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Abstract. In this paper we simulate two-phase flow in anisotropic petroleum reservoirs. The 
IMPES procedure is used to solve the coupling between pressure and saturation equations. 
The pressure equation is discretized by a robust Multipoint Flux Approximation Method with 
a Diamond-type support. This formulation is capable of reproducing piecewise linear 
solutions exactly and deals with anisotropic media. To solve the saturation equation a 
Modified Flow Oriented Scheme (M-FOS) is proposed. This alternative computes the 
multidimensional numerical fluxes using higher order accuracy in space. This formulation 
explicitly takes into account the angular distortion of the computational mesh by means of an 
adaptive weight that tunes the multidimensional character of the formulation according to the 
grid distortion. A recently devised Multidimensional Limiting Process is adopted in this paper 
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to control the spurious oscillations in higher order approximation. This strategy guarantees 
monotone solutions and can be used with any polygonal mesh. Finally, an efficient entropy fix 
strategy, originally proposed in magneto-dynamics context, is also employed in order to 
produce convergent solutions. The performance of this set of numerical schemes is verified by 
solving some relevant benchmark problems, where we observe that the Grid Orientation 
Effects are clearly diminished by using this M-FOS framework.  

Keywords: Oil and Water displacements, Anisotropic Porous Media, MPFA-D, MLP, 
Modified Flow Oriented Scheme  

1  INTRODUCTION 

Standard reservoir simulators employ, in general, Two-Point Flux Approximation 
(TPFA) and First Order Upwind Scheme (FOUS) to approximate, respectively, the diffusive 
and advective fluxes (Lamine and Edwards, 2010). As extensively discussed in literature, 
although TPFA present robustness for Cartesian grids and diagonal permeability tensor, this 
scheme suffers from serious numerical limitations when arbitrary mesh and/or permeability 
tensor are considered (Lamine and Edwards, 2010). This enforces stringent constraints for 
those simulators which depend on this type of approximation. Besides, FOUS computes, by 
construction, the control surface fluxes with one-dimensional nature, by using only data 
associated to the control volumes that share the evaluated surface.  

Several flow oriented schemes have been presented in literature aiming to diminish this 
dependence (Tran et al., 2005; Hurtado et al., 2007; Lamine and Edwards, 2010; Kozdon et 
al., 2011). All these schemes are, in a certain way, based on the pioneer work of Schneider 
and Raw (1986) and Colella (1990), both proposed in fluid dynamics context, but with 
different strategies. These schemes are predominantly with first order of accuracy and are 
characterized by using the correct upwind direction, which improve significantly the results 
obtained for classical benchmark problems. In addition, some of these schemes, such as those 
presented by Tran et al., (2005), Hurtado et al. (2007) and Kozdon et al. (2011) require the 
solution of local algebraic systems for computing the numerical fluxes. On the other hand, the 
Lamine and Edwards (2010) proposal are characterized by explicitly calculating the 
multidimensional numerical flux on each control surface, such as done by Colella (1990). The 
first higher order flow oriented scheme was proposed by Tran et al. (2005) also for thermo-
fluid dynamics context. Recently, Lamine and Edwards (2013) also proposed a higher order 
variant for the schemes previously discussed in Lamine and Edwards (2010).  

In this paper, we combine several numerical procedures in order to obtain a robust 
framework capable of produce convergent approximated solutions, even for problems which 
consider adverse fluid and rock properties or highly distorted meshes in the computational 
discretization. In this context, we discretize the pressure equation by a non-orthodox 
Multipoint Flux Approximation Method with a Diamond-type support (MPFA-D). This 
numerical scheme was initially proposed by Gao and Wu (2010), for general diffusion 
problems, and was recently introduced by Contreras et al. (2016) in petroleum reservoir 
context. As discussed in these works, MPFA-D is very robust and capable of reproducing 
piecewise linear solutions exactly by using a linear preserving interpolation with explicit 
weights. This avoids the solution of locally defined systems of equations, as often seen in 
another traditional MPFA schemes.  

To solve the transport equation, we propose an alternative flow oriented scheme. This 
scheme diminishes the Grid Orientation Effects (GOE), especially for orthogonal grids, even 
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though some lack of robustness can be observed for extremely distorted meshes. In this type 
of scheme, the numerical flux is computed in each control surface in a multidimensional way, 
by a convex combination of the water saturation values, following the approximate flow 
orientation throughout the computational domain. However, the majority of the schemes 
found in literature is only with first order of accuracy in space and demand the implicit 
solution of local conservation problems. For the Modified Flow Oriented Scheme (M-FOS) 
here proposed, the truly multidimensional numerical fluxes are explicitly computed using 
either first or higher order accuracy in space. For the proposed scheme, the robustness and the 
multidimensional character of the aforementioned M-FOS explicitly takes into account the 
angular distortion of the computational mesh by means of an adaptive weight. This procedure 
tunes the multidimensional character of the formulation according to the grid distortion and 
clearly diminishing GOE. The suppression of the spurious oscillations, typical from higher 
order schemes, is achieved by using the Multidimensional Limiting Process (MLP). This 
strategy was devised by Park et al. (2010) for solving general aerodynamics problems and 
employed, for the first time, in petroleum industry context by Souza et al. (2015). Formally, 
MLP guarantees monotone solutions and can be used with any polygonal mesh and arbitrary 
orders of approximation. Finally, in order to guarantee physically meaningful solutions, a 
robust entropy fix strategy proposed by Serna (2009), in a magneto-dynamics context, is 
employed. This produces convergent solutions even for the typical non-convex flux functions 
that are associated to the Buckley-Leverett model. The performance of the proposed full finite 
volume formulation is verified by solving some relevant benchmark problems. 

