shows a bar with two sectors with different properties. The geometry 
well as the boundary conditions and property values of each sector are 

Ω2 

The number of boundary nodes for each mesh is shown on the abscissa of the graph 
ordinate indicates the relative error committed in the potential 
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From these results it is possible to show that, for both techniques, the error value 
decreases with increasing the number of boundary nodes; however, the mos
point is that the error curve achieved using the new formulation. Even with a coarse 
discretization, the values of error relative are very low. This trend continued with the 
increasing number of boundary elements.

Figure 8: Relative average 

 

4.2 Second Example 

This two-dimensional problem can be understood as a square sheet with unitary 
sides, in which the potential is prescribed on just a unique side and normal derivatives of 
potential are prescribed on other sides. An internal sector with stiffness K* is located 
centered in the sheet, as shown in Fig. 

 

Figure 9: Surrounding domain 
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From these results it is possible to show that, for both techniques, the error value 
decreases with increasing the number of boundary nodes; however, the mos
point is that the error curve achieved using the new formulation. Even with a coarse 
discretization, the values of error relative are very low. This trend continued with the 
increasing number of boundary elements. 

average error curve as a function of number of boundary nodes

dimensional problem can be understood as a square sheet with unitary 
sides, in which the potential is prescribed on just a unique side and normal derivatives of 

cribed on other sides. An internal sector with stiffness K* is located 
centered in the sheet, as shown in Fig. 9. 

 

Figure 9: Surrounding domain Ω2 with sector Ω1. 
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From these results it is possible to show that, for both techniques, the error value 
decreases with increasing the number of boundary nodes; however, the most relevant 
point is that the error curve achieved using the new formulation. Even with a coarse 
discretization, the values of error relative are very low. This trend continued with the 

 

of boundary nodes 

dimensional problem can be understood as a square sheet with unitary 
sides, in which the potential is prescribed on just a unique side and normal derivatives of 

cribed on other sides. An internal sector with stiffness K* is located 
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The reference solution now is given by the Finite Element Method (Reddy, 2005). A 
mesh with 3200 linear finite elements and 1681 nodes was used as benchmark to check 
boundary element accuracy. 

The results were taken along the vertical line at y = 1. The relative error between the 
results obtained through the FEM and simulated values for the sub-region techniques and 
novel formulation are shown in Figure 10. 

 

 
 

Figure 10: Unitary square sheet with internal sector with different physical property. 
 

The result shown is similar to that found in the previous example. For both boundary 
techniques, the error value decreases with increasing the number of nodes, as expected.  
However, again, the most important point is the performance of the error curve achieved 
by the new formulation. Even with a low discretization error figures are very low. This 
trend is continued with the increasing number of elements. 

 

4.3 Third Example 

In this example, the surrounding domain possesses two internal domains with 
different physical properties. Figure 11 shows the geometric features and boundary 
conditions for this case.  

The reference solution now was given by solution given by the Finite Volume 
Method (LeVeque, 2007), using a structured mesh with 1664 rectangular cells. For both 
boundary element formulations, were used meshes with 38 and 76 boundary nodes. The 
error values were calculated using the numerical results for potential obtained along 
nodal points located on the vertical line at y=0. Table 1 shows the average error curve. 
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Figure 11: Surrounding domain with two sub domains with different physical properties 

 

Again it can be realized that the results of both BEM techniques has good 
performance, quite close to the reference value. The proposed technique has inferior 
performance for finer mesh; however, considering the level of errors, it is possible that 
the Finite Volume mesh used here does not present enough accuracy to serve as 
undoubted reference. 

 

Table 1: Relative errors for Sub-Region and Superposition Technique.  

Relative error (%) 

Number of 

nodal points 

SUB-

REGION 

SUPERPOSITION 

TECHNIQUE 

38 0,180% 0,162% 

76 0,062% 0,070% 

 

5  CONCLUSIONS 

The numerical results achieved shown a very favorable performance of the new technique 
and ratify that it can used advantageously in problems in which the physical properties of the 
domain vary sectorally. The accuracy for the new technique was meaningful superior that the 
classical sub-region technique. 

Besides good accuracy, the new method shows a significant advantage in terms of 
computational implementation and data entry due to its simplicity. To implement the 
proposed model, it is necessary only the generation of a new kind of matrix H, that contains 
the potential energy related to the internal sectors, and to add it to classic BEM system.  



Andrade, A. J. C. & Loeffler, C. F.  

CILAMCE 2016 
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering 

Suzana Moreira Ávila (Editor), ABMEC, Brasília, DF, Brazil, November 6-9, 2016 

The present technique produces less severe approximation in numerical model than the 
classic technique of sub-regions, since due to the superposition of domains, the surrounding 
area remains free of internal interfaces. Only the sub-domains introduce geometric 
interpolation due to connection between adjacent internal points to form the boundaries. 

The good accuracy of the proposed technique can also be attributed to the fact that all the 
nodes interact with each other; however, if desired, only a restricted number of selected points 
can interact with the nodes belonging to the sub domains, despite to the numerical precision 
decrease in this case. 

The proposed procedure also does not create any impediment to the implementation of 
auxiliary procedures such as the Dual Reciprocity Technique, the DIBEM (Loeffler et al., 
2015) or any other suitable methodology to address more advanced problems. There is a 
significant potential in the new technique with respect to future applications of great interest 
and complexity, particularly in the elastic-plastic analysis and structural dynamics. 

This scope of this work was the modeling of the Laplace equation in two dimensions, but 
relatively simple future works can be performed dealing with the proposed method 
approaching three dimensions or correlate scalar field equations, such as Poisson’s Equation 
and the Helmholtz Equation. Application to the stationary form of Navier’s Equation, this last 
belonging to the elasticity problems is also very accessible. 
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