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Abstract. This paper presents a hybrid stochastic/deterministic optimization algorithm to 

solve the target optimization problem of vibration-based damage detection. The use of a 

numerical solution of the representation formula to locate the region of the global solution, 

i.e., to provide a starting point for the local optimizer, which is chosen to be the Nelder-Mead 

algorithm (NMA), is proposed. A series of numerical examples with different damage 

scenarios and noise levels was performed under impact and ambient vibrations. To test the 

accuracy and efficiency of the optimization algorithm, its results were compared to previous 

procedures available in the literature, which employed different solutions such as the genetic 

algorithm (GA) and the harmony search algorithm (HS). The performance of the proposed 

optimization scheme was more accurate and required a lower computational cost than the 

GA and HS algorithms, emphasizing the capacity of the proposed methodology for its use in 

damage diagnosis and assessment.  

Keywords: Structural health monitoring, Hybrid stochastic/deterministic (P-NMA) 

optimization method, Nelder-Mead algorithm, representation formula of Pincus. 
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INTRODUCTION 

It is recognized that efficient methods to detect and quantify structural damage generate a 

wide interest in the civil, mechanical and aerospace fields. Thus, the application of robust 

procedures in programs to restore the reliability of engineering structures to initial design 

levels is highly desired. One method that may fulfil those requirements is dynamic non-

destructive testing, which consists of monitoring the modal properties (e.g., natural 

frequencies, vibration modes and damping) during the lifetime of a structure. 

In recent developments of these procedures, the main focus has been placed on taking 

advantage of ambient vibrations, such as traffic or wind- or pedestrian-induced vibrations, to 

determine the spectral properties at any time without operational interference or the use of 

special equipment for the excitation. Therefore, because it is more convenient to extract the 

modal parameters for output-only measurement conditions (Miguel et al., 2009), stochastic 

system identification techniques become very attractive. Reliable time-domain techniques, 

such as the Stochastic Subspace Identification (SSI) technique (Van Overschee and De Moor, 

1993) or the Eigensystem Realization Algorithm (ERA) method (Juang and Pappa, 1985) 

coupled with the Natural Excitation Technique (NExT), have been successfully applied to in-

situ measurements of ambient vibrations in long-term structural health monitoring (SHM). 

Several strategies have been reported in the vibration-based damage detection field. A 

review of the state-of-the-art and developments of vibration-based structural damage 

detection were presented by Doebling et al. (1996) and Santos et al. (2008), to name just a 

few. Even considering the recent developments of vibration-based SHM techniques and the 

results of numerous studies with different degrees of success, this problem cannot be 

considered fully addressed and remains a challenging task. Special attention and additional 

work should be dedicated to develop robust and accurate techniques that are able to minimise 

experimental noise or numerical errors, thus smoothing false positive damage diagnoses. 

Vibration-based damage detection may be treated as a bounded nonlinear optimization 

problem. The basic idea is to change the properties of the numerical model to fit the values 

provided by the experimental data, identifying damaged regions and the extent of damage on 

the structure. In other words, the optimization algorithm seeks the optimal parameter values, 

which are the reduction factors of element stiffnesses, to achieve a pre-defined performance in 

terms of the modal parameters defined by the experimental data. This procedure leads to a 

target performance optimization problem, which is usually very complex to solve because it 

generally leads to nonconvex and multimodal objective functions (see for instance, Gonçalvez 

and de Cursi (2001) and Lopez et al., 2011). Under these conditions, deterministic 

optimization algorithms such as gradient methods, Newton methods or sequential simplex 

methods may not converge to the global minimum of the problem due to their dependence on 

the quality of the starting point of the search. That is, if a given starting point is not on a basin 

of attraction of the global optimum, these methods will not converge to the global solution; 

the use of a global optimization algorithm is then required. In this framework, stochastic 

methods are often employed, including the following well-known examples: pure random 

search, GA, and simulated annealing (SA), among others. Recently, the problem was also 

solved using other more recent metaheuristics such as the bee algorithm (BA) (Moradi et al., 

2011), the PSO algorithm (Kang et al., 2012), and the HS algorithm (Fadel Miguel et al., 

2012). 