2  MATHEMATICAL FORMULATION 

The basic governing equation for the oil and water displacement in petroleum reservoirs 
is briefly described in the present section. Let 2Ω ⊂R  represents a computational domain 
over a time interval [ ]0,t . We assume, without loss of generality, some simplifying 

assumptions, such as immiscible and incompressible fluids, undeformable rock and the 
absence of thermal, dispersion and capillarity effects. The mass conservation equation is, 
therefore, written as follows: 

( ) ( ) ,  ,i i
i i i

S
v q i o w

t

φρ
ρ

∂
= −∇ ⋅ + =

∂
�

                                                                              (1)                          

where φ  is the rock porosity, iS  and iρ  are, respectively, the saturation and density of each 

phase i, with i w=  for water (wetting phase) and i o=  for oil (non-wetting phase). The 
injection or production wells (i.e. source or sink terms) are indicated by iq  and the phase 

velocity iv
�

 is given by a generalized form of the Darcy’s law:   

,  ,i i iv K p i o wλ= − ∇ =
��

ɶ
                                                                                                  (2) 

In Eq. (2), iρ  and iλ  are the density and mobility of ith phase, respectively. The phase 

mobility is given as 
i ri ikλ µ= , where iµ  and ( )ri ik S  represent, respectively, the viscosity 

and the relative permeability of phase i. The tensor ( )K x
�

ɶ
 represents the absolute rock 

permeability, which satisfies the ellipticity condition, in which, for a 2-D domain, requires 
that 2

xx yy xyK K K≥ .  
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An additional assumption ensures that the reservoir rock is fully saturated by oil and water. 
Hence we can write a volumetric constraint as follows: 

1o wS S+ =                                                                                                                       (3) 

 We will use a segregated formulation in which the basic equations are obtained from the 
proper combination of the mass conservation equation and the Darcy's Law. By using Eqs. (1)
to (3) and after some algebraic manipulation (Aziz and Settari, 1979), we can write the elliptic 
pressure equation, as: 

v Q∇⋅ =
� �

    with    v K pλ= − ∇
��

ɶ
                                                                                      (4) 

where p∇
�

 denotes the pressure gradient, o wλ λ λ= +  is the total mobility and w ov v v= +� � �
 is 

total velocity. The total fluid injection or production specific rate is denoted by w oQ Q Q= +  

with i i iQ q ρ= .  

For obtaining the saturation equation, we combine again the Eqs. (1) to (3) and 
manipulate it, algebraically, in order to get: 

( )  w
w w

S
F S Q

t
φ ∂ = −∇⋅ +

∂
�

                                                                                              (5) 

In Eq. (5), the flux function is defined, in absence of gravity and capillarity, by 
( ) wwF S f v=
� �

 where w wf λ λ=  is the fractional flow of water, which is a non-linear function 

of the water-phase saturation. Eq. (5) is a non-linear hyperbolic equation from which 
discontinuous profiles can evolve even from smooth initial solutions (Aziz and Settari, 1979). 

The problem described by Eqs. (4) and (5) is only completely determined when we use 
an appropriate set of initial and boundary conditions. Typical boundary and initial conditions 
are given by (Aziz and Settari, 1979):  

[ ] [ ]

[ ] 0
0

( , ) 0, ;    0, ;

( , ) 0, ; ( ,0)

D D N N

w w I w w

p x t g on t v n g on t

S x t S on t S x S on at t t

= Γ × ⋅ = Γ ×

= Γ × = Ω =

� � �

� �
                                     (6) 

where the scalar functions Dg  (prescribed pressures) and Ng  (prescribed fluxes) are, 

respectively, defined in DΓ  (Dirichlet) and NΓ  (Neumann) boundaries, with D NΓ = Γ ∪Γ  and 

D NΓ ∩Γ = ∅ . The set of injection wells are represented by IΓ  (internal boundaries), in 

which the water saturation wS  is prescribed. Finally, 0
wS  is the water saturation distribution at 

the initial time 0t . 

3  NUMERICAL FORMULATION 

In this paper the coupling between the Eq. (4) and (5) is resolved by using the Implicit 
Pressure Explicit Saturation (IMPES) strategy. In this procedure, the mobilities are evaluated 
from the saturation field computed in the previous time level. This fact decouples the 
computation of the pressure equation from the saturation equation, allowing the saturation to 
be explicitly calculated, while the pressure computation is kept implicit (Aziz and Settari, 
1979). Through the next sections the robust numerical formulation here employed to solve 
both pressure and saturation equations are briefly described. 
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3.1 Finite Volume Discretization of the Pressure Equation 

The Multi-Point Flux Approximation with Diamond Support (MPFA-D) is described in 
this section. This scheme was originally proposed to solve diffusion type problems in 
heterogeneous and anisotropic media (Gao and Wu, 2010). As depicted in Fig. 1, in this 
numerical scheme the flux on each control volume surface, of the primal polygonal mesh, is 
explicitly expressed by two cell-centered unknowns ( L̂  and R̂), defined on the control 
volumes sharing that face and two vertex unknowns (I  and J ) at the two face’s endpoints. In 
order to turn the method into a pure cell-centered scheme, the vertex unknowns are treated as 
intermediate ones being rewritten as linear combinations of the cell-centered unknowns by 
using appropriate interpolations (Gao and Wu, 2010; Contreras et al., 2016).   

