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Abstract. In this paper we simulate two-phase flow in anigoic petroleum reservoirs. The
IMPES procedure is used to solve the coupling betwmessure and saturation equations.
The pressure equation is discretized by a robudtiphint Flux Approximation Method with

a Diamond-type support. This formulation is capaldoi reproducing piecewise linear
solutions exactly and deals with anisotropic media. solve the saturation equation a
Modified Flow Oriented Scheme (M-FOS) is proposé&dis alternative computes the
multidimensional numerical fluxes using higher ardecuracy in space. This formulation
explicitly takes into account the angular distortiof the computational mesh by means of an
adaptive weight that tunes the multidimensionalrabger of the formulation according to the
grid distortion. A recently devised Multidimensibhaniting Process is adopted in this paper
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to control the spurious oscillations in higher ordgpproximation. This strategy guarantees
monotone solutions and can be used with any poblgoesh. Finally, an efficient entropy fix
strategy, originally proposed in magneto-dynamiositext, is also employed in order to
produce convergent solutions. The performanceisfsit of numerical schemes is verified by
solving some relevant benchmark problems, whereobgerve that the Grid Orientation
Effects are clearly diminished by using this M-F@#nework.

Keywords: Oil and Water displacements, Anisotropic Porousdie MPFA-D, MLP,
Modified Flow Oriented Scheme

1 INTRODUCTION

Standard reservoir simulators employ, in generako-Point Flux Approximation
(TPFA) and First Order Upwind Scheme (FOUS) to apipnate, respectively, the diffusive
and advective fluxes (Lamine and Edwards, 2010).eAensively discussed in literature,
although TPFA present robustness for Cartesiars gl diagonal permeability tensor, this
scheme suffers from serious numerical limitatiorigemw arbitrary mesh and/or permeability
tensor are considered (Lamine and Edwards, 201y @nforces stringent constraints for
those simulators which depend on this type of agpration. Besides, FOUS computes, by
construction, the control surface fluxes with om@e&hsional nature, by using only data
associated to the control volumes that share takiated surface.

Several flow oriented schemes have been presenti@nature aiming to diminish this
dependence (Traet al, 2005; Hurtadaet al, 2007; Lamine and Edwards, 2010; Kozan
al., 2011). All these schemes are, in a certain Wwaged on the pioneer work of Schneider
and Raw (1986) and Colella (1990), both proposediurd dynamics context, but with
different strategies. These schemes are predonynaith first order of accuracy and are
characterized by using the correct upwind diregtiwhich improve significantly the results
obtained for classical benchmark problems. In @aldisome of these schemes, such as those
presented by Trast al, (2005), Hurtadeet al (2007) and Kozdoet al (2011) require the
solution of local algebraic systems for computing humerical fluxes. On the other hand, the
Lamine and Edwards (2010) proposal are characterizg explicitly calculating the
multidimensional numerical flux on each controlfaae, such as done by Colella (1990). The
first higher order flow oriented scheme was proposg Tranet al (2005) also for thermo-
fluid dynamics context. Recently, Lamine and Edwaf2013) also proposed a higher order
variant for the schemes previously discussed iniharand Edwards (2010).

In this paper, we combine several numerical proeesiun order to obtain a robust
framework capable of produce convergent approxichatdutions, even for problems which
consider adverse fluid and rock properties or highktorted meshes in the computational
discretization. In this context, we discretize theessure equation by a non-orthodox
Multipoint Flux Approximation Method with a Diamorftgipe support (MPFA-D). This
numerical scheme was initially proposed by Gao &vd (2010), for general diffusion
problems, and was recently introduced by Contretasl (2016) in petroleum reservoir
context. As discussed in these works, MPFA-D isywetbust and capable of reproducing
piecewise linear solutions exactly by using a Imnpeeserving interpolation with explicit
weights. This avoids the solution of locally definsystems of equations, as often seen in
another traditional MPFA schemes.

To solve the transport equation, we propose amnaliee flow oriented scheme. This
scheme diminishes the Grid Orientation Effects ((z@Specially for orthogonal grids, even
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though some lack of robustness can be observeextoemely distorted meshes. In this type
of scheme, the numerical flux is computed in eamtitrol surface in a multidimensional way,
by a convex combination of the water saturatiorues] following the approximate flow
orientation throughout the computational domainweweer, the majority of the schemes
found in literature is only with first order of agacy in space and demand the implicit
solution of local conservation problems. For thedified Flow Oriented Scheme (M-FOS)
here proposed, the truly multidimensional numeritakes are explicitly computed using
either first or higher order accuracy in space.therproposed scheme, the robustness and the
multidimensional character of the aforementioned=®IS explicitly takes into account the
angular distortion of the computational mesh by mseaf an adaptive weight. This procedure
tunes the multidimensional character of the formaoilaaccording to the grid distortion and
clearly diminishing GOE. The suppression of thersus oscillations, typical from higher
order schemes, is achieved by using the Multidinogr@é Limiting Process (MLP). This
strategy was devised by Pagk al (2010) for solving general aerodynamics problemnd
employed, for the first time, in petroleum industigntext by Souzat al (2015). Formally,
MLP guarantees monotone solutions and can be ugbhdany polygonal mesh and arbitrary
orders of approximation. Finally, in order to gudee physically meaningful solutions, a
robust entropy fix strategy proposed by Serna (2000a magneto-dynamics context, is
employed. This produces convergent solutions egethe typical non-convex flux functions
that are associated to the Buckley-Leverett mold&. performance of the proposed full finite
volume formulation is verified by solving some redet benchmark problems.

