

XXXVII IBERIAN LATIN AMERICAN CONGRESS ON COMPUTATIONAL METHODS IN ENGINEERING BRASÍLIA - DF - BRAZIL

PROJETO OTIMIZADO DE ESTRUTURAS TUBULARES ESPACIAIS SUBMETIDAS A CARREGAMENTO DINÂMICO

Luiza Gagno Azolin

Larissa Novelli

luiza.azolin@gmail.com

larissa.novelli@hotmail.com

Universidade Federal do Espírito Santo

Av. Fernando Ferrari, 514 Cep 29097-910, Goiabeiras - Vitória - ES - Brazil

Elcio Cassimiro Alves

elcio.calves1@gmail.com

Universidade Federal do Espírito Santo

Av. Fernando Ferrari, 514 Cep 29097-910, Goiabeiras - Vitória - ES - Brazil

Resumo. Em projetos com elevadas cargas nas fundações e obtenção de maiores vãos livres, as estruturas treliçadas tubulares em aço apresentam-se como uma excelente alternativa. Assim, são muito utilizadas em coberturas, pontes, estádios, entre outros. Além disso, é importante analisar os carregamentos dinâmicos que atuam na estrutura para que cargas que variam ao longo do tempo sejam consideradas. Visando facilitar o cálculo estrutural desse tipo de estrutura, buscou-se elaborar um programa, de fácil manipulação, desenvolvido em MatLab, que realiza o dimensionamento ótimo de estruturas treliçadas espaciais, submetidas a carregamento dinâmico. Utiliza-se o método de Newmark para a análise dinâmica, com base a integração no tempo da equação diferencial de equilíbrio dinâmico. O metodo da Programa Quadrática Sequencial é utilizada para resolver o problema de otimização. Exemplos de aplicação com diferentes topologias e cargas são apresentadas para ilustrar o problema.

Palavras Chaves: Treliças, Espaciais, Otimização, Dinâmica

1 INTRODUÇÃO

No mercado atual mais do que nunca buscam-se soluções eficientes, com alto desempenho e baixo custo. Porém, "encontrar a melhor solução pelo método da tentativa e do erro é praticamente impossível, mesmo que o projetista possua grande experiência, já que existem diversas combinações de possíveis soluções para o problema" (Fonseca, 2007).

Surge a partir daí a necessidade de técnicas de otimização para a obtenção das soluções ótimas. Uma grande área de utilização de métodos de otimização são em grandes estruturas, como as estruturas treliçadas, onde busca-se a redução do custo total. Esse tipo de estrutura é atualmente muito utilizado em coberturas, torres de transmissão, etc. No entanto, por possuir várias barras, a busca de um solução eficiente pode requerer muito tempo, além disso, pode não ser garantida a solução ótima.

Existem diversos métodos de otimização estrutural, entre eles está o método de Programação Quadrática Sequencial (PQS), que consiste, basicamente, na aproximação seqüencial do problema de programação não-linear como um problema de programação quadrática. Como todo método baseado em gradientes aparece a necessidade de calcular, durante o processo de otimização, as derivadas tanto da função objetivo como das restrições.

Outra preocupação atual das análises de estruturas é a consideração de carregamentos dinâmicos. Estes carregamentos são importantes, pