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Abstract. The objective of this work is to parallelize, using the Application Programming In-
terface (API) OpenMP (Open Multi-Processing) and Intel Xeon Phi coprocessor based on Intel
Many Integrated Core (MIC) architecture, the numerical method used to solve the algebraic
system resulting from the discretization of the differential partial equation that describes the
single-phase flow in a gas reservoir. The set of governing equations are the continuity equation,
the Darcy’s law and an equation of state. The Hydraulic Diffusivity Equation (HDE), for the
unknown pressure, is obtained from this set of fundamental equations and it is discretized by
means of the Finite Difference Method (FDM) along with a time implicit formulation. Different
numerical tests are performed in order to study the computational efficiency of the parallelized
versions of Conjugate Gradient (CG), BiConjugate Gradient (BiCG) and BiConjugate Gra-
dient Stabilized (BiCGStab) methods, and different production scenarios were considered for

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
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horizontal wells and single-phase gas flow. The influence of different physical parameters as,
for example, permeability on the wellbore pressure is also considered. Speed-up results are
considered in order to evaluate the performance of the parallel algorithms.

Keywords: Numerical reservoir simulation, Finite difference method, Sparse algebraic system,
Iterative methods, OpenMP, Parallelization.

1 INTRODUCTION

Without a doubt, numerical reservoir simulation has became very important for petroleum
industry and has been used intensely by the scientific and engineering communities. Reservoir
simulation combines physics, mathematics, reservoir engineering and computer programming
to develop a tool for predicting hydrocarbon-reservoir performance under various operating
conditions (Ertekin et al., 2001). Dumkwu et al. (2012) pointed out that a numerical reservoir
simulator has long become a primary reservoir tool used by reservoir engineers to conduct
reservoir simulations which are useful in order to take major decisions, estimate reserves and to
diagnose and improve on the performance of producing reservoirs in the oil and gas industry.
The main purpose of the reservoir simulators is to provide better reservoir management, leading
to an increase in gas/oil recovery.

Aiming to enable or increase the production of unconventional reservoirs, horizontal wells
(Fig. 1) have been used to increase the contact area between reservoir and well (Akgun, 2004).
They are indicated for low reservoir thickness, low-permeability formations and naturally frac-
tured reservoirs. Productivity forecasts for horizontal wells have a higher level of uncertainty
compared to vertical wells. This is due to the fact that reservoir flow regimes in a horizontal
well are not so clearly identified as those for a vertical well (Chaudhry, 2003). This partially
results from the inherently three-dimensional nature of the flow (the radial symmetry observed
in vertical wells does not occur in the same way for horizontal wells). Therefore, due to its
importance for reservoir engineering applications, much research has been done considering
horizontal wells (Al-Mohannadi, 2004; Al-Mohannadi et al., 2007; de Souza, 2013; de Souza
et al., 2014; Shahbazi et al., 2015). It is important to note that in the last decades many works
have been produced aimed at optimizing recovery in unconventional hydrocarbons reserves, as
for example, shale gas. Indeed, shale gas reservoirs are increasing in importance as a source of
natural gas.

Figure 1: Representation of a reservoir and a horizontal well, of length Lwf , parallel to x- direction.
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For a certain class of problems, as for example, slightly compressible one-dimensional
single phase flow, there are some analytical solutions available in the literature. However, for
complex systems and more realistic flows, numerical simulation is still a very important tool
(Ertekin et al., 2001). For instance, numerical solutions are used for modeling gas reservoirs.
In this case, governing partial differential equations for porous media flow are nonlinear. This
follow from the fluid properties dependency on pressure (Jmili et al., 2011; He & Durlofsky,
2013).

The motivation to develop this work is due to the importance of gas recovery in reservoirs
in the last decades. In order to study this problem, a three-dimensional reservoir simulator
has been developed using Cartesian coordinates and a classical finite-difference approach. The
physical-mathematical modeling considers single-phase and isothermal gas flow, without ad-
sorption effects, which can be present in certain applications involving gas reservoirs. Hydraulic
and natural fractures are not also considered in this study. The production through horizontal
wells is considered in this work. A nonlinear partial differential equation for unknown pres-
sure is numerically solved using parallelized versions of the Conjugate Gradient, BiConjugate
Gradient and BiConjugate Gradient Stabilized methods. It is worth noting that the presence
of rock heterogeneities and/or nonlinear equations, as in gas flow, generally will increase the
computational costs. Moreover, for simulations involving horizontal wells typically it is nec-
essary a more refined mesh and this contributes to increase computational efforts. Hence, high
performance computation for numerical reservoir simulation is a subject of great interest.

Nowadays, the technologies used to characterize petroleum reservoirs can produce a large
amount of data, so that an accurate simulation requires the use of highly refined computational
grids. The direct consequence is that the calculations become significantly slower and a very
high amount of computational resources (CPU and memory) is necessary. Currently, fast sim-
ulations using business software are based on parallel computing on CPU cores using MPI and
OpenMP, which also motivated this work.

2 PHYSICAL-MATHEMATICAL MODELING

A governing equation for porous media flow will be derived using the balance equations
(mass and momentum) and an equation of state, considering the following assumptions: het-
erogeneous rock formation; constant intrinsic permeabilities; low and constant rock compress-
ibility; Newtonian fluid; dry gas reservoir; fluid of constant composition and isothermal single-
phase flow. Typically, porous media flow is governed by the well-known Darcy’s law, that
establishes a linear relationship between the superficial velocity and the pressure gradient.

2.1 Governing Equations for Porous Media Flow

Mass conservation for porous media flow can be expressed by

∂

∂t
(φρ) +∇ · (ρv)− qm

Vb
= 0, (1)

where v is the superficial fluid velocity, ρ represents density, qm is a source term and Vb indicates
the bulk volume.
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For a real gas, the following equation of state can be considered

ρ =
pM

ZRT
, (2)

where M is the molecular gas weight, Z represents real gas deviation factor, R is the universal
gas constant and T is the temperature. Using the formation-value-factor, B, Eq. (2) can be
rewritten as

B =
V

Vsc
=
ρsc
ρ

=
pscM

ZscRTsc

ZRT

pM
=
pscTZ

Tscp
, (3)

where V is fluid volume at reservoir conditions, Vsc is fluid volume at standard conditions and
psc and Tsc are pressure and temperature at standard conditions, respectively.

The superficial velocity is determined by the traditional Darcy’s law

v = −k

µ
[∇p− ρg∇D], (4)

where k is the absolute permeability tensor, µ the fluid viscosity, p the pressure, ∇D is the
depth gradient and g is the gravity acceleration. For gas flow, viscosity must be modeled as a
function of pressure, temperature and molecular weight. Equation (4) can be applied to model
laminar flow through a porous medium at low Reynolds number. When the inertial effects are
no longer negligible, classical Darcy’s law can lead us to results that do not correspond to the
physical reality and the law has to be modified in order to include the inertial effects (Barree &
Conway, 2004).

2.2 Non-Linear Hydraulic Diffusivity Equation

In order to obtain a differential partial equation for the unknown pressure, we begin by
replacing Eq. (4) in Eq. (1),

∂

∂t
(φρ)−∇ ·

[
ρk

µ
(∇p− ρg∇D)

]
− qm
Vb

= 0. (5)

Now, applying Eq. (3) in Eq. (5), multiplying by Vb and using qm = qscρsc, it is possible to write

Vb
∂

∂t

(
φ

B

)
− Vb∇ ·

[
k

Bµ
(∇p− ρg∇D)

]
− qsc = 0. (6)

For porosity variation we consider that (Ertekin et al., 2001)

φ = φ0
[
1 + cφ

(
p− p0

)]
, (7)

where φ0 and p0 are porosity and pressure in a reference condition, respectively, and cφ is the
rock compressibility, yield (Ertekin et al., 2001)

Vb
∂

∂t

(
φ

B

)
= Vb

[
φ0cφ
B

+ φ
∂

∂p

(
1

B

)]
∂p

∂t
= Γ

∂p

∂t
. (8)
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From Eq. (8), Eq. (6) is rewritten as

Γ
∂p

∂t
− Vb∇ ·

[
k

Bµ
∇p
]

+ ΓG − qsc = 0, (9)

where ΓG = VbG and G includes gravitational effects.

The source term qsc in Eq. (9) is written in terms of the wellbore pressure

qsc = −Jw(p− pwf ) (10)

where Jw is the Productivity Index (PI). Jw is a function of a set of parameters as, for example,
fluid, rock and geometric properties. There are many different expressions that can be applied
to compute PI, depending on reservoir, fluid, wellbore and flow characteristics (Dumkwu et al.,
2012).

Replacing Eq. (10) in Eq. (9) we get

Γ
∂p

∂t
− Vb∇ ·

[
k

Bµ
∇p
]

+ Jw(p− pwf ) + ΓG = 0. (11)

Equation (11) has the form of hydraulic diffusivity equation, a non-linear partial differential
equation, where the dependent variable is the gas pressure.

For the numerical resolution we consider an initial condition given by

p(x, y, z, t = 0) = pinit(z), (12)

where pinit is a function of z, and no-flow for external boundary conditions(
∂p

∂x

)
x=0,Lx

=

(
∂p

∂y

)
y=0,Ly

=

(
∂p

∂z

)
z=0,Lz

= 0, (13)

where Lx, Ly and Lz are reservoir lengths in x-, y- and z- directions, respectively. Finally,
internal boundary condition is applied using the well rate production prescribed, Qsc, which is
equal to the summation of qsc for the cells where there is a part of the horizontal well. If the
flow rate is fixed, wellbore pressure is variable. Instead, if the wellbore pressure is specified,
the well flow rate is an unknown.