To obtain the finite volume discretization with MPFA-D scheme we suppose that the 
physical domain Ω  with boundary Γ  is partitioned into a finite number of control volumes 
(CVs) denoted by 

V̂
Ω . By integrating the pressure equation (4) over an arbitrary control 

volume and by applying the Gauss divergence theorem, it can be written as: 

ˆˆ ˆ ˆ

ˆ ˆ ˆ, where
VV V V

IJ IJV V V
IJ

v n d Q v n v N
∈ΓΓ Ω Γ

⋅ Γ = ∂Ω ⋅ ∂Γ ≅ ⋅∑∫ ∫ ∫
�� � � � �

 and 
ˆ

ˆ ˆ ˆ

V

V V V
Q Q

Ω

∂Ω ≅ Ω∫        (7) 

where n
�
 denotes the unit outward normal vector to the control surface 

V̂
Γ . In Fig. 1, we show 

two adjacent control volumes that share a generic face IJ  with vertices I and J. The normal 

vector to this face is here represented by IJN
�

. Henceforth, we will admit that IJ IJN d=
��

, 

where IJd
�

 denotes the norm of the vector that represents the length of the face IJ  (edge IJ  

in 2-D domain). The two triangles, ̂LIJ∆  and R̂JI∆ , defined by edge nodes I and J and by the 

centroids of the adjacent control volumes denoted by L̂  (left CV) and R̂ (right CV) form a 
stylized diamond path that justifies the name of the scheme. 

The computation of the approximated pressure and velocities is obtained by using the 
scheme devised in Gao and Wu (2010). This method ensures that the pressure gradients are 
piecewise constant and the pressure field is piecewise linear over the triangles that form the 
diamond path such as shown in Fig. 1. To this purpose, the estimated flow rate calculated on 

the face IJ , that is shared by the left ̂( )L  and the right ˆ( )R control volumes, is defined by: 

( )ˆ ˆIJ IJ IJ IJ J IR L
v N p p p pτ υ ⋅ = − − − 
��

                                                                        (8) 

where the scalar transmissibility IJτ  and the non-dimensional tangential parameter IJυ  are 

defined, as function of physical and geometric parameters, by:   

ˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ

( ) ( ) ( ) ( )
ˆ ˆˆ ˆ

ˆ ˆ 2 ( ) ( )( ) ( )

1
   and   L R L R

L RL R

n n t t
IJ IJ IJ IJIJ L RLR

IJ IJ IJ IJ IJ IJn nn R n L
IJ IJIJ IJ IJ IJ IJIJ

d d
d h h

h h dd
τ λ υ

 ⋅
 = − = − +
 +  

� �
�

��

K K K K

K KK K
         (9) 
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The presentation of the geometrical and physical parameters as well as details about its 
computation can be found in Gao and Wu (2010) and Contreras et al. (2016). In Equation (8) 

Ip , Jp , 
L̂

p  and 
R̂

p  are the pressures at the vertices of the triangles L̂IJ∆  and R̂JI∆  

depicted on Fig. 1.   

 

 

 

 

 

 

 

Figure 1. Part of a polygonal mesh, illustrating the diamond path. 

For completeness, in Eq. (9) the mid-face mobility IJλ  is obtained by using the volume 

average of the mobilities associated to the control volumes L̂  and R̂, that share the evaluated 
face. According Souza (2015) this interpolation strategy produces more accurate results when 
compared to other known strategies. The volume averaged mobilities are therefore given by: 

( ) ( ) ( )
ˆ ˆˆ ˆ ˆ ˆ, where
L RIJ IJ IJ

w w w w wL R L R
S S S Sλ = Ω + Ω Ω + Ω                           (10) 

In Eq. (10) 
L̂

Ω  and 
R̂

Ω  are the volumes (areas in 2-D domain) of the control volumes 

L̂  and R̂ , respectively. The total mobilities ̂
L

λ  and 
R̂

λ  are therefore obtained from the water 

saturation 
L̂

wS  and 
R̂

wS , projected over the control volumes L̂  and R̂ , respectively. 

3.2 Finite Volume Discretization of the Saturation Equation 

Again we take the computational domain Ω  and discretize it in VCN  non-overlapping 

control volumes. We therefore integrate the saturation equation over an arbitrary control 
volume 

V̂
Ω  with surface 

V̂
Γ  and through the time interval [ ]0, Ft t , with 0t  and Ft  denoting, 

respectively, the initial and final time. After applying the Gauss divergence theorem in the 
integral equation, the mean value theorem in the space term and first order forward Euler 
approximation in the time term, we obtain the discrete numerical equation for the solution of 
the non-linear hyperbolic saturation equation that can be written as:       

L̂
R̂

I

J

IJN
�

JIN
�

L̂

R̂

J

J

I

I
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( )
ˆ

1
ˆ

ˆ V

m m m
w w IJ w IJ w V

IJV

t
S S F S N Q

φ
+

∈Γ

 ∆= − ⋅ − Ω  Ω  
∑
� �

                                                            (11) 

where the superscripts m and m+1 denote physical quantities existing at times tm and tm+1, 
respectively. The time step, denoted by t∆  is defined as 1m mt t t+∆ = −  and must satisfy the 
CFL condition (Leveque, 2002). The source term wQ , which is non-zero only at wells, is here 

approximated by the mean value theorem (Contreras et al., 2016). The numerical flux on each 
surface IJ  is here given as ( ) ( )m m

IJ w w w IJF S f S v=
� �

. Once the primary variable is usually not 

continuous through the control volume boundaries, we compute this numerical flux by using 
an approximated Riemann solver that guarantee a conservative flux and is given as: 

( ) ( )ˆ ˆ
,

L R

m m m
IJ w Riemann w wF S S S=

��
F                                                                                         (12) 

For the standard first order approximation, ̂
L

m
wS  and 

R̂

m
wS  are the control volume 

projections on the left and right hand sides of each surface IJ  evaluated. The standard second 
order approximation in space is achieved by replacing the arguments on Eq. (12) by 
extrapolated and suitably limited states, here denoted by 

L̂

m
wSɶ  and 

R̂

m
wSɶ . In this paper we also 

employ a flow oriented approach, with first and second order approximation in space. For 
those cases, the arguments on Eq. (12) are defined by upwind flow tracing on each half-
surface evaluated. Additional details about the higher-order approximation, approximated 
Riemann solver and an entropy fix strategy are explained in Souza (2015).  
 