2 MATHEMATICAL FORMULATION

The basic governing equation for the oil and waisplacement in petroleum reservoirs
is briefly described in the present section. K&f]9R* represents a computational domain
over a time intervaI[O,t]. We assume, without loss of generality, some sfgipd

assumptions, such as immiscible and incompresdiblds, undeformable rock and the
absence of thermal, dispersion and capillarity a¢fe The mass conservation equation is,
therefore, written as follows:

@:—Dmpﬁiﬁq, i=o,w (1)

where ¢ is the rock porosityS and g are, respectively, the saturation and densityasche
phasei, with i =w for water (wetting phase) and=o0 for oil (non-wetting phase). The
injection or production wells (i.e. source or sitgkms) are indicated by and the phase

velocity V, is given by a generalized form of the Darcy’s law:
v =-AKOp, i=ow 2)
In Eq. (2), o and A, are the density and mobility ah phase, respectively. The phase

mobility is given asA, =k, /,ui , Where i, and Kk, (S) represent, respectively, the viscosity

and the relative permeability of phaseThe tensorK (X) represents the absolute rock
permeability, which satisfies the ellipticity cotidn, in which, for a 2-D domain, requires
that K, K, = K2 .
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An additional assumption ensures that the resereck is fully saturated by oil and water.
Hence we can write a volumetric constraint as fedio

S,+S=1 3)

We will use a segregated formulation in which basic equations are obtained from the
proper combination of the mass conservation equatial the Darcy's Law. By using Egs. (1)
to (3) and after some algebraic manipulation (Aend Settari, 1979), we can write the elliptic
pressure equation, as:

OF=Q with v=-AKOp (4)

where Op denotes the pressure gradieats A+ A, is the total mobility andv =v, +V, is
total velocity. The total fluid injection or prodiimn specific rate is denoted ly=Q, + Q,
with Q =¢,/4 .

For obtaining the saturation equation, we combigairathe Egs. (1) to (3) and
manipulate it, algebraically, in order to get:

P2 =-OF(S)+ Q ®

In Eq. (5), the flux function is defined, in absenof gravity and capillarity, by
F(S,) = fv where f,=A,/A is the fractional flow of water, which is a nonéar function

of the water-phase saturation. Eq. (5) is a noaalinhyperbolic equation from which
discontinuous profiles can evolve even from smaaitial solutions (Aziz and Settari, 1979).

The problem described by Egs. (4) and (5) is oningletely determined when we use
an appropriate set of initial and boundary condgioTl'ypical boundary and initial conditions
are given by (Aziz and Settari, 1979):

p(x,t)=g, onT,x[0,{; VO g onl x[0};

S(%9=9 onl %[0} S(M0)= 35 oM at=t,

where the scalar functiong, (prescribed pressures) angl, (prescribed fluxes) are,
respectively, defined ifi ; (Dirichlet) andl™,, (Neumann) boundaries, with=I", I, and
o, nly =0. The set of injection wells are represented by (internal boundaries), in
which the water saturatio8, is prescribed. FinallyS? is the water saturation distribution at
the initial timet, .

(6)

3 NUMERICAL FORMULATION

In this paper the coupling between the Eq. (4) @)ds resolved by using the Implicit
Pressure Explicit Saturation (IMPES) strategy.his procedure, the mobilities are evaluated
from the saturation field computed in the previdime level. This fact decouples the
computation of the pressure equation from the atitur equation, allowing the saturation to
be explicitly calculated, while the pressure comagioh is kept implicit (Aziz and Settari,
1979). Through the next sections the robust nuraefarmulation here employed to solve
both pressure and saturation equations are bdefigribed.
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3.1 Finite Volume Discretization of the Pressure Equation

The Multi-Point Flux Approximation with Diamond Spgrt (MPFA-D) is described in
this section. This scheme was originally proposedsolve diffusion type problems in
heterogeneous and anisotropic media (Gao and W10)2@&s depicted in Fig. 1, in this
numerical scheme the flux on each control voluméase, of the primal polygonal mesh, is

explicitly expressed by two cell-centered unknov(rtfs and fk), defined on the control
volumes sharing that face and two vertex unknownsugd J ) at the two face’s endpoints. In
order to turn the method into a pure cell-centesgteme, the vertex unknowns are treated as
intermediate ones being rewritten as linear conilmna of the cell-centered unknowns by
using appropriate interpolations (Gao and Wu, 2@dnhtreraset al, 2016).

To obtain the finite volume discretization with MR4D scheme we suppose that the
physical domainQ with boundaryl is partitioned into a finite number of control uoles

(CVs) denoted byQ;. By integrating the pressure equation (4) overagmitrary control
volume and by applying the Gauss divergence theateran be written as:

[vmndr, = [ @@, where [vOnor,0Y Y ORN and [ QQ, 0QQ,  (7)
Iy Qy ry Qy

N[

where i denotes the unit outward normal vector to therobsurfacel ;. In Fig. 1, we show
two adjacent control volumes that share a genage fJ with verticesl andJ. The normal
vector to this face is here represented My . Henceforth, we will admit thalﬂ(lu‘:‘au‘,

Where‘au‘ denotes the norm of the vector that representtetigth of the facdJ (edgelJ

in 2-D domain). The two triangleﬁ\I:IJ and ARJI , defined by edge nodésindJ and by the

centroids of the adjacent control volumes denoted_b(left CV) and R (right CV) form a
stylized diamond path that justifies the name efsbhheme.

The computation of the approximated pressure ataciies is obtained by using the
scheme devised in Gao and Wu (2010). This methaedres that the pressure gradients are
piecewise constant and the pressure field is piseeilinear over the triangles that form the
diamond path such as shown in Fig. 1. To this mepthe estimated flow rate calculated on

the facelJ , that is shared by the quf) and the right(li) control volumes, is defined by:

Vy (N =173 [ P~ R;_UU( B - p)] (8)

where the scalar transmissibilit§; and the non-dimensional tangential parametgr are
defined, as function of physical and geometric peaters, by:

KOKS d, . 1 (KY . KO .
Ty ==y ) @L ?n) i ‘du‘ and vy, = Ua ZLR 15 K(nL) hli * K(nF; Hj ©)
KPR +K S hs A [da| UK s
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The presentation of the geometrical and physicedrpaters as well as details about its
computation can be found in Gao and Wu (2010) amati€ras et al. (2016). In Equation (8)

P, Py, P, and p, are the pressures at the vertices of the trianglf-:«ls] and ARJI
depicted on Fig. 1.

Figure 1. Part of a polygonal mesh, illustrating the diamond path.

For completeness, in Eq. (9) the mid-face mobillty is obtained by using the volume

average of the mobilities associated to the conohimesL and R, that share the evaluated
face. According Souza (2015) this interpolatiomtstgy produces more accurate results when
compared to other known strategies. The volumeaaesl mobilities are therefore given by:

A, (s,)  where § =(50.+ §9.)/(Q +2,) (10)

In Eqg. (10) Q. and Q. are the volumes (areas in 2-D domain) of the cbnblumes
L and R, respectively. The total mobilitied. and A, are therefore obtained from the water

saturationSNi and SNQ, projected over the control volumésand R, respectively.

3.2 Finite Volume Discretization of the Saturation Equation

Again we take the computational domdh and discretize it inA,. non-overlapping
control volumes. We therefore integrate the satmaequation over an arbitrary control
volume Q; with surfacel’;, and through the time interv{alo,tF], with t, andt_ denoting,

respectively, the initial and final time. After dpimg the Gauss divergence theorem in the
integral equation, the mean value theorem in trecsgerm and first order forward Euler
approximation in the time term, we obtain the disemumerical equation for the solution of
the non-linear hyperbolic saturation equation tizat be written as:
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mi o gn_ AU s g N -
S mﬁ(%a(%‘)w QQVJ (11)

where the superscripta andm+1 denote physical quantities existing at tim8sand t™?,

respectively. The time step, denoted Al is defined asAt =t™* —t™ and must satisfy the

CFL condition (Leveque, 2002). The source te@q which is non-zero only at wells, is here
approximated by the mean value theorem (Contrrak, 2016). The numerical flux on each
surfacelJ is here given as, (Sa‘) = fW( SN“) \,. Once the primary variable is usually not

continuous through the control volume boundaries,campute this numerical flux by using
an approximated Riemann solver that guarantee seceattive flux and is given as:

Fo (S0) = Zerand St §) (12)

For the standard first order approximatiof, and S are the control volume

projections on the left and right hand sides ohesaafaceld evaluated. The standard second
order approximation in space is achieved by reptadhe arguments on Eq. (12) by

extrapolated and suitably limited states, here tmhbyév’:E and SA”,’R In this paper we also

employ a flow oriented approach, with first and et order approximation in space. For
those cases, the arguments on Eqg. (12) are defipagpwind flow tracing on each half-
surface evaluated. Additional details about theh&igprder approximation, approximated
Riemann solver and an entropy fix strategy areamptl in Souza (2015).

Multidimensional Limiting Process. As an alternative to the traditional face-basedtém
strategy, to be used in higher order schemes, wptadrecently proposed Multidimensional
Limiting Process (MLP). This control volume-basediter was originally proposed by Park
et al (2010) for computing large scale aerodynamic lemols and is based on the evaluation
of extrema onto all vicinity surrounding the evd@d control volume. It produces a
multidimensional feature for the limiter functioAccording to Parket al. (2010), MLP is
able to effectively control spurious oscillationsiseng from multidimensional flows,
especially when unstructured or distorted meshes @mployed. MLP poses as a
generalization of the traditional face-based limsiteThis strategy can capture local flow
details while other traditional control volume-bddeniters smooth them.