3 NUMERICAL SOLUTION

In this section we give detailed information about the approach applied to solve the Hy-
draulic Diffusivity Equation through the use of the finite difference method and techniques for
solving linear algebraic systems.

3.1 Discretization of the Hydraulic Diffusivity Equation

Finite Difference Method (FDM) (Ertekin et al., 2001) is applied on the discretization of
the Eqs. (11)–(13). Figure 2 shows a representation of a discretized reservoir using three-
dimensional Cartesian coordinates. In the following, integer indexes i, j and k indicate cell
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Figure 2: Finite difference discretization using Cartesian coordinates and centered blocks. Integer indexes
indicate cell centers.

centers along x-, y- and z- directions, respectively. A fractional index, as i± 1/2, j, k, indicates
a cell boundary.

Considering an anisotropic medium and a diagonal permeability tensor we get from Eq. (11)

Γ
∂p

∂t
− ∂

∂x

(
kxAx
Bµ

∂p

∂x

)
∆x− ∂

∂y

(
kyAy
Bµ

∂p

∂y

)
∆y− ∂

∂z

(
kzAz
Bµ

∂p

∂z

)
∆z+Jw(p−pwf ) = −ΓG,

(14)

where Vb = ∆x∆y∆z, Ax = ∆y∆z, Ay = ∆x∆y and Az = ∆x∆y.

Using a central difference approximation for centered blocks (Ertekin et al., 2001), we have

∂

∂x

(
kxAx
Bµ

∂p

∂x

)n+1

i,j,k

≈ 1

∆xi,j,k

[(
kxAx
Bµ

∂p

∂x

)
i+ 1

2
,j,k

−
(
kxAx
Bµ

∂p

∂x

)
i− 1

2
,j,k

]n+1

, (15)

where ∆xi,j,k is the grid spacing in x- direction, n + 1 represents the temporal level in which
pressures are computed and n indicates a time level where pressure is known, and(

∂p

∂x

)n+1

i+ 1
2
,j,k

≈
pn+1
i+1,j,k − p

n+1
i,j,k

∆xi+ 1
2
,j,k

and
(
∂p

∂x

)n+1

i− 1
2
,j,k

≈
pn+1
i,j,k − p

n+1
i−1,j,k

∆xi− 1
2
,j,k

, (16)

where ∆xi±1/2,j,k is the distance between cell centers numbered by i and i ± 1. Similar forms
can be obtained for y- and z- coordinates.

The transmissibility in x- direction is computed as

T n+1
x,i± 1

2
,j,k

=

(
kxAx
Bµ∆x

)n+1

i± 1
2
,j,k

(17)

where an harmonic average is applied to determine transmissibility at i ± 1/2, j, k from the
known values in i, j, k and i+ 1, j, k. Analogous expressions can also be determined for y- and
z- directions.
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Finally, it is possible to get the final discretized form for Eq. (14) using an implicit formu-
lation

Γn+1
i,j,k

∆t

(
pn+1
i,j,k − p

n
i,j,k

)
− T n+1

x,i+ 1
2
,j,k

(
pn+1
i+1,j,k − p

n+1
i,j,k

)
− T n+1

x,i− 1
2
,j,k

(
pn+1
i−1,j,k − p

n+1
i,j,k

)
−T n+1

y,i,j+ 1
2
,k

(
pn+1
i,j+1,k − p

n+1
i,j,k

)
− T n+1

y,i,j− 1
2
,k

(
pn+1
i,j−1,k − p

n+1
i,j,k

)
−T n+1

z,i,j,k+ 1
2

(
pn+1
i,j,k+1 − p

n+1
i,j,k

)
− T n+1

z,i,j,k− 1
2

(
pn+1
i,j,k−1 − p

n+1
i,j,k

)
−Jn+1

w,i,j,k

(
pn+1
wf,i,j,k − p

n+1
i,j,k

)
= − (ΓG)n+1

i,j,k (18)

where a backward Euler approximation was used,(
∂p

∂t

)n+1

i,j,k

≈
pn+1
i,j,k − pni,j,k

∆t
, (19)

and (Ertekin et al., 2001)

Γn+1
i,j,k = Vb,i,j,k

{
φ0cφ
Bn+1

+
φn

Bn

[
(Bn/Bn+1)− 1

pn+1 − pn

]}
i,j,k

. (20)

3.2 Numerical Solution for Unknown Pressure

Written for each cell, Eq. (18) leads to a set of non-linear algebraic equations in terms of
the unknown pressure. Aiming the use of techniques to solve systems of linear equations, this
equation has to be linearized. For transmissibility terms we use (Ertekin et al., 2001),