However, these algorithms present some drawbacks, which include the following: (i) they 

require the tuning of many parameters by trial and error to maximise efficiency; (ii) the a 

priori estimation of their performance is an open mathematical problem; and (iii) an 

extremely large number of evaluations of the objective function are required to achieve global 
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optimization, especially for continuous design variables. That is, they find in a reasonable 

time the region where the global solution is, yet they require a significant amount of 

computation to converge to the precise value of the global optimum, or sometimes they 

simply do not reach the exact solution. Hence, the use of these stochastic methods leads to a 

very high computational cost. Thus, to overcome this drawback, several classes of global 

optimization algorithms have been developed to increase the efficiency of the search. One 

such class consists of hybrid stochastic/deterministic methods in which a local optimiser, such 

as the deterministic methods cited above, is combined with a global optimiser, such as the 

stochastic methods previously mentioned.  

Within this context, the main contribution of this paper is the application of a hybrid 

stochastic/deterministic (P-NMA) optimization scheme to solve the target optimization 

problem that identifies the structural damage. It is proposed the use of the numerical solution 

of the representation formula proposed by Pincus (1968) to locate the region of the global 

solution, i.e., to provide a starting point for the local optimiser, which is chosen to be the 

NMA (Nelder and Mead, 1965). Thus, once the starting point furnished by the representation 

formula is given to the NMA, it is expected that such a point is in a basin of attraction of the 

global optimum and that the NMA will be able to converge to the optimization problem’s 

global solution, which identifies the damage scenario of the structure under analysis. The 

proposed optimization scheme is expected to find more accurate results while requiring much 

lower computational cost and time and, consequently, to overcome the drawbacks of the 

stochastic algorithms cited above. Initially, the damage detection process is formulated as a 

bounded nonlinear optimization problem in Section 2. Discussion on the proposed P-NMA 

optimization method is presented in Section 3. The efficiency and accuracy of the proposed 

method is highlighted in Sections 4 and 5 by comparing its results to the solutions of 

stochastic optimization methods available in the literature for the numerical analysis pursued. 

Finally, the main conclusions drawn from this work are summarised in Section 6. 

1  THE PROBLEM FORMULATION 

One classical approach to represent damage is to consider the reduction of the stiffness 

properties of the structure. Thus, it is useful to introduce the damage in the structure through 

the consideration of an elemental stiffness reduction factor ( i ), which enables the 

preservation of the original structural connectivity.  

In this approach, the global stiffness matrix of the structure can be formulated as the 

assembly of damaged and undamaged element stiffness matrices in global coordinates, where 

the local element stiffness is multiplied by the reduction factor ( i ), such as 

 

        ,,...3,2,1,)( Niiii

T

iiiG  TkTk e  (1) 

)]([][ αKK  , (2) 

 

In the above equations, N is the total number of elements of the structure,  
iiG )(k  is the 

element stiffness matrix in global coordinates,  iT  is the transformation matrix of an element, 

 
iek  is the local element stiffness matrix  and  K  is the global stiffness matrix of the entire 

structure, which is assembled from  
iiG )(k  . The reduction factor NC α  can be 

defined as the ratio of the element stiffness reduction to the initial stiffness. The set C  ranges 

from 0 to 1, where 1 signifies no damage in the element and 0 means that the element loses its 

stiffness completely. In damage detection techniques, through the solution of an optimization 
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problem, structural damage is estimated from a model update process using damage-induced 

changes in the modal features. A numerical model is continuously updated until its difference 

from the experimental model is minimised. This process is formulated as the following 

optimization problem: 
 

  CJ  ααα :minarg*
, (3) 

 

where J is the objective function to be minimised. To solve this problem, J must be 

formulated in terms of the differences between the numerical and experimental values. A 

correct choice of this objective function is of paramount importance in the finite element 

model updating. Different objective functions have been applied, usually adopting frequency 

and mode shape residuals. Next, it is presented some strategies employed in the literature to 

construct J, which can be efficiently applied in the SHM context. 