To explain the basic idea of MLP strategy, letaahitrary control volumel to be
used as reference for computing the MLP limiteisTdontrol volume is composed by a set of
N, vertices j, with j=1,... W . For each vertey , ,, control volumes compose the

Vitx
vicinity I\7Ii, with i =1,2,...,/,, . The higher order numerical flux to be locally qmted on

the facelJ, must avoid extrema values in a multidimensionayw.e., in all control volume
vicinity, in order to ensure positive solutions fambitrary configurations of flow orientation
and mesh distortion. According to Pagk al (2010), extrema values always occur at the
control volume vertices for linear approximatiombus, the evaluation of extrema occurrence
must be primarily evaluated for each vertexThis must satisfy the following relationship:
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SN,min S Svl S %,max (13)

where S, ., and S, . denote, respectively, the maximum and minimum eekrage

values, among those associated to neighboring lﬁgllsln this case, the control volunie
itself is also included in this evaluation.

The bound parameteéWi in Eg. (13) denotes the second order water saarat
extrapolated up to the vertgx following the MUSCL-type framework as:

S, =S +0§. 04, (14)
where ESNL Is the water saturation gradient derived by meahk-exact polynomial

reconstruction (Gooch, 1997) as aforementioned.vﬁltxmrcTE ; fepresents the distance from

the centroid of the control volumie to the vertex| . Based on the constraint presented in Eq.
(13), the evaluation of extrema values for an eabytvertex j is therefore achieved by:

Suma™ ¢ Sn= S| . 4
L , f —_
ﬁjy“g“’: max mlr{ —Sw Yy } mr[l % S J it 5, -8, # ( (15)

1, if §, -8, =0
The parameterﬁj.“ﬂ”’ is bounded within the rangf0,1] and denotes the MLP

constraint for each vertex which belongs to the control volurie. Note that the ratios in
Eq. (15) represent a comparison between the cellage values and the vertex extrapolated
values. Both relative to the cell average value mated at the control volumk. According

to the main idea of MLP limiter, when the verteXue relative toSW, , Is bigger than the

maximum cell average value in vicinity cell,, also relative toS,. , the parametew ™"

must be lower than unity. An analogous relationsplies for the minimum cell average
value. On the other hand, if the extrapolated valuthe vertex is bounded by the maximum
and minimum cell average valueﬁ,j“’LlLP =1 for any ratio bigger than 1. Thus, the MLP

limiter is effectively defined]j oL by:
p® = min(57°) (16)

goc \ b

The control volume-based limiter, defined by Ed®)(and (16), ensures that extrema

values do not appear for any faté of the evaluated control volume. This gives the
multidimensional character of the MLP limiter. Ontee limiter is defined for all control
volumes that discretize the domain, the higher oeggroximation for any faceéJ in the
computational mesh is achieved by:

S, = S *e 0§ O, (17)
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where SN” denotes the higher order approximation of watéuration on the facdJ . The

vector 6EE represents the distance between the centroiceafdhtrol volumel. and the mid-
face pointC (quadrature point) on the fadé .

Alternatively, by using the Venkatakrishnan modifion for the Barth-Jespersen
limiter (Venkatakrishnan, 1995), Pagk al. (2010) also devise a variant for the MLP limiter.
In this proposal the limiter function is smooth drehce differentiable, which does not occurs
for the function presented in Eqg. (16). Thus, failog an analog strategy presented in EQs.
(15) and (16), we have for each vertgxhe following constraint:

2+ 20+ _
purn= G2y =t (18)
' w +w &

VX

where A, denotes the differencéNj = §,» involving the vertex value[JjOL. Such as

observed in Eq. (16))\., also denotes a relationship taking in accounteithe maximum
or the minimum cell average values, defined by:

[Sun-8 - §>0

L

|Sum- S i 5 - §<0

L

Dcy (19)

The parametee in Eq. (18) must be a quite small number (Park l&ma, 2012). Such
as done in Eq. (16), once again the control vollmased limiter, MLPvVK, is obtained for the

control volumeL by:

‘//EALPVK = min (ﬁ I\{ILka) (20)

goc A ik

In the section devoted to numerical experiments liimgers MLP, MLPvk and the
traditional van Albada are compared for some atatfienchmark problems.

Approximated Riemann Solvers and Entropy Fix. Conventionally the Roe flux has been
predominantly employed, even for simulation of flamv petroleum reservoir (Lamine and
Edwards, 2010). Alternatively, the Local Lax Frietis (LLF) can be used for calculating the
numerical flux on the facdJ. This type of approximation, in general, ensuresopy
satisfying. However, it is well-known that LLF pnacks more diffusive numerical solutions
than that obtained by the Roe approximation (Leeed002). Serna (2009) proposes for
magneto-dynamics application a variant of Shu asted (1989) entropy fix. In this novel
strategy the LLF flux is used when either the sgomt or the so-called phase point occur.
The phase point occurs when the states on tharefion the right are in different sides of the
function which represents the derivative of fragtibflux. Thus, the evaluation of the second
derivative of the fractional flux is an indicatof the phase point existence. Serna (2009)
criterion is therefore given as follows:
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2 2
FF N, f {ﬂg‘iw <0 or LIt
” 0S, 05, 09 0% (21)

FReN,, otherwise
13

Fiemann| Sy S ) ON,, =

In both approximated Riemann solvers, higher oaggaroximation can be achieved by
replacing the first order argume®, by an extrapolated and suitably Iimité;iV value, for
both states on the left and on the right.