T n+1
x,i± 1

2
,j,k
∼= T n+1,v

x,i± 1
2
,j,k

=

(
kxAx
Bµ∆x

)n+1,v

i± 1
2
,j,k

, (21)

and Eq. (18) can be written as(
Γn+1,v
i,j,k /∆t

) (
pn+1,v+1
i,j,k − pni,j,k

)
− Jn+1,v

w,i,j,k

(
pn+1,v+1
wf,i,j,k − p

n+1,v+1
i,j,k

)
−T n+1,v

x,i+ 1
2
,j,k

(
pn+1,v+1
i+1,j,k − p

n+1,v+1
i,j,k

)
− T n+1,v

x,i− 1
2
,j,k

(
pn+1,v+1
i−1,j,k − p

n+1,v+1
i,j,k

)
−T n+1,v

y,i,j+ 1
2
,k

(
pn+1,v+1
i,j+1,k − p

n+1,v+1
i,j,k

)
− T n+1,v

y,i,j− 1
2
,k

(
pn+1,v+1
i,j−1,k − p

n+1,v+1
i,j,k

)
−T n+1,v

z,i,j,k+ 1
2

(
pn+1,v+1
i,j,k+1 − p

n+1,v+1
i,j,k

)
− T n+1,v

z,i,j,k− 1
2

(
pn+1,v+1
i,j,k−1 − p

n+1,v+1
i,j,k

)
= − (ΓG)n+1,v

i,j,k , (22)

where iterative levels are indicated by v (known values) and v+ 1 (unknown values). The same
procedure is used for Γi,j,k and Jw,i,j,k terms.

In order to describe a well-reservoir coupling for a single phase flow, it is necessary an
equation for the well flow rate and calculate Jw (Peaceman, 1983). We neglect frictional and
convective effects inside the well. Total well flow rate, Qsc, must be equal to gas flow summa-
tion from all cells containing the well, thus,

Qsc = −
i=W2∑
i=W1

Jn+1,v
w,i,j,k

[
pn+1,v+1
i,j,k − (pwf )

n+1,v+1
i,j,k

]
(23)
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for a well that trespassing layers along with x- direction, starting from cell W1, j, k to W2, j, k.
A reference position is chosen in order to computing the wellbore pressure. Then, for the well-
reservoir coupling we use

Jn+1,v
w,i,j,k =

{
1

µB

}n+1,v

i,j,k

{
2π
√
kzky∆x[

1− (rw/req)
2] ln (req/rw)

}
i,j,k

(24)

and

req,i,j,k =

√
(∆z∆y)i,j,k

π
exp (−0.5), (25)

where req is the equivalent radius (Peaceman, 1983, Al-Mohannadi et al., 2007) and rw is the
wellbore radius.

Equations (22) and Eq. (23) form a system of linearized equations for reservoir and well-
bore pressures, and this set of equations is solved using an approximate factorization technique.
This technique is appropriate to handle with practical simulation of heterogeneous reservoirs.
The Conjugate Gradient (CG), Biconjugate Gradient (BiCG) and Biconjugate Gradient Stabi-
lized (BiCGStab) methods were employed in this work. Considering the iterative procedure,
the numerical solution is achieved when

max
∣∣χn+1,v+1 − χn+1,v

∣∣ < tol (26)

where χ represents reservoir and wellbore pressures and tol is a numerical tolerance. A nested
iteration procedure (Ertekin et al., 2001) is used: in the inner iteration, the iterative method is
applied in order to solve pressures and, in the outer iteration, transmissibilities are updated. A
general numerical solution algorithm can be found in de Souza & Souto (2016).

4 RESOLUTION OF ALGEBRAIC SYSTEM

In the previous section, we presented the discretized forms of the Hydraulic Diffusivity
Equation, that governs the single-phase flow in a gas reservoir, and of the well-reservoir cou-
pling equation. Next, to obtain a numerical solution for the reservoir and wellbore pressures,
the set of non-linear algebraic equations was linearized (de Souza & Souto, 2016). In general,
the procedure of finding a numerical solution consists of the resolution of Ax = b, where A
is known as the coefficient matrix and the vector b contains known terms. As is well known,
there are two main techniques for solving linear algebraic systems which are direct methods and
indirect or iterative methods. Here we are just concerned with the iterative methods.

The iterative methods are based on repetitive application of relatively simple algorithms.
The convergence is not always guaranteed, but when it’s possible, it is obtained after a set of iter-
ations. In this work, the Conjugate Gradient (CG), Algorithm 1, BiConjugate Gradient (BiCG),
Algorithm 2, and BiConjugate Gradient Stabilized (BiCGStab), Algorithm 3, were chosen (Bar-
rett et al., 1994) to be applied in the resolution of algebraic systems. Seeking to improve perfor-
mance of the numerical computation, our main goal is to develop parallelized versions of these
methods using the API OpenMP to be running in a Intel Xeon Phi coprocessor with 57 cores
(228 threads). In the algorithms we can see all the sequence of instructions/operations that were
parallelized with the OpenMP.
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Algorithm 1: Conjugate Gradient Method (CG).
1 Give the maximum number of iterations nmax and the tolerance tol; Compute r0 = b−Ax0 for some

initial guess x0; Do p0 = r0.
2 Compute ||r0||
3 for k = 0 : nmax do
4 Compute Apk // #pragma omp parallel for private (i,j,sum)