Multidimensional Limiting Process. As an alternative to the traditional face-based limiter 
strategy, to be used in higher order schemes, we adopt a recently proposed Multidimensional 
Limiting Process (MLP). This control volume-based limiter was originally proposed by Park 
et al. (2010) for computing large scale aerodynamic problems and is based on the evaluation 
of extrema onto all vicinity surrounding the evaluated control volume. It produces a 
multidimensional feature for the limiter function. According to Park et al. (2010), MLP is 
able to effectively control spurious oscillations arising from multidimensional flows, 
especially when unstructured or distorted meshes are employed. MLP poses as a 
generalization of the traditional face-based limiters. This strategy can capture local flow 
details while other traditional control volume-based limiters smooth them.  

 To explain the basic idea of MLP strategy, let an arbitrary control volume ̂L  to be 
used as reference for computing the MLP limiter. This control volume is composed by a set of 

vtxN  vertices j , with 1,..., vtxj = N . For each vertex j , MN  control volumes compose the 

vicinity ˆ
iM , with 1,2,..., Mi = N . The higher order numerical flux to be locally computed on 

the face IJ, must avoid extrema values in a multidimensional way, i.e., in all control volume 
vicinity, in order to ensure positive solutions for arbitrary configurations of flow orientation 
and mesh distortion. According to Park et al. (2010), extrema values always occur at the 
control volume vertices for linear approximations. Thus, the evaluation of extrema occurrence 
must be primarily evaluated for each vertex j . This must satisfy the following relationship: 
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,min ,maxjw w wS S S≤ ≤ɶ                                                                                                        (13) 

where ,minwS  and ,maxwS  denote, respectively, the maximum and minimum cell average 

values, among those associated to neighboring cells ˆ
iM . In this case, the control volume L̂  

itself is also included in this evaluation. 

The bound parameter 
jwSɶ  in Eq. (13) denotes the second order water saturation, 

extrapolated up to the vertex j , following the MUSCL-type framework as:  

 
ˆ ˆ ˆ,j L L

w w w L j
S S S d= + ∇ ⋅

��
ɶ                                                                                                  (14) 

where 
L̂

wS∇
�

 is the water saturation gradient derived by means of k-exact polynomial 

reconstruction (Gooch, 1997) as aforementioned. The vector ˆ ,L j
d
�

 represents the distance from 

the centroid of the control volume L̂  to the vertex j . Based on the constraint presented in Eq. 
(13), the evaluation of extrema values for an arbitrary vertex j  is therefore achieved by:  

ˆ ˆ

ˆ

ˆ ˆ

ˆ

,max ,min

ˆ,

max min 1, ,min 1, , if 0

1, if 0

L L

j L

j jL L

j L

w w w w

w wMLP
w w w wj L

w w

S S S S
S S

S S S S

S S

     − −
      − ≠    − − =      


− =

ɶ
ɶ ɶ

ɶ

b           (15)   

The parameter ˆ,

MLP

j L
b  is bounded within the range [0,1]  and denotes the MLP 

constraint for each vertex j  which belongs to the control volume L̂ . Note that the ratios in 
Eq. (15) represent a comparison between the cell average values and the vertex extrapolated 
values. Both relative to the cell average value computed at the control volume L̂ . According 
to the main idea of MLP limiter, when the vertex value, relative to 

L̂
wS , is bigger than the 

maximum cell average value in vicinity cells ˆ
iM , also relative to 

L̂
wS , the parameter ˆ,

MLP

j L
b  

must be lower than unity. An analogous relationship applies for the minimum cell average 
value. On the other hand, if the extrapolated value at the vertex is bounded by the maximum 
and minimum cell average values, ˆ,

1MLP

j L
=b  for any ratio bigger than 1. Thus, the MLP 

limiter is effectively defined ˆj L∀ ∈  by:  

( )ˆ ˆ,ˆ
minMLP MLP

L j Lj L
ψ

∀ ∈
= b                                                                                                       (16) 

The control volume-based limiter, defined by Eqs. (15) and (16), ensures that extrema 

values do not appear for any face IJ  of the evaluated control volume L̂ . This gives the 
multidimensional character of the MLP limiter. Once the limiter is defined for all control 
volumes that discretize the domain, the higher order approximation for any face IJ  in the 
computational mesh is achieved by:  

ˆ ˆˆ ˆ ,IJ L L

MLP
w w wL L c

S S S dψ= + ∇ ⋅
��

ɶ                                                                                            (17) 
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where 
IJwSɶ  denotes the higher order approximation of water saturation on the face IJ . The 

vector ˆ ,L c
d
�

 represents the distance between the centroid of the control volume ̂L  and the mid-

face point c  (quadrature point) on the face IJ .  

Alternatively, by using the Venkatakrishnan modification for the Barth-Jespersen 
limiter (Venkatakrishnan, 1995), Park et al. (2010) also devise a variant for the MLP limiter. 
In this proposal the limiter function is smooth and hence differentiable, which does not occurs 
for the function presented in Eq. (16). Thus, following an analog strategy presented in Eqs. 
(15) and (16), we have for each vertex j  the following constraint:  

2

ˆ 2,

2
, with

2
MLPvk CV

j L
vtx

ϖ ϖ ε ϖ
ϖ ϖ ε

∆+ += =
+ + + ∆

b                                                                  (18) 

where vtx∆  denotes the difference 
ˆj L

w wS S−ɶ , involving the vertex value, ˆj L∀ ∈ . Such as 

observed in Eq. (16), CV∆  also denotes a relationship taking in account either the maximum 

or the minimum cell average values, defined by:  

ˆ ˆ

ˆ ˆ

,max

,min

, if 0

, if 0

jL L

jL L

w w w w

CV

w w w w

S S S S

S S S S

 − − >∆ = 
− − <

ɶ

ɶ
                                                                        (19) 

The parameter ε  in Eq. (18) must be a quite small number (Park and Kim, 2012). Such 
as done in Eq. (16), once again the control volume-based limiter, MLPvk, is obtained for the 
control volume ̂L  by: 

( )ˆ ˆ,ˆ
minMLPvk MLPvk

L j Lj L
ψ

∀ ∈
= b                                                                                                   (20)    

In the section devoted to numerical experiments the limiters MLP, MLPvk and the 
traditional van Albada are compared for some classical benchmark problems.  