1.1 Frequency and Mode Shape Changes 

Fractional changes in natural frequencies before and after damage can be used to 

construct J. For example,  
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in which NM is the number of modes analysed, the superscripts D and E represent numerical 

and experimental quantities, respectively, ωi is the natural frequencies for the ith mode of the 

undamaged or healthy condition for both the experimental and analytical conditions, and, 

finally, δωi is a fractional change of the experimental and analytical natural frequencies for 

the ith mode of the structure. A finite element model should be used to represent the reference 

or healthy state of the target structure. Then, the stiffness reduction factor (α ) of the finite 

element model should be updated until the differences of the numerical frequencies in the 

healthy and damaged states converge to the observed experimental frequencies in the pre- and 

post-damaged states. Because the natural frequencies can be accurately measured, this 

objective function is practical for real-time SHM under ambient vibrations. However, it is 

difficult to distinguish the damage in symmetric locations of a symmetric structure. In this 

situation, mode shapes may be introduced in the objective function as 
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In practice, it is only possible to measure a few mode shapes and frequencies during 

vibration testing, even for free vibration tests. Thus, only those nodal displacements (denoted 

NP) that are really measured can be picked out of the numerical mode shapes. Then, any 

mode shape expansion procedure can be avoided (Fadel Miguel et al., 2006). 

1.2 Flexibility Matrix 

The modal flexibility error residual may also be employed as an objective function. The 

modal flexibility matrix may be expressed as 
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      TφΛφF
1

 , (6) 

 

where  φ  is a mode shape matrix, and  Λ  represents a diagonal matrix containing the 

squares of the modal frequencies. The difference between the experimental model and the 

numerical model can then be employed as the objective function for damage quantification: 

 

       2

FroDEJ αFFα  , (7) 

 

in which α  is the stiffness reduction factor, 
2

Fro
  represents the Frobenius norm of the 

residual matrix,  EF  indicates the modal flexibility matrix from the experimental results, and 

  DαF  is the modal flexibility matrix calculated from the numerical model with the stiffness 

reduction factor. 

It is not possible in practice to construct the flexibility matrix for all the degrees of 

freedom (DOFs) because only a limited number of measurements are available. Thus, the 

flexibility matrix may be obtained from only a few low-frequency modes in accordance with 

the measured DOFs.  

2  THE HYBRID P-NMA OPTIMIZATION ALGORITHM 

A hybrid stochastic/deterministic (P-NMA) algorithm is employed for the solution of Eq. 

(3). The stochastic part is given by the numerical solution of the representation formula first 

proposed by Pincus (1968) and reformulated by de Cursi (2006). As detailed below, the main 

goal of the stochastic part is to provide a starting point close to the global solution of Eq. (3) 

for the deterministic counterpart of the proposed hybrid optimization algorithm so that the 

local optimiser converges to the global solution. In this paper, it is employed the NMA to 

pursue the local search. Both the stochastic and deterministic parts of the algorithm are 

detailed in the following. 

Consider that 
*
α  is the global solution of the optimization problem given in Eq. (3). As 

demonstrated by de Cursi (2006), the solution of such an optimization problem may be 

represented by the following relation: 
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in which g is a continuous and strictly decreasing function and Α  is a convenient random 

variable, such as a random variable uniformly distributed on the domain C . The function g 

may be chosen as suggested by Pincus (1968):      ΑΑ JJg   exp, . The general 

properties of A and g are detailed, for instance in Sonza de Cursi et al. (2006). It means that if 

it is possible to evaluate the limit and the expectation operators of Eq. (8), the global optimum 
*
α  of Eq. (3) can be obtained, even in the case where the objective function J is nonconvex. 