3.3 Modified Flow Oriented Scheme

In this section we introduce an alternative wagampute the Flow Oriented Schemes
such as that applied by Hurtadb al (2007) for the petroleum industry context. Fiasid
higher orders of approximation are presented fisraliernative procedure. Other higher order
flow oriented schemes are presented in Teaal (2005) and Lamine and Edwards (2013).

Thus, considering the mesh fragment shown in EigvéZintroduceﬁ(J) which represents
the set of all half-surfaces belonging to the iatéion region evaluated. Analogousky(J)

represents the set of control volumes sharing énex J as shown in Fig. 2. The number of
half-surfaces in the interaction region is hereaded by A, and A, is the number of

control volumes surrounding .

Quadrature point on
the half-surface,

Interaction
region

() (b)

Figure 2. Interaction region for node J with the flow rate distribution thr ough the half-faces: (a) velocities
in counter clockwise only; (b) indication of the evaluated half-surfacei, where a higher order valueis

calculated, and the vector position d used in extrapolation from the control volumes C,C-1and C-2.

Taking a general half-surfac&] depicted in Fig. 2a, we can approximate the
numerical flux through that by:

Fey N, = fue, Ve, INg, (22)
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where 7., and V., are, respectively, the numerical flux and theltetdocity calculated over
the evaluated half-surfacEJ. The vectorN,, is the outward normal vector and represents
the area of the evaluated half-surface. The fraatidlux Fw@ is here defined on the

quadrature point of the evaluated half-surface.cBgsidering the case shown in Fig. 2b,
where all half-surfaces irvz (J) are upstream concerning to the half-surfde@, for

example. For this case we can Wrﬁgg in an explicit way, i.e., free of solving the lbca

algebraic system. This simply can be done by com@iall equations established for the
half-surfaces in7z(J). After some algebraic manipulations, the multidisienal variable

SNEJ can be written in a general way as:

1 mas{ WJHS)( k-1

Sy=————|(1-w) S, +
SO

1_|,:le

where the evaluated half-surface is denoted ibyThose upstream half-surfaces are,
respectively, denoted biy-1, i-2, ..., /. Analogously, the upstream control volume

(1= w) §, @3)

k=1 m=

index are here denoted Iy, C-1, C-2, ..., N, as pointed in Fig. 2b. We enforce that
N s =N s—1 and NV, = NV, . Further details concerning to Eq. (23) derivatioan
be found in Souza (2015). The amount of upstrealfesshéfaces, V|, , taken into account
defines each particular case. SinSg is calculated on the/V, half-surfaces, the flow

oriented fractional flux on these half-surfaces barobtained ad,, = fw(éw).

Finally, the weightw,,, for the half-surfaceEJ is parameter which vary between 0 and
1, defined for each evaluated half-surface accgrttina local adaptive procedure, i.e., there
exist a weightw for each half-surface belonging tE(J). Different strategies can be

employed to derivatev as will be discussed in the next section. Fooithem, w=0 when
an evaluated half-surface does not have an upsthedfrsurface. In this case, the traditional

one-dimensional upwind approximation is recoverad &, = %ﬁ- For w#0, §, s

written as a linear convex combination between awkn variable §, and an unknown
L

variable QNEJ. Those variables are the water saturation asswoGiaespectively, to the

upstream control volumel:() and to the quadrature point on the upstreamsaffice €J).

The explicit higher order M-FOS approximation works accordance with the idea
previous developed for the first order approximatitn Fig. 2b we can see that the water
saturation taken into account on the half-surfaseobtained by a MUSCL-type extrapolation
procedure. In this paper Eq. (17) is employed. Biotiter MLP or MLPvk can be used. The

control volumeC is assumed as upstream according to the flow tatien such as done by
Tranet al (2005) in an implicit approach, i.e., solving aalgebraic systems. In the present
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paper the reconstructed variable over a certaifishidace is conveniently denoted lﬁ/vé ,
where the upper tilde means higher order approach.

34 Strategiesfor Calculating the Flow Oriented Weights

The linear convex combination presented in Eq.,(88)arding to the half-surfadgJ,
for instance, defines the upwind flow tracing ire thub-region of the evaluated interaction

region. The linear interpolation makes the variableged fromSWE to SNZJ , according to the

value of the interpolantv;, . This interpolant must vary between 0 and 1 ireotd guarantee
a convex combination. Thus, for the flow multidirsemality to be took into account, the
interpolant is often defined as a function of tbeal flowrate ratio/\;,, presented as follows
(Schneider and Raw, 1986):
Ney =B
EJ

yA| (2 4)
ENEJ

)

m
[
1

Since the ratio presented in Eq. (24) can be eadigthigger than 1, some here called
control functions have been used in literature foaintaining w-, bounded in the
aforementioned range. In the pioneer strategy megdy Schneider and Raw (1986), the
control function poses as a natural idea and has Istill used in recent flow oriented
strategies (Hurtadet al, 2007; Lamine and Edwards, 2010; Kozaxral, 2011). Following
the Kozdon et al (2011) nomenclature, this control function is ehecalled Tight

Multidimensional Upstream (TMU) and is given, faethalf-surfaceEJ by:
wliY =min(1Ag,) (25)

Note that for this control function, any ratfy;, bigger than 1 implies in a same value

TMU < TMU
W=

for ,i.e.,wz; - =1for Az, >1, such as we can see in the graph depicted irBaig.