Approximated Riemann Solvers and Entropy Fix. Conventionally the Roe flux has been 
predominantly employed, even for simulation of flow in petroleum reservoir (Lamine and 
Edwards, 2010). Alternatively, the Local Lax Friedrichs (LLF) can be used for calculating the 
numerical flux on the face IJ . This type of approximation, in general, ensures entropy 
satisfying. However, it is well-known that LLF produces more diffusive numerical solutions 
than that obtained by the Roe approximation (Leveque, 2002). Serna (2009) proposes for 
magneto-dynamics application a variant of Shu and Osher (1989) entropy fix. In this novel 
strategy the LLF flux is used when either the sonic point or the so-called phase point occur. 
The phase point occurs when the states on the left and on the right are in different sides of the 
function which represents the derivative of fractional flux. Thus, the evaluation of the second 
derivative of the fractional flux is an indicator of the phase point existence. Serna (2009) 
criterion is therefore given as follows: 
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Û

Z

Vector position 

J

ˆ 1C − Ĉ
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       (21) 

In both approximated Riemann solvers, higher order approximation can be achieved by 

replacing the first order argument wS  by an extrapolated and suitably limited wSɶ  value, for 

both states on the left and on the right.    

3.3 Modified Flow Oriented Scheme  

In this section we introduce an alternative way to compute the Flow Oriented Schemes 
such as that applied by Hurtado et al. (2007) for the petroleum industry context. First and 
higher orders of approximation are presented for this alternative procedure. Other higher order 
flow oriented schemes are presented in Tran et al. (2005) and Lamine and Edwards (2013). 
Thus, considering the mesh fragment shown in Fig. 2, we introduce ( )Jn  which represents 

the set of all half-surfaces belonging to the interaction region evaluated. Analogously, ( )ˆ Jc  

represents the set of control volumes sharing the vertex J  as shown in Fig. 2. The number of 
half-surfaces in the interaction region is here denoted by HSN  and CVN  is the number of 

control volumes surrounding J . 

 

 

 

 

 

 

 

                                   (a)                                                            (b) 

Figure 2. Interaction region for node J with the flow rate distribution through the half-faces: (a) velocities 
in counter clockwise only; (b) indication of the evaluated half-surface i, where a higher order value is 

calculated, and the vector position d
�

 used in extrapolation from the control volumes Ĉ , ˆ 1C −  and ˆ 2C − . 

Taking a general half-surface EJ  depicted in Fig. 2a, we can approximate the 
numerical flux through that by: 

EJwEJ EJ EJ EJN f v N⋅ = ⋅
� � �⌣ �

F                                                                                      (22) 
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where EJ

�

F  and EJv
�

 are, respectively, the numerical flux and the total velocity calculated over 

the evaluated half-surface EJ . The vector EJN
�

 is the outward normal vector and represents 

the area of the evaluated half-surface. The fractional flux 
EJwf
⌣

 is here defined on the 

quadrature point of the evaluated half-surface. By considering the case shown in Fig. 2b, 
where all half-surfaces in ( )Jn  are upstream concerning to the half-surface EJ , for 

example. For this case we can write 
EJwS
⌣

 in an explicit way, i.e., free of solving the local 

algebraic system. This simply can be done by combining all equations established for the 
half-surfaces in ( )Jn . After some algebraic manipulations, the multidimensional variable 

EJwS
⌣

 can be written in a general way as: 

( ) ( )
( )

ˆ ˆ

1

1 0

1

1
1 1

1

i
UHS

i C C kHS

max 1, k

w i w i m i k w
k m

j
j

S w S w w S

w
−

−

− −
= =

=

  
 = − + −      − 

 

∑ ∏
∏

⌣
N

N
                           (23) 

where the evaluated half-surface is denoted by i . Those upstream half-surfaces are, 
respectively, denoted by 1i − , 2i − , …, i

UHSN . Analogously, the upstream control volume 

index are here denoted by Ĉ , ˆ 1C − , ˆ 2C − , …, i
UCVN  as pointed in Fig. 2b. We enforce that 

1i
UHS HS= −N N  and i

UCV CV=N N . Further details concerning to Eq. (23) derivation, can 

be found in Souza (2015). The amount of upstream half-surfaces, i
UHSN , taken into account 

defines each particular case. Since wS
⌣

 is calculated on the HSN  half-surfaces, the flow 

oriented fractional flux on these half-surfaces can be obtained as ( )w w wf f S=
⌣ ⌣ ⌣

.  

Finally, the weight EJw , for the half-surface EJ  is parameter which vary between 0 and 

1, defined for each evaluated half-surface according to a local adaptive procedure, i.e., there 
exist a weight w  for each half-surface belonging to ( )Jn . Different strategies can be 

employed to derivate w  as will be discussed in the next section. For all of them, 0w =  when 
an evaluated half-surface does not have an upstream half-surface. In this case, the traditional 

one-dimensional upwind approximation is recovered and 
ˆEJ L

w wS S=
⌣

. For 0w ≠ , 
EJwS
⌣

 is 

written as a linear convex combination between a known variable 
L̂

wS  and an unknown 

variable 
EJwS
⌣

. Those variables are the water saturation associated, respectively, to the 

upstream control volume (L̂ ) and to the quadrature point on the upstream half-surface (EJ ). 