However, the analytical evaluation of these quantities is not possible for real engineering 

problems. Hence, the application of the representation of the optimal solution *
α  established 

above requires the numerical approximation of Eq. (8). Such an approximation may be based 

on the generation of finite samples of the random variables involved in the expressions and an 
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approximation of the limit. For example, as described in de Cursi (2006), it must be chosen λ 

large enough and generated a sample  nrΑΑ ,...,ˆ
1  comprising nr variates of Α . Thus, 
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which corresponds to the approximations 
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As already noted, this approximation is able to locate a region on the domain close to the 

global solution. Thus, the approximation given by Eq. (9) may be employed as the starting 

point for a local optimiser, such as any gradient-based algorithm or the NMA, to obtain a 

more refined solution. This approach has been tested in some engineering problems. For 

example, Lopez et al. (2011) employed this approximation to supply the starting point for the 

random perturbation of the gradient algorithm in a stochastic programming problem. 

Gonçalves and de Cursi (2001) applied this strategy in the calibration of a transportation 

system. The local optimizer employed in this paper is the NMA, which is one of the most 

standard direct search methods for unconstrained minimisation problems. The NMA is 

initialized at 0α  and it is expected to converge to a local minimum. It is based on the 

comparison of function values at the n+1 vertices iα  of a simplex. In this paper, the full 

description of the NMA is not provided since it is widely available in optimization textbook, 

for instance, the reader is referred to Haftka and Gürdal (1992).  

It should be observed here that the point of initialisation of the simplex 0α is furnished by 

the numerical approximation of the representation formula of Eq. (8) given by Eq. (9). 

Because the computational code of the NMA is widely available, the implementation of the 

presented hybrid P-NMA optimization algorithm reduces, for instance, to the implementation 

of the code used to evaluate Eq. (9) and its coupling to an existing NMA code, which is quite 

simple. This fact shows the ease in using and implementing the proposed scheme. Moreover, 

any other local optimiser may be employed instead of the NMA; e.g., if it is easy to obtain the 

gradient information about the objective function under analysis, the user of the proposed 

algorithm could employ a gradient-based algorithm such as the interior point or sequential 

quadratic programming methods. Finally, it is the main goal of the next section to show that 

despite the fact that the proposed algorithm is easy to implement and use, it provides more 

accurate results requiring much lower computational cost and/or time to solve the problem at 

hand than well-known global optimization algorithms such as the GA and the HS. 

3  NUMERICAL ANALYSIS 

Standard test problems recently reported in the literature are used to validate the P-NMA 

optimization algorithm. This section starts with a noise-free portal plane frame previously 

solved by Gomes and Silva (2008) using the GA. Next, a cantilever beam used by Miguel et 

al. (2012) is investigated to assess the influence of measurement noise.  
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3.1 Portal plane frame 

To assess the accuracy of the P-NMA algorithm, the same portal frame model that was 

recently studied using the GA by Gomes and Silva (2008) was considered. The structure has a 

rectangular cross-sectional area with height h = 0.24 m, width b = 0.14 m and lengths of 

L = 2.4 m and H = 1.6 m. The material has a Young’s Modulus of E = 2.5x1010 N/m2 and a 

material density of ρ = 2.5 x 103 kg/m3. In the structural model, 56 plane frame elements were 

used, as shown in Fig. 1.  

This is an interesting initial example to verify the accuracy of the proposed optimization 

approach, as no general conclusions could be reached in the previous study (Gomes and Silva, 

2008) despite the fact that it was tested with noise-free data and two distinct damage detection 

methodologies were applied. In the paper by Gomes and Silva (2008), the location for single 

damage scenarios was successfully found for both approaches using only the first five natural 

frequencies. However, some spurious damaged elements also appeared in the procedure. In 

addition, it was not possible to differentiate the damage in the symmetric sites, as the authors 

used an objective function based on changes in natural frequencies. Finally, the procedures 

failed to locate multiple damage scenarios and quantification for single and multiple damage 

cases.  