Alternatively, Hurtadcet al (2007) propose a continuous and smooth contradtion,
named, in Kozdoret al (2011), Smooth Multidimensional Upstream (SMUyadn, for the

half-surfaceEJ , depicted in Fig. 3a, this alternative proposajii@n by:

A
AL (26)
1+A

This proposal ensures that for any raflg,, for example, we have a smooth and

corresponding variation fonZ)" . In this case, the values of., that tend to infinite, lead to

an interpolantwZ) tending to unity (Hurtadet al, 2007). According to Kozdoet al

(2011) the reduction of GOE for some benchmark lerab are strongly influenced by
choosing the type of control function. These awuthbighlighted that the SMU proposal
produces much enhanced results for their test c&seshe other hand, Souza (2015) shows
that the good performance of the SMU control fumctiface the TMU control function, is not
an invariant. The type of mobility interpolatiom, pressure-saturation equation coupling, can
change this scenario and produces better resultsiiog the TMU control function.
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The main idea of these new control functions i;twease the multidimensionality for
either TMU or SMU strategies whenever the anglevben the evaluated half-surfadé] in
Fig. 4a) and the upstream half-surfa@a (in Fig. 4a) is lower tha®0' .

Correction function ¥ (0) for several values of w(.4)

e
5
sy —0— w(1)=08
L R I SMU [ 45 v =03]
——w(4) =02
4 | .
1+
R T A T @ 35+
Taal | >
2ol [ e =
I
(7] ”, :
= & o 25F
3 061 - é
5 o
2 (0]
: 5
0 041 5
. 1
02f
05
0 L I ) ‘ . | | ‘
0 2 4 6 8 10 0 o5 : s .

Flowrate Ratio, A Relative Angle, 6/90°

(@) (b)

Figure 3. Graphs employed for calculate the multidimensional weight for the M odified Flow Orientation
Schemes: (a) representing both TMU and SM U control functions; (b) representing the correction function
for different values of weight w.

On the other hand, when this angle is bigger tlh, as shown in Fig. 4c, the
multidimensionality must diminishes. Of course foeshes without distortion, both M-TMU
and M-SMU return, respectively, to the traditio@dMU and SMU control function. These
modifications occur by modeling a correction fuontiin order to produce the following
relationship:

\NM—TMU :X(g) WTMU; \NM—SMU :X(e) \NSMU (27)

where () is modeled by imposing certain constraints. Itijtiave assume thagy (6) =1
when 8 =90, where nothing changes. In addition, for an ex&rexoute angle, whe@ =0,
we would have the maximum value gf, where X(Q):]/W. On the other hand, for an
extreme obtuse angle, whe$=180, we would have the minimum value ¢f, where
x(6)=0. Thus we have the correction functigr{&) given by:

1 1\ ., @ 6 . @
d)=—+|1-—|—, if —<1 or d)=2——, if —>1 28
X( ) w ( WJQO 90 X( ) 90 90 (28)

Note that in Eq. (28)w can be eithew™" or w*™, depending on the approach. In
addition, we can obtain, at most}" ™" =1 when x(8) =1/w™" , for =0". At last, when
w=0, Eq. (28) is not necessary since we have a toaditiunidimensional approximation. In
Fig. 3b the graph representing the functijmﬁe) is shown, for several values @f, as a
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function of the relative anglé/90. We remark that this correction function is adepince
w™ or wwMY change with the flowrate ratih, computed on each half-surface.

|
Z PN
o q|>-14 ) —0
|
@ —0=-0
M W
O O O

Figure 6. Multidimensionality correction according to the mesh distortion: (a) thereisno influence of the
mesh distortion, 8 =90, )((6?) =1; (b) the control volume L is mor e upstream from the half-surface EJ,

6<90, x(8)>1; (c) thecontrol volume L islessupstream from the half-surface EJ, 6>90, x(6)<1.

Finally, to perform these modifications, we procesdollows:

1. Calculate the unmodified TMU or SMU control functiby using, respectively, Egs.
(25) and (26);

2. For each half-surface, calculate the an§ldetween the evaluated and the upstream
half-surface (see Fig. 4);

3. Calculate a correction factgy(6) by mean of Eq. (28);
4. Calculate the modified control functions M-TMU or-8MU by using Eq. (27).

4 NUMERICAL RESULTS

Now we present some test cases in order to illigstlae benefits of the strategies
proposed in this paper. Thus, we can observe hewhifpher order flow oriented scheme,
associated to a multidimensional limiter strategysrection procedure for distorted meshes
and entropy fix can produce more reliable resulteenvcompared with that produced by
another numerical schemes available in literature.