5 Compute < pk, Apk > // #pragma omp parallel for reduction (+:pAp)

6 Compute < rk, rk > // #pragma omp parallel for reduction

(+:r old norm)

7 αk =
< rk, rk >

< pk, Apk >
8 xk+1 = xk + αkpk // #pragma omp parallel for

9 rk+1 = rk − αkApk // #pragma omp parallel for

10 Compute < rk+1, rk+1 > // #pragma omp parallel for reduction

(+:r new norm)

11 βk =
< rk+1, rk+1 >

< rk, rk >
12 pk+1 = rk+1 + βkpk // #pragma omp parallel for

13 Compute ||rk+1||
14 if ||rk+1||/||r0|| < tol then
15 x = xk+1

16 end
17 else
18 If k = nmax, there was no convergence
19 end
20 end

Over the years, the scientific community have frequently required accurate numerical re-
sults that describe adequately real problems. In order to be up to date with all the latest innova-
tions we must overcome the major barriers imposed by hardware constraints of some personal
computers, such as processing speed, memory capacity and scientific visualization among oth-
ers, searching for new technologies as graphics processing unit (GPU) and multicore coproces-
sor. With regard to storage capacity, some compression matrix methods have been developed
and we highlighted here: Coordinate Format (COO); Compressed Sparse Row (CSR); Com-
pressed Sparse Column (CSC) and Matrix Market Format. Aiming to optimize the use of
available memory, these methods propose to storage only the non zero elements of the coef-
ficient matrix that, in many practical problems, are sparse matrix. Proceeding in this way we
can reduce considerably the need for storage and the Compressed Sparse Row (CSR) method is
utilized in this work.

OpenMp is an Application Programming Interface (API) developed and maintained by the
OpenMP group Architecture Review Board (ARB) and is based on parallel programming for
shared-memory in multithreaded architectures (Chapman et al., 2008). This interface is com-
posed by three basic components: Compiler Directives; Runtime Library Routines and Envi-
ronment Variables. This API supports C, C++ and Fortran on a wide variety of architectures and
platforms using Unix, Linux and Windows. The OpenMP is not a programming language, but
rather a set of specifications that allows parallelization of numerical codes through the incor-
poration of directives that indicate how the work should be divided between the cores/threads.
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Therefore, this interface allow us a easy way to take advantage of parallel processing without
demanding great changes in the numerical codes.

Algorithm 2: BiConjugate Gradient Method (BiCG).
1 Give the maximum number of iterations nmax and the tolerance tol; Compute r0 = b−Ax0 for some

initial guess x0; Do r̂0 = r0; Do p0 = r0, p̂0 = r̂0.
2 Compute ||r0||
3 for k = 0 : nmax do
4 Compute Apk // #pragma omp parallel for private (i,j,Ap)

5 Compute < rk, r̂k > // #pragma omp parallel for reduction

(+:r new norm)
6 Compute < Apk, p̂k > // #pragma omp parallel for reduction (+:pAp)

7 αk =
< rk, r̂k >

< Apk, p̂k >
8 xk+1 = xk + αkpk // #pragma omp parallel for

9 rk+1 = rk − αkApk // #pragma omp parallel for

10 Compute AT p̂k // #pragma omp parallel for private (i,j,Ap )

11 r̂k+1 = r̂k − αkAT p̂k // #pragma omp parallel for

12 Compute < rk+1, r̂k+1 > // #pragma omp parallel for reduction

(+:r new norm)

13 βk =
< rk+1, r̂k+1 >

< rk, r̂k >
14 pk+1 = rk+1 + βkpk // #pragma omp parallel for

15 p̂k+1 = r̂k+1 + βkp̂k // #pragma omp parallel for

16 Compute ||rk+1||
17 if ||rk+1||/||r0|| < tol then
18 x = xk+1

19 end
20 else
21 If k = nmax, there was no convergence
22 end
23 end

5 NUMERICAL RESULTS

In order to verify the computational efficiency of the parallelized versions (employing the
API OpenMP) of the linear solvers, a problem of practical interest was considered: gas flow in
a hydrocarbons reservoir producing through a horizontal well.