Thus, this example attempts to reproduce two damage scenarios in order to assess the 

accuracy of the P-NMA algorithm: (1) the static moment of inertia about the z-axis of element 

20 is reduced by 10% and, (2) the static moments of inertia about the z-axis of elements 10, 

28 and 52 are reduced by 10%. The objective function employed in this example is described 

by Eq. (7). The eigenproblem is solved by an in-house finite element code to obtain the 

frequencies and mode shapes that are necessary to employ Eq. (7). To represent the truncated 

mode shapes at the sensor locations, which are close to a real condition, only the first 5 

natural frequencies and 17 nodal displacements were adopted in the mode shapes, which 

follow: node 6, 10, 13, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 45, 48 and 52. 

 Thus, there are 56 updating parameters (i.e., N = 56), which represent each element of 

the portal frame. As seen in Figs. 2 and 3, the damage locations may be accurately identified 

for both scenarios. The results of the proposed optimization scheme are compared to the 

results presented by Gomes and Silva (2008) in Figs. 2 and 3.  
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Figure 1. Portal plane frame modeled with 56 finite elements 
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Figure 2. Damage Scenario 1 - 10% in element 24: (a) P-NMA, (b) Gomes and Silva 

(2008) 
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Figure 3. Damage Scenario 2 - 10% in element 10, 28 and 52: (a) P-NMA, (b) Gomes and 

Silva (2008) 
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For the single damage scenario (Fig. 2), the proposed P-NMA optimization method 

accurately identified both the damaged element and the extent of the damage. On the other 

hand, the GA presented by Gomes and Silva (2008) was not able to identify the damage 

extent and presented some spurious values around element 33. Using the proposed 

optimization scheme in the multiple damage case, some negligible values of damage appeared 

around member 52, which did not disturb the diagnosis as they are in the neighbourhood of 

the true damage element. However, the GA (Gomes and Silva, 2008) could not even identify 

the damaged element. Hence, the P-NMA algorithm was more accurate than the GA as 

proposed by Gomes and Silva (2008). 

It is also important to note the computational cost of each approach: Gomes and Silva 

(2008) carried out a total of 1,000,000 objective function evaluations (OFE) to obtain each of 

their results, but in the present study, 5000 OFE were employed to approximate numerically 

the representation formula (Eq. ()) and 11,200 OFE to run the NMA, totalling 16,200 OFE for 

each final damage scenario. 

In this example, it was shown that the optimization scheme employed in this paper 

presents an outstanding performance, achieving more accurate damage scenarios with a much 

lower computational cost than the recent literature, although in such literature only natural 

frequencies were used in the objective function, which in part may diminish a little the value 

of P-NMA algorithm in this specific context. 

3.2 Cantilever beam 

 To assess the influence of noise, a numerically simulated cantilever beam with several 

assumed damage elements is considered. The structure adopted here is 750 mm long, and it 

has a square box cross section with external dimensions of 25.4 mm and a wall thickness of 

1 mm. It was modelled with 25 Timoshenko beam elements, as shown in Fig. 4. The specific 

weight, elastic modulus of the material, Poisson’s coefficient and Timoshenko’s shear factor 

of the beam are 28 kN/m3, 68.6 GPa, 0.3 and 0.5, respectively. Also, a concentrated mass of 

18.2 g is also included in all DOFs of the numerical model in order to correctly represent the 

presence of the accelerometers. 

 

Figure 4. Beam modeled with 25 finite elements 

 

To test the sensitivity to uncertainties in the measurements, numerically simulated 

dynamic tests in the presence of noise were performed by considering impulsive and ambient 

excitations. The latter was modeled by 75 uncorrelated Gaussian white noise signals, with 

zero mean and standard deviation equal to one, applied at all the generalized coordinates of 

the structure. The impulsive loading is represented by the application of an impact at node 8 

in the vertical direction. 

Three different damage scenarios are considered for both excitations to assess the ability 

to locate and quantify damage of the proposed SHM approach. Scenario 1 was represented by 
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reducing the stiffness of element 20 to 80% of the initial value. Scenario 2 also used member 

20 but reduced its stiffness to 30% of the initial value. Finally, Scenario 3 was represented by 

reducing the original stiffness of element 8 to 70% of the initial value. 