4.1. Buckley-Leverett Problem

In this test case, the Buckley-Leverett model, ioleidh from Bastian (2002), is
numerically resolved employing schemes with botktfand second order of accuracy in
space. The simplified shape of the petroleum resergonsists in an isotropic and
homogeneous domain with constant porogity 0.2 and dimensions, given in meters, of
[0,300]x[0,75]. The time interval consists in [00§ days. The permeability tensor is given
by K=1. Known flow rate and water saturation are presctiton the left face in the

computational domain. This denotes the water iigacin a rock initially saturated by oil.
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The velocity of injection in that face ig, =3x10' m/s with unitary water saturation. Null
Neumann flux is prescribed on both top and bottonfiases, representing sealing faces. On
the right face, we impose a known and null pressAre adopted in Bastian (2002), the
irredutible water saturation and residual oil sation are, respectivelyg,, = S, =0. The
mobility ration for this problem isM =1 and the Brooks-Corey model is employed as
constitutive relationship such as described in iBas{2002). We also adopt the Courant
number( =0,5. The computational domain is discretized wit,, X1 quadrilateral control

volumes, where V., assumes 32, 64, ..., 1024 subdivisions through ¢mgitudinal

direction. In order to evaluate the errors for tlnenerical solution, which are compared to the
semi-analytical Welge solution (Aziz and Settar§7%), the L norm (Souza, 2015) is
applied. In both cases, the solution is calculatedhe colocation point with coordinate
through the computational domain. The paramed®rdenotes the volume (area in 2-D

domain) of each control volumevhere the solution is evaluated.

This test case aims to show that the convergentieeofiumerical solution towards the
semi-analytical solution is strongly influenced ttme use of the entropy fix strategy devised
by Serna (2009). This fact is specially observedhigher order approximation results. We
also evaluate here the different types of limitatstrategies, for higher order approximation
schemes, and their performance regarding to pradumnvergente solutions. In Fig. 5a we
present the errors obtained with horm for the numerical solution of the Buckley-keestt
problem by using several mesh refinements.

Canvergence Rate for the Buckley-Leverett problem Buckley-Leverett problem
-4 . T T T T T
—<— 1% Order, Entropy Fix ON Semi-analytical solution
"""" 2™ Order - van Albada, Entropy Fix ON 0756 #— 1% Order, Entropy Fix ON
—6— 2™ Order - MLP, Entropy Fix ON ' =% 1% Order, Entropy Fix OFF
A —#— 2™ 5rder - MLPvK, Entropy Fix ON —#— 2" Order - van Albada, Entropy Fix ON
N %= 1% Order, Entropy Fix OFF 0754 =& 2™ Order - van Albada, Entropy Fix OFF
. r - nd . ml
6 =@ 2™ Order - van Albada, Entropy Fix OFF — zmd Order - MLPvk. Entropy Fix ON
r PN B .
: &= 2™ Grder - MLP, Entropy Fix OFF 2" Order - MLPvk, Entropy Fix OFF
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Figure5. Buckley-L everett problem: (a) convergencerate curves wher e solutions with and without
entropy fix, obtained with first and second order of accuracy are compared; (b) zoom view of numerical
results obtained in a mesh with 1024 subdivisionsfor first and second order of accuracy. Face-based
limiter and the control volume-based limiters are also compar ed.
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The traditional scheme with first order in spactherefore compared with that obtained
with second order of accuracy and different liniitas strategy (van Albada, MLP and MLP-
vk). For all cases, numerical solutions with anthaut entropy fix are verified. Even though
the effective convergence rate expected for eadkrasf approximation cannot be reached
due to the discontinuity in the solution, theseaultssare an indicator of effectiveness for each
numerical scheme. As shown in Fig. 5a, the converg@nly occurs for the results obtained
with first order approximation and second orderhwMLPvk limiter. The latter converges
only when the entropy fix is employed (black conbas line). All other numerical schemes
have the convergence degenerated for very refinedhes (1024 subdivisions). In this
problem we obtain convergent solutions with thetforder scheme, even when the entropy
fix is not turned on. However, according Serna @0the absence of an entropy fix strategy
can produce non-convergent solutions even for aqpiations with first order of accuracy.
On the other hand, as aforementioned, the Serr@@)Xlrategy is strictly necessary for the
convergence of second order approximation, evem fmmpler test case. Besides, as shown
in Fig. 5a, the results obtained exclusively whk Roe flux, i.e., without entropy fix (dashed
lines) are, in general, worse than those obtainéd emtropy fix (continuous line). In Fig. 5b
details of the numerical solutions are presentedfmesh with 1024 subdivisions. Note that,
in a general way, only the first order approximatiand the second order scheme, with
MLPvk limiter and entropy fix, honored the semi-pmigal solution such as previously
indicated in the convergence analysis. In additibe, second order approximation limited
with traditional face-based limiter produces norygbal solutions, even when the entropy fix
is considered. This degrades the convergence satkavn in Fig. 5a (blue lines).