The explicit higher order M-FOS approximation works in accordance with the idea 
previous developed for the first order approximation. In Fig. 2b we can see that the water 
saturation taken into account on the half-surface i is obtained by a MUSCL-type extrapolation 
procedure. In this paper Eq. (17) is employed. Both limiter MLP or MLPvk can be used. The 

control volume Ĉ  is assumed as upstream according to the flow orientation such as done by 
Tran et al. (2005) in an implicit approach, i.e., solving local algebraic systems. In the present 
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paper the reconstructed variable over a certain half-surface is conveniently denoted by ̂
C

wSɶ , 

where the upper tilde means higher order approach.  

3.4 Strategies for Calculating the Flow Oriented Weights 

The linear convex combination presented in Eq. (23), regarding to the half-surface EJ , 
for instance, defines the upwind flow tracing in the sub-region of the evaluated interaction 
region. The linear interpolation makes the variable ranged from 

L̂
wS  to 

ZJwS
⌣

, according to the 

value of the interpolant EJw . This interpolant must vary between 0 and 1 in order to guarantee 

a convex combination. Thus, for the flow multidimensionality to be took into account, the 
interpolant is often defined as a function of the local flowrate ratio EJΛ , presented as follows 

(Schneider and Raw, 1986): 

ZJ ZJ
EJ

EJ EJ

v N

v N

⋅
Λ =

⋅

��

��                                                                                                              (24) 

Since the ratio presented in Eq. (24) can be eventually bigger than 1, some here called 
control functions have been used in literature for maintaining EJw  bounded in the 

aforementioned range. In the pioneer strategy proposed by Schneider and Raw (1986), the 
control function poses as a natural idea and has been still used in recent flow oriented 
strategies (Hurtado et al., 2007; Lamine and Edwards, 2010; Kozdon et al., 2011). Following 
the Kozdon et al. (2011) nomenclature, this control function is here called Tight 
Multidimensional Upstream (TMU) and is given, for the half-surface EJ  by: 

( )min 1,TMU
EJ EJw = Λ                                                                                                       (25) 

Note that for this control function, any ratio EJΛ  bigger than 1 implies in a same value 

for TMU
EJw , i.e., 1TMU

EJw =  for 1EJΛ > , such as we can see in the graph depicted in Fig. 3a. 

Alternatively, Hurtado et al. (2007) propose a continuous and smooth control function, 
named, in Kozdon et al. (2011), Smooth Multidimensional Upstream (SMU). Again, for the 
half-surface EJ , depicted in Fig. 3a, this alternative proposal is given by:  

1
SMU EJ
EJ

EJ

w
Λ

=
+ Λ

                                                                                                             (26) 

This proposal ensures that for any ratio EJΛ , for example, we have a smooth and 

corresponding variation for SMU
EJw . In this case, the values of EJΛ  that tend to infinite, lead to 

an interpolant SMU
EJw  tending to unity (Hurtado et al., 2007). According to Kozdon et al. 

(2011) the reduction of GOE for some benchmark problems are strongly influenced by 
choosing the type of control function. These authors highlighted that the SMU proposal 
produces much enhanced results for their test cases. On the other hand, Souza (2015) shows 
that the good performance of the SMU control function, face the TMU control function, is not 
an invariant. The type of mobility interpolation, in pressure-saturation equation coupling, can 
change this scenario and produces better results for using the TMU control function. 
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The main idea of these new control functions is to increase the multidimensionality for 
either TMU or SMU strategies whenever the angle between the evaluated half-surface (EJ  in 
Fig. 4a) and the upstream half-surface (ZJ  in Fig. 4a) is lower than 90� . 

  

 

 

 

 

 

 

 

 

 

 

                         (a)                                                                    (b) 

Figure 3. Graphs employed for calculate the multidimensional weight for the Modified Flow Orientation 
Schemes: (a) representing both TMU and SMU control functions; (b) representing the correction function 

for different values of weight w. 

 

On the other hand, when this angle is bigger than 90� , as shown in Fig. 4c, the 
multidimensionality must diminishes. Of course for meshes without distortion, both M-TMU 
and M-SMU return, respectively, to the traditional TMU and SMU control function. These 
modifications occur by modeling a correction function in order to produce the following 
relationship: 

( ) ( );M TMU TMU M SMU SMUw w w wχ θ χ θ− −= =                                                            (27)   

where ( )χ θ  is modeled by imposing certain constraints. Initially we assume that ( ) 1χ θ =  

when 90θ = � , where nothing changes. In addition, for an extreme acute angle, when 0θ = � , 
we would have the maximum value of χ , where ( ) 1 wχ θ = . On the other hand, for an 

extreme obtuse angle, when 180θ = � , we would have the minimum value of χ , where 

( ) 0χ θ = . Thus we have the correction function ( )χ θ  given by: 

( ) ( )1 1
1 , if 1 or 2 , if 1

90 90 90 90w w

θ θ θ θχ θ χ θ = + − ≤ = − > 
 

                     (28) 

Note that in Eq. (28), w  can be either TMUw  or SMUw , depending on the approach. In 
addition, we can obtain, at most, 1M TMUw − =  when ( ) 1 TMUwχ θ = , for 0θ = � . At last, when 

0w = , Eq. (28) is not necessary since we have a traditional unidimensional approximation. In 
Fig. 3b the graph representing the function ( )χ θ  is shown, for several values of w , as a 
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function of the relative angle 90θ . We remark that this correction function is adaptive once 
TMUw  or SMUw  change with the flowrate ratio Λ , computed on each half-surface. 

                  

 

 

 

 

 

 

 

                 (a)                                           (b)                                        (c) 

Figure 6. Multidimensionality correction according to the mesh distortion: (a) there is no influence of the 

mesh distortion, 90θ = � , ( ) 1χ θ = ; (b) the control volume L̂  is more upstream from the half-surface EJ , 

90θ < � , ( ) 1χ θ > ; (c) the control volume L̂  is less upstream from the half-surface EJ , 90θ > � , ( ) 1χ θ < . 