The dynamic problem is solved by numerical integration of the equations of motion using 

the Newmark method, (in-house finite element code) with an integration time step equal to 

10-5 s for the free vibration case and 10-6 s for ambient vibration. Rayleigh damping is 

assumed with proportionality constants determined for yield damping ratios in the 1st mode 

equal to  = 1%. The output data are filtered with an eight-order Chebyshev type I lowpass 

filter with a cutoff frequency of 1600Hz and the data is re-sampled at a rate of 4000Hz, in 

order to reduce the number of data points and to make the procedure more accurate in the 

range of frequency of interest. 

In order to determine the variation of structural modal parameters due to noise effects and 

to evaluate the robustness of the damage detection procedure in situations closer to field 

conditions, noise levels were simulated through the addition of white noise signals with RMS 

amplitude of 3% and 5% of the mean measured response for free vibration and 3% for 

ambient vibration. In real dynamic testing, this is consistent with the assumption of 

uncorrelation between the primarily electronic noises with the actual measurement signal. The 

damage Scenario 3 is not considered for 5% noise level. 

After getting the output for each excitation, damage scenario and noise level, the output-

only system identification is carried out through the SSI method. It is assumed that only the 

first 5 modes are available and that measurements are only obtained from the translational 

DOFs of the model. The SSI algorithm presents the main advantage of avoiding any 

preprocessing to obtain spectra or covariances, identifying models directly from time signals. 

As earlier described by Fadel Miguel et al. (2007), the performance of the two different 

algorithms SSI-DATA (DATA-driven Stochastic Subspace Identification) and SSI-COV 

(COVariance-driven Stochastic Subspace Identification) and three different variants CVA 

(Canonical Variate Analysis), PC (Principal Component) and UPC (Unweighted Principal 

Component Algorithm) is quite similar, thus a combination of the second algorithm (SSI-

COV) together with the variant PC was chosen to carry out the identification approach for the 

two damage scenarios. The identified frequencies for both damage scenarios, both excitations 

and two noise levels are shown in Tabs. 1 and 2. 

 

Table 1: Identified frequencies for free vibration 

Modes 

Noise 3% (Hz) Noise 5% (Hz) 

Healthy Scenario 1 Scenario 2 Scenario 3 Healthy Scenario 1 
Scenario 

2 

1st 26.563 26.552 26.521 26.250 26.552 26.542 26.518 

2nd 164.458 164.007 160.285 163.892 164.459 164.007 160.286 

3rd 451.723 447.801 418.614 445.937 451.723 447.800 418.611 

4th 861.458 853.360 803.738 856.940 861.453 853.362 803.733 

5th 1376.73 1370.11 1330.49 1370.87 1376.71 1370.11 1330.492 
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Table 2: Identified frequencies for ambient vibration 

Modes 
Noise 3% (Hz) 

Healthy Scenario 1 Scenario 2 Scenario 3 

1st 26.563 26.558 26.527 26.250 

2nd 164.505 164.050 160.303 163.920 

3rd 451.969 447.976 418.836 445.999 

4th 862.400 853.593 803.749 857.463 

5th 1378.17 1369.87 1332.30 1371.33 

 

The objective function employed in this example is described by Eq. (4). The identified 

damage locations after updating for both excitations and noise levels are shown in Figs. 5, 6, 

7 and 8. To compare the accuracy of the P-NMA algorithm, the results for free vibration and 

3% noise, obtained through the HS algorithm by Fadel Miguel et al. (2012), are shown in 

Figs. 5c and 5d.  