4.2. Two-Phase Flow in Homogeneous and Anisotropic Petroleum
Reservoir

The present test case consists of an adaptation framine and Edwards (2010)
problem. We consider here a homogeneous and apsopetroleum reservoir for a classical
problem with a quarter of five-spot. The simplifipdtroleum reservoir has dimensions given
by [0,1F. The permeability tensor presents anisotropy ra(ig/Kyyzlo and its main

directions are rotated by 45° regarding to the €&eih directions. This leads to a full-tensor
for representing the permeability in Cartesian ©1a@inly null Neumann boundary condition
is imposed through the boundary domain. Unitarywfloate and water saturation are
prescribed on the injector well. On the producell we have a known null pressure. For this

problem we employ an adverse mobility ratib =50. Irredutible water saturatio®,, and

residual oil saturationS, are both null. Again we adopt the Brooks-Corey sloas the

constitutive relationship. The exponents for thettwwg and non-wetting phases are,
respectively,n, =5 and n, =1. We also consider a final time for the simulatwmn0.4 PVI

and ¢’ =0,5. In this test case we intend to evaluate the pmdace of the modified flow

oriented scheme, especially for second order afracy. We also evaluate the benefits of the
procedure here proposed which adaptively tunesniliédimensionality of the flow oriented
scheme according to degree of distortion in theheeemployed. For this test we employ a
strongly distorted mesh, adapted from Hermelin@{20with 32x32 and 64x64 subdivisions,
shown in Fig. 6a and 6b, respectively. A referesckition was obtained with the robust
schemes MPFA-O and First Order Upwind Scheme sglvespectively, the pressure and the
saturation equations. An unstructured triangulashmeith 37,996 control volumes was used
for this case.
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Figure 6. Water saturation field obtained for distorted mesh adapted from Her meline (2007): (a) mesh
with 32x32 subdivisions; (b) mesh with 64x64 subdivisions; (c) standard scheme with 2" order of accuracy
and M LPvk limiter (64x64 subdivisions); (d) M-TMU scheme with 2" order of accuracy and ML Pvk
limiter (64x64 subdivisions).

Now, comparing each type of flow oriented schemecar see that all TMU-type
configurations (TMU and M-TMU) have presented hetésults than SMU-type results. Both
TMU-type and SMU-type configurations have presetttetier results than that obtained with
the standard schemes. Regarding the performandkeotorrection for distorted meshes,
which leads to M-TMU and M-SMU approaches, we obsethat for first order
approximation there is no relevant gain whether MUlror TMU is used. When we compare
M-SMU and SMU, we can see a slight gain, even ifst brder approximation. It occurs in
both mesh refinements. It is interesting obsera bioth M-TMU and TMU with first order
approximation produces oil flow rate curves praticmatching to that obtained with higher
order standard scheme. On the other hand, theemdkiof the correction for distorted meshes
is substantial in higher order approximation schen@bserving the curves in Fig. 7, we can
perceive the M-TMU closer to the reference solutioan the solution obtained with TMU.
The same occurs for M-SMU compared to SMU. Morepytke higher order M-SMU
matches to higher order TMU.
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Figure7. Oil flow rate curvesfor standard scheme (stdr), flow oriented scheme (TMU and SM U) and
modified flow oriented scheme (M-TM U and M-SM U): (a) obtained in a 32x32 distorted mesh: (b)
obtained in a 64x64 distorted mesh.

Again this performance is observed for both medhements. In Fig. 7 we can see the
performance of some configuration for the same tewel. The improvement on the solution
of the water saturation field, with respect to theinishing of GOE is evident. It leads the
breakthrough closer to that in reference solution.

5 CONCLUSIONS

In this paper we presented an alternative flownee scheme to solve two-phase
flow in anisotropic petroleum reservoirs. This pwegion has as main novelties the explicit
computation of the multidimensional numerical flaxan each half-surface, the introduction
of an adaptive correction for the flow oriented estie, according to the level of mesh
distortion, and an efficient entropy fix, employsdenhance convergence and accuracy for
the results. In this framework, low and higher osdef accuracy in space were performed,
where, for higher order approximation, the MLP t&tgy was adopted due to its robustness
and multidimensional character. The set of numepracedures presented in this paper poses
as advantageous when faced to another flow origgegischemes available in literature and
with similar computation (Hurtadet al, 2007; Kozdoret al, 2011). In these last cases, the
multidimensional numerical fluxes are implicitlylcalated, with only first order of accuracy
and without any entropy fix strategy. Some repregem test cases were used in present
paper to show the potential of the numerical procesl presented to handle problems
involving adverse mobility ratio, highly anisotregpmedia and discretization with much
distorted meshes.

We could observe, for a simple Buckley-Leveretthtem, that the use of the Serna
(2009) entropy fix enhances, in general, the cayamce and accuracy of numerical solutions,
predominantly obtained for second order of accuraesyspace. The results obtained with
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MLPvVk as limiting strategy were the best ones. Havethis entropy fix proposal was not

capable to ensure that non-physical solutions caplgear. Results obtained with the face-
based limiter (van Albada) and with the traditioMdLP limiter presented non-physical

solutions near discontinuity and hence degradaton the convergence rate. In the
comparison between the standard and the flow @&testchemes for solving an adverse
mobility ratio problem with distorted mesh, it idear that the flow oriented schemes
diminishes substantially the GOE, compared to thesailts obtained with the standard
approximation. This behavior was observed for ot and second order of accuracy. In
addition, the schemes with correction of the muttighsionality according to the mesh

distortion (M-TMU and M-SMU) produced results mudiore reliable than those obtained by
the standard schemes (stdr) and even those obtaittedonventional flow oriented schemes,
TMU and SMU. This reveals that, in fact, the coti@t procedure is necessary, especially for
higher order approximation, which, once again, poadl the most reliable results.
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