 

Finally, to perform these modifications, we proceed as follows: 

1. Calculate the unmodified TMU or SMU control function by using, respectively, Eqs. 
(25) and (26); 

2. For each half-surface, calculate the angle θ  between the evaluated and the upstream 
half-surface (see Fig. 4); 

3. Calculate a correction factor ( )χ θ  by mean of Eq. (28); 

4. Calculate the modified control functions M-TMU or M-SMU by using Eq. (27). 

4  NUMERICAL RESULTS 

Now we present some test cases in order to illustrate the benefits of the strategies 
proposed in this paper. Thus, we can observe how the higher order flow oriented scheme, 
associated to a multidimensional limiter strategy, correction procedure for distorted meshes 
and entropy fix can produce more reliable results when compared with that produced by 
another numerical schemes available in literature.     

4.1. Buckley-Leverett Problem 

In this test case, the Buckley-Leverett model, obtained from Bastian (2002), is 
numerically resolved employing schemes with both first and second order of accuracy in 
space. The simplified shape of the petroleum reservoir consists in an isotropic and 
homogeneous domain with constant porosity 0.2φ =  and dimensions, given in meters, of 
[0,300]x[0,75]. The time interval consists in [0,1500] days. The permeability tensor is given 
by K I=
ɶ ɶ

. Known flow rate and water saturation are prescribed on the left face in the 
computational domain. This denotes the water injection in a rock initially saturated by oil. 
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The velocity of injection in that face is 73 10wv −= × m/s with unitary water saturation. Null 

Neumann flux is prescribed on both top and bottom surfaces, representing sealing faces. On 
the right face, we impose a known and null pressure. As adopted in Bastian (2002), the 
irredutible water saturation and residual oil saturation are, respectively, 0wi orS S= = . The 

mobility ration for this problem is 1M =  and the Brooks-Corey model is employed as 
constitutive relationship such as described in Bastian (2002). We also adopt the Courant 
number 0,5=C . The computational domain is discretized with 1CV ×N  quadrilateral control 

volumes, where CVN  assumes 32, 64, …, 1024 subdivisions through the longitudinal 

direction. In order to evaluate the errors for the numerical solution, which are compared to the 
semi-analytical Welge solution (Aziz and Settari, 1979), the L1 norm (Souza, 2015) is 
applied. In both cases, the solution is calculated on the colocation point with coordinate x

�
 

through the computational domain. The parameter iΩ  denotes the volume (area in 2-D 

domain) of each control volume i where the solution is evaluated.  

This test case aims to show that the convergence of the numerical solution towards the 
semi-analytical solution is strongly influenced by the use of the entropy fix strategy devised 
by Serna (2009). This fact is specially observed for higher order approximation results. We 
also evaluate here the different types of limitation strategies, for higher order approximation 
schemes, and their performance regarding to producing convergente solutions. In Fig. 5a we 
present the errors obtained with L1 norm for the numerical solution of the Buckley-Leverett 
problem by using several mesh refinements.  

 

 

 

 

 

 

 

 

 (a)                                                                           (b) 

 

Figure 5. Buckley-Leverett problem: (a) convergence rate curves where solutions with and without 
entropy fix, obtained with first and second order of accuracy are compared; (b) zoom view of numerical 

results obtained in a mesh with 1024 subdivisions for first and second order of accuracy. Face-based 
limiter and the control volume-based limiters are also compared. 



A Modified Flow Orientation Scheme Coupled with a Robust MPFA-Diamond for the Solution of Two-Phase 
Flow in Highly Anisotropic Petroleum Reservoirs 

CILAMCE 2016 
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering 
Suzana Moreira Ávila (Editor), ABMEC, Brasília, DF, Brazil, November 6-9, 2016 

The traditional scheme with first order in space is therefore compared with that obtained 
with second order of accuracy and different limitations strategy (van Albada, MLP and MLP-
vk). For all cases, numerical solutions with and without entropy fix are verified. Even though 
the effective convergence rate expected for each order of approximation cannot be reached 
due to the discontinuity in the solution, these results are an indicator of effectiveness for each 
numerical scheme. As shown in Fig. 5a, the convergence only occurs for the results obtained 
with first order approximation and second order with MLPvk limiter. The latter converges 
only when the entropy fix is employed (black continuous line). All other numerical schemes 
have the convergence degenerated for very refined meshes (1024 subdivisions). In this 
problem we obtain convergent solutions with the first order scheme, even when the entropy 
fix is not turned on. However, according Serna (2009), the absence of an entropy fix strategy 
can produce non-convergent solutions even for approximations with first order of accuracy. 
On the other hand, as aforementioned, the Serna (2009) strategy is strictly necessary for the 
convergence of second order approximation, even for a simpler test case. Besides, as shown 
in Fig. 5a, the results obtained exclusively with the Roe flux, i.e., without entropy fix (dashed 
lines) are, in general, worse than those obtained with entropy fix (continuous line). In Fig. 5b 
details of the numerical solutions are presented for a mesh with 1024 subdivisions. Note that, 
in a general way, only the first order approximation and the second order scheme, with 
MLPvk limiter and entropy fix, honored the semi-analytical solution such as previously 
indicated in the convergence analysis. In addition, the second order approximation limited 
with traditional face-based limiter produces non-physical solutions, even when the entropy fix 
is considered. This degrades the convergence rate as shown in Fig. 5a (blue lines). 