 

 

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Element

S
ti
ff
n
e
s
s
 R

e
d
u
c
ti
o
n
 F

a
c
to

r 
(

)

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Element

(a) (b) 

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Element

S
ti
ff
n
e
s
s
 R

e
d
u
c
ti
o
n
 F

a
c
to

r 
(

)

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Element

(c) (d)  

Figure 5. Free vibration and 3% noise: (a) Damage Scenario 1 through the P-NMA, (b) Damage Scenario 

2 through the P-NMA, (c) Damage Scenario 1 with HS (Fadel Miguel et al., 2012), (d) Damage Scenario 2 

with HS (Fadel Miguel et al., 2012) 
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Figure 6: Free vibration and 5% noise through the P-NMA: (a) Damage Scenario 1, (b) 

Damage Scenario 2. 
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Figure 7: Ambient vibration and 3% noise through the P-NMA: (a) Damage Scenario 1, 

(b) Damage Scenario 2. 
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Figure 8: Damage Scenario 3 and 3% noise through the P-NMA: (a) Free vibration, (b) 

Ambient vibration. 
 

Note that the location and extent of damage may be accurately identified for both 

excitations and noise levels regardless of the position of damage in the beam. It is important 

to notice that the optimization matches the real damage condition almost exactly without any 
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spurious values in other elements for both excitations and noise levels, slightly improving the 

diagnosis achieved in Fadel Miguel et al. (2012). The results of the damage detection for the 

cantilever beam are summarised in Tab. 3. 

It is important to note that while Fadel Miguel et al. (2012) carried out a total of 200,000 

OFE to achieve each damage scenario, in the present study only 1000 OFE were performed to 

numerically approximate the representation formula given by Eq. (9) and 5000 OFE by the 

NMA, resulting in only 6000 OFE to obtain each damage scenario.  

In this example, it was shown that the proposed optimization scheme is more accurate 

and requires a much lower computational cost compared to the HS algorithm (Fadel Miguel et 

al., 2012). 

 
 

 

 

Table 3: Summary of damage detection results for the numerical cantilever beam 

analysis. 

Damage case 

Exact damage Predicted damage Error 

Element 

number 

Stiffness 

reduction 

(%) 

Element 

number 

Stiffness 

reduction 

(%) 

Localizati

on (%) 

Extent 

(%) 

Free vibration 

(Noise 3%) 

20 20 20 19.66 0.0 -1.70 

20 70 20 69.81 0.0 -0.27 

8 30 8 29.93 0.0 -0.23 

Free vibration 

(Noise 5%) 

20 20 20 19.21 0.0 -3.95 

20 70 20 69.99 0.0 -0.01 

Ambient 

vibration 

(Noise 3%) 

20 20 20 17.48 0.0 -12.60 

20 70 20 70.00 0.0 0.00 

8 30 8 29.90 0.0 -0.33 

 

4  CONCLUDING REMARKS 

In this paper, a hybrid stochastic/deterministic optimization algorithm (P-NMA) for 

vibration-based damage detection was proposed. The P-NMA approach was verified with a 

series of numerical examples to compare its performance to algorithms previously reported in 

the literature. 

The comparisons started with a noise-free portal plane frame previously solved by Gomes 

and Silva (2008) through the GA. The P-NMA procedure showed a better performance than 

Gomes and Silva (2008), being able to correctly identify the damage location and its extent 

for both single and multiple damage scenarios with a considerably lower number of OFE. In 
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Gomes and Silva (2008) the extent of the damage could not be determined for the single 

damage scenario, and even the damage locations were not correctly determined for the 

multiple damage scenario. Next, a typical cantilever beam was used to assess the influence of 

measurement noise when considering different damage scenarios and noise levels under 

impact and ambient vibrations. Once again, the P-NMA results were more accurate than those 

reported by Fadel Miguel et al. (2012) and demanded a considerably lower computational 

cost. Two different objective functions were employed in this paper: for the first numerical 

example, because the structure is symmetric the objective function based on flexibility matrix 

was chosen and for the second numerical example, where the structure is unsymmetrical the 

objective function based on natural frequency was adopted. The achieved results 

demonstrated better efficiency and accuracy of the proposed P-NMA optimization scheme 

compared to the heuristic or the hybrid algorithms. It is important to note, however, that the 

stochastic part of P-NMA algorithm (Eq. (8)) is influenced by the magnitude of parameter λ 

and the sample Α , and so, it is objective of future work to simulate several times the 

proposed algoritm as well as the use of real data for the experiments. 
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