All the following simulations were performed using a set of parameters (default data) that
remained unchanged unless otherwise specified, and they can be found in Table 1. In this
table, ∆ti is the initial time step, ∆tf is the final time step and F∆t is the increase rate for ∆t
(multiplying consecutive time steps, starting by the ∆ti). The term Pinit indicates the pressure
at the top of the reservoir. In all numerical experiments, correlations by Lee et al. (1966) for
viscosity and by Dranchuk & Abou-Kassem (1975) for real gas deviation factor were applied.
The horizontal well is also parallel to the x−direction.
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Algorithm 3: BiConjugate Gradient Stabilized Method (BiCGStab).
1 Give the maximum number of iterations nmax and the tolerance tol; Compute r0 = b−Ax0 for some

initial guess x0; Do r̂0 = r0; Do p0 = r0.
2 Compute ||r0||
3 for k = 0 : nmax do
4 Compute Apk // #pragma omp parallel for private (i,j,Ap)

5 Compute < rk, r̂0 > // #pragma omp parallel for reduction

(+:r old norm)
6 Compute < Apk, r̂0 > // #pragma omp parallel for reduction (+:t1)

7 αk =
< rk, r̂0 >

< Apk, r̂0 >
8 sk = rk − αkApk // #pragma omp parallel for

9 Compute Ask // #pragma omp parallel for private (i,j,As)

10 Compute < Ask, Ask > // #pragma omp parallel for reduction (+:t2)

11 Compute < Ask, sk > // #pragma omp parallel for reduction (+:t)

12 ωk =
< Ask, sk >

< Ask, Ask >
13 xk+1 = xk + αkpk + ωksk // #pragma omp parallel for

14 rk+1 = sk − ωkAsk // #pragma omp parallel for

15 Compute < rk+1, r̂0 > // #pragma omp parallel for reduction

(+:r new norm)

16 βk =
αk < rk+1, r̂0 >

ωk < rk, r̂0 >
17 pk+1 = rk+1 + βk(pk − ωkApk)
18 // #pragma omp parallel for

19 Compute ||rk+1||
20 if ||rk+1||/||r0|| < tol then
21 x = xk+1

22 end
23 else
24 If k = nmax, there was no convergence
25 end
26 end

5.1 Computational Efficiency

The appropriateness of using parallel computation in the reservoir simulation, with a hor-
izontal well, was verified using three-dimensional numerical grids defined by nx × ny × nz
where nx, ny and nz stand for the number of cells in the x−, y− and z−directions, as shown in
Table 2. Also in this table nw represents the number of cells occupied by the well. Initially, all
the runs were performed considering the three linear solvers employed in this work: Conjugate
Gradient, BiConjugate Gradient and BiConjugate Gradient Stabilized.

Wellbore pressure results are depicted in Figs. 3 and 4. Figure 3 shows serial and parallel
results for CG method and the different grids. Experimental evidence of numerical convergence
can be observed. Wellbore results for early times are impacted by a numerical artifact related
to the well-reservoir technique applied (Peaceman, 1983). In Fig. 4 results are depicted for the
three different methods using the grid 4. Concordant results were found in these tests.
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Table 1: Default data used in all simulations.

Parameter Value Parameter Value Parameter Value

∆ti (days) 1.0× 10−3 ∆tf (days) 10 F∆t 1.1

psc (Pa) 1.01353× 105 M (kg/kg-mol) 17.4 nx 128

p0 (Pa) 3.0× 107 Lx = Ly (m) 5000 ny 129

Pinit (Pa) 3.0× 107 Lz (m) 100 nz 17

cφ (Pa−1) 4.0× 10−10 Lwf (m) 1250 nw 64

Qsc (std m3/day) −5.0× 105 tmax (days) 90 φinit 0.2

kx = ky (m2) 5.0× 10−15 Tsc (K) 288.71 φ0 0.2

kz (m2) 2.0× 10−15 T (K) 340 rw (m) 0.05

Table 2: Numerical grids considered.

Grid nx ny nz nw

1 16 17 3 4

2 32 33 5 8

3 64 65 9 16

4 128 129 17 32

5 256 257 33 64

Figure 3: Results for CG method (different grids).
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Figure 4: Results for CG, BiCG and BiCGStab methods (grid 4 and with parallezation).

Tables 3-6 show for the five different grids used here the execution times and the corre-
sponding speedups obtained for each simulation while only the execution times are depicted
in Figs. 5-8. As already expected, the speedup increases as the number of cells increases. For
the less refined grid, computational costs using OpenMP are the same or larger than when we
used serial implementations for all the three linear solvers. The maximum speedups of only 1.0
are reached for 40 threads and for CG and BiCGStab methods (Table 3). Figure 5 depicts the
execution times, showing the same results to serial case for 40 threads and CG and BiCGStab
methods for the less refined grid. It is possible to conclude that there is no gain to justify the
parallelization of the algebraic linear system algorithms for nx = 16, ny = 17 and nz = 3.