4.2. Two-Phase Flow in Homogeneous and Anisotropic Petroleum 
Reservoir 

The present test case consists of an adaptation from Lamine and Edwards (2010) 
problem. We consider here a homogeneous and anisotropic petroleum reservoir for a classical 
problem with a quarter of five-spot. The simplified petroleum reservoir has dimensions given 
by [0,1]2. The permeability tensor presents anisotropy ratio 10xx yyK K =  and its main 

directions are rotated by 45° regarding to the Cartesian directions. This leads to a full-tensor 
for representing the permeability in Cartesian basis. Only null Neumann boundary condition 
is imposed through the boundary domain. Unitary flow rate and water saturation are 
prescribed on the injector well. On the producer well we have a known null pressure. For this 
problem we employ an adverse mobility ratio 50M = . Irredutible water saturation wiS  and 

residual oil saturation orS  are both null. Again we adopt the Brooks-Corey model as the 

constitutive relationship. The exponents for the wetting and non-wetting phases are, 
respectively, 5wn =  and 1on = . We also consider a final time for the simulation of 0.4 PVI 

and 0,5=C . In this test case we intend to evaluate the performance of the modified flow 
oriented scheme, especially for second order of accuracy. We also evaluate the benefits of the 
procedure here proposed which adaptively tunes the multidimensionality of the flow oriented 
scheme according to degree of distortion in the meshes employed. For this test we employ a 
strongly distorted mesh, adapted from Hermeline (2007), with 32x32 and 64x64 subdivisions, 
shown in Fig. 6a and 6b, respectively. A reference solution was obtained with the robust 
schemes MPFA-O and First Order Upwind Scheme solving, respectively, the pressure and the 
saturation equations. An unstructured triangular mesh with 37,996 control volumes was used 
for this case. 
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Figure 6. Water saturation field obtained for distorted mesh adapted from Hermeline (2007): (a) mesh 
with 32x32 subdivisions; (b) mesh with 64x64 subdivisions; (c) standard scheme with 2nd order of accuracy 

and MLPvk limiter (64x64 subdivisions); (d) M-TMU scheme with 2nd order of accuracy and MLPvk 
limiter (64x64 subdivisions). 

 

Now, comparing each type of flow oriented scheme we can see that all TMU-type 
configurations (TMU and M-TMU) have presented better results than SMU-type results. Both 
TMU-type and SMU-type configurations have presented better results than that obtained with 
the standard schemes. Regarding the performance of the correction for distorted meshes, 
which leads to M-TMU and M-SMU approaches, we observe that for first order 
approximation there is no relevant gain whether M-TMU or TMU is used. When we compare 
M-SMU and SMU, we can see a slight gain, even for first order approximation. It occurs in 
both mesh refinements. It is interesting observe that both M-TMU and TMU with first order 
approximation produces oil flow rate curves practically matching to that obtained with higher 
order standard scheme. On the other hand, the influence of the correction for distorted meshes 
is substantial in higher order approximation schemes. Observing the curves in Fig. 7, we can 
perceive the M-TMU closer to the reference solution than the solution obtained with TMU. 
The same occurs for M-SMU compared to SMU. Moreover, the higher order M-SMU 
matches to higher order TMU. 



A Modified Flow Orientation Scheme Coupled with a Robust MPFA-Diamond for the Solution of Two-Phase 
Flow in Highly Anisotropic Petroleum Reservoirs 

CILAMCE 2016 
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering 
Suzana Moreira Ávila (Editor), ABMEC, Brasília, DF, Brazil, November 6-9, 2016 
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Figure 7. Oil flow rate curves for standard scheme (stdr), flow oriented scheme (TMU and SMU) and 
modified flow oriented scheme (M-TMU and M-SMU): (a) obtained in a 32x32 distorted mesh: (b) 

obtained in a 64x64 distorted mesh. 

 

Again this performance is observed for both mesh refinements. In Fig. 7 we can see the 
performance of some configuration for the same time level. The improvement on the solution 
of the water saturation field, with respect to the diminishing of GOE is evident. It leads the 
breakthrough closer to that in reference solution. 

5  CONCLUSIONS 

In this paper we presented an alternative flow oriented scheme to solve two-phase 
flow in anisotropic petroleum reservoirs. This proposition has as main novelties the explicit 
computation of the multidimensional numerical fluxes on each half-surface, the introduction 
of an adaptive correction for the flow oriented scheme, according to the level of mesh 
distortion, and an efficient entropy fix, employed to enhance convergence and accuracy for 
the results. In this framework, low and higher orders of accuracy in space were performed, 
where, for higher order approximation, the MLP strategy was adopted due to its robustness 
and multidimensional character. The set of numerical procedures presented in this paper poses 
as advantageous when faced to another flow oriented-type schemes available in literature and 
with similar computation (Hurtado et al., 2007; Kozdon et al., 2011). In these last cases, the 
multidimensional numerical fluxes are implicitly calculated, with only first order of accuracy 
and without any entropy fix strategy. Some representative test cases were used in present 
paper to show the potential of the numerical procedures presented to handle problems 
involving adverse mobility ratio, highly anisotropic media and discretization with much 
distorted meshes.  

We could observe, for a simple Buckley-Leverett problem, that the use of the Serna 
(2009) entropy fix enhances, in general, the convergence and accuracy of numerical solutions, 
predominantly obtained for second order of accuracy on space. The results obtained with 
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MLPvk as limiting strategy were the best ones. However, this entropy fix proposal was not 
capable to ensure that non-physical solutions could appear. Results obtained with the face-
based limiter (van Albada) and with the traditional MLP limiter presented non-physical 
solutions near discontinuity and hence degradation on the convergence rate. In the 
comparison between the standard and the flow oriented schemes for solving an adverse 
mobility ratio problem with distorted mesh, it is clear that the flow oriented schemes 
diminishes substantially the GOE, compared to those results obtained with the standard 
approximation. This behavior was observed for both first and second order of accuracy. In 
addition, the schemes with correction of the multidimensionality according to the mesh 
distortion (M-TMU and M-SMU) produced results much more reliable than those obtained by 
the standard schemes (stdr) and even those obtained with conventional flow oriented schemes, 
TMU and SMU. This reveals that, in fact, the correction procedure is necessary, especially for 
higher order approximation, which, once again, produced the most reliable results.       
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