Table 3: Comparison between the methods of CG, BiCG and BiCGStab (nx = 16, ny = 17 and nz = 3)

No of Threads
CG BiCG BiCGStab

Time (s) Speedup Time (s) Speedup Time (s) Speedup

1 3 - 3 - 3 -

40 3 1.0 4 0.8 3 1.0

80 4 0.8 4 0.8 5 0.6

120 4 0.8 4 0.8 5 0.6

160 5 0.6 5 0.6 5 0.6

200 5 0.6 6 0.5 5 0.6

For the grid in which nx = 32, ny = 33 and nz = 5 the advantage of using OpenMP is
almost negligible for all the three linear solvers for some runs, but a maximum speedup of 1.8
is reached for 40 threads and the BiCGStab method (Table 4). Execution times for this grid are
shown in Fig. 6). In such a case we can conclude that depending on the number of threads can
exist or can not exist enough gain to justify the parallelization of the algebraic linear system
algorithms. For the grid under analysis, there are execution times which are quite the same for
parallelized and serial algorithms or gains nearly 2.
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Table 4: Comparison between the methods of CG, BiCG and BiCGStab (nx = 32, ny = 33 and nz = 5)

No of Threads
CG BiCG BiCGStab

Time (s) Speedup Time (s) Speedup Time (s) Speedup

1 22 - 25 - 25 -

40 15 1.5 15 1.7 14 1.8

80 16 1.4 16 1.6 16 1.6

120 18 1.2 18 1.4 18 1.4

160 18 1.2 18 1.4 17 1.5

200 20 1.1 20 1.3 19 1.3

When we consider the next grid, nx = 64, ny = 65 and nz = 9, the effort employed to
parallelize the solvers begins to be more rewarded and we get a top speedup of 2.6 for the BiCG
and BiCGStab methods with 40 threads although it does not exceed 2.1 for 200 threads, see
Table 5 and Fig. 7. The shorter execution time for one thread is obtained for the CG method
(212 s) and its corresponding for 40 threads is reached for the BiCGStab (92 s).

Table 5: Comparison between the methods of CG, BiCG and BiCGStab (nx = 64, ny = 65 and nz = 9)

No of Threads
CG BiCG BiCGStab

Time (s) Speedup Time (s) Speedup Time (s) Speedup

1 212 - 242 - 237 -

40 93 2.3 93 2.6 92 2.6

80 97 2.2 98 2.5 105 2.3

120 106 2.0 105 2.3 104 2.3

160 105 2.0 105 2.3 104 2.3

200 114 1.9 113 2.1 113 2.1

The computational efficiency is still greater for a grid with a total number of cells equal to
280,704 (nx = 128, ny = 129 and nz = 17). In this case, Table 6 and Fig. 8, the serial execution
time can be reduced by a factor of five approximately in one of the simulations. The best results
are obtained for the BiCG method for a speedup of 4.8 and 160 threads. Anyway, all the three
parallelized methods attained speedups that exceed 2.5 and can already provide great savings
with respect to the overall runtime. The CG method holds the shorter execution time (2321 s)
for one thread and the BiCG for 160 threads (573 s).

Finally, for a grid with 256 × 257 × 33 cells, as we can see in Table 7 and Fig. 9, the best
results for the speedup values are attained in this comparative study. The highest speedup is
6.1 (160 threads) for the BiCG method. Regarding execution times, 28818 s are need to reach
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Table 6: Comparison between the methods of CG, BiCG and BiCGStab (nx = 128, ny = 129 and nz = 17)

No of Threads
CG BiCG BiCGStab

Time (s) Speedup Time (s) Speedup Time (s) Speedup

1 2321 - 2739 - 2537 -

40 823 2.8 719 3.8 694 3.7

80 759 3.1 699 3.9 676 3.8

120 691 3.4 699 3.9 690 3.7

160 701 3.3 573 4.8 602 4.2

200 681 3.4 625 4.4 611 4.2

convergence with the CG method using one thread while only 5415 s are necessary with the
BiCGStab for 160 threads.

Table 7: Comparison between the methods of CG, BiCG and BiCGStab (nx = 256, ny = 257 and nz = 33)

No of Threads
CG BiCG BiCGStab

Time (s) Speedup Time (s) Speedup Time (s) Speedup

1 28818 - 34462 - 31463 -

40 5823 4.9 6043 5.7 5904 5.3

80 5569 5.2 5755 6.0 5603 5.6

120 5536 5.2 5753 6.0 5532 5.7

160 5479 5.3 5632 6.1 5415 5.8

200 5560 5.2 5707 6.0 5489 5.7

Figure 5: Execution time (nx = 16, ny = 17 and nz = 3): (a) CG, (b) BiCG and (c) BiCGStab methods.
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Figure 6: Execution time (nx = 32, ny = 33 and nz = 5): (a) CG, (b) BiCG and (c) BiCGStab methods.

Figure 7: Execution time (nx = 64, ny = 65 and nz = 9): (a) CG, (b) BiCG and (c) BiCGStab methods.

Figure 8: Execution time (nx = 128, ny = 129 and nz = 17): (a) CG, (b) BiCG and (c) BiCGStab methods.
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Figure 9: Execution time (nx = 256, ny = 257 and nz = 33): (a) CG, (b) BiCG and (c) BiCGStab methods.

5.2 Sensibility Analysis

For the sensibility analysis where we determined the influence of some important param-
eters in the wellbore pressure only the Conjugate Gradient method was used in all simulations
so as not to extend this work. In these tests a more refined grid was applied, in which nx =
256, ny = 257 and nz = 33. The first analysis deal with molecular gas weight variations and
we performed simulations for M equal to 17.40, 18.80 and 20.20 kg/kg-mol (Table 8). As we
can see the use of the OpenMP and the coprocessor allowed us to obtain a considerable gain
in execution time when compared to the serial algorithm. We can get up to a speedup of 5.3
(M = 17.40 kg/kg-mol) for 160 threads with a minimum of 4.4 (M = 20.20 kg/kg-mol) for 40
threads.

Table 8: Sensibility analysis for molecular weight.

No of Threads

Molecular Weight (kg/kg-mol)

17.40 18.80 20.20

Time (s) Speedup Time (s) Speedup Time (s) Speedup

1 28818 - 28459 - 29552 -

40 5823 4.9 5843 4.9 6696 4.4

80 5569 5.2 5630 5.1 6439 4.6

120 5536 5.2 5539 5.1 6358 4.6

160 5479 5.3 5468 5.2 6322 4.7

200 5560 5.2 5575 5.1 6338 4.7

According to the results show in Table 9, obtained for three set of different permeabilities,
we realized that we can get better top speedups than such determined in the previous analysis.
Now we attain a maximum speedup of 7.9 (kx = ky = 20.0 ×10−15 m2 and kz = 8.0×10−15 m2)
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for 160 threads and a minimum of 4.9 (kx = ky = 5.0 ×10−15 m2 and kz = 2.0 ×10−15 m2) for
40 threads.

Table 9: Sensibility analysis for permeability.

No of Threads

Permeability (m2)

kx = ky = 5.0× 10−15

kz = 2.0× 10−15

kx = ky = 10.0× 10−15

kz = 4.0× 10−15

kx = ky = 20.0× 10−15

kz = 8.0× 10−15

Time (s) Speedup Time (s) Speedup Time (s) Speedup

1 28818 - 36738 - 46545 -

40 5823 4.9 6162 6.0 6565 7.1

80 5569 5.2 5776 6.4 6137 7.6

120 5536 5.2 5712 6.4 5991 7.8

160 5479 5.3 5681 6.5 5907 7.9

200 5560 5.2 5822 6.3 6298 7.4

The next results (Table 10) concern the sensibility analysis for horizontal well lengths:
312.5, 625.0 and 1250.0 meters. Once again we achieve good performance with the parallel al-
gorithm with speedups varying between 4.9 (Lwf=1250 m) with 40 threads and 5.5 (Lwf=312.5
m) with 160 threads. Despite the decreasing values regarding the results for the variation of
permeabilities we still have a non negligible increase in the computational efficiency.

Table 10: Sensibility analysis for well length (m).

No of Threads

Well Length (m)

312.5 625.0 1250.0

Time (s) Speedup Time (s) Speedup Time (s) Speedup

1 30037 - 29593 - 28818 -

40 5843 5.1 5879 5.0 5823 4.9

80 5620 5.3 5581 5.3 5569 5.2

120 5517 5.4 5533 5.3 5536 5.2

160 5491 5.5 5463 5.4 5479 5.3

200 5515 5.4 5507 5.4 5560 5.2

6 CONCLUSIONS
In this paper, we used the Hydraulic Diffusivity Equation in order to simulate numerically

gas flow in hydrocarbons reservoirs. Finite-difference method and an implicit formulation were
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used in order to obtain numerical solutions for the wellbore pressure for a constant production
rate, for field scale gas flow simulations and for production through horizontal wells. Several
scenarios for different physical parameters were also considered in our study of computational
costs.

Results showed that the parallelism using API OpenMP makes sense when there is an
actual workload. For less refined numerical grids there were no expressive gains, with some
performance loss when we use parallelism. In fact, it must be considered that the parallezation
brings some computational cost, what is compensated when grids are more refined. It is worth
to note that there is a optimum number of threads for each problem.

The API OpenMP and the Intel Xeon Phi coprocessor enabled a significant reduction in the
CPU time for the numerical reservoir simulations addressed in this work, resulting in increased
computational efficiency for the parallelized versions of the Conjugate Gradients, Bi-Conjugate
Gradient and Bi-conjugate Gradient Stabilized methods. Therefore, this approach can be con-
sidered as a useful tool to simulate gas flow through porous media in situations where we have
to use refined mesh grids as is the case of the simulations involving three-dimensional space,
heterogeneous reservoirs, unconventional reservoirs, low-permeability reservoirs, presence of
hydraulic fractures, naturally fractured reservoirs, etc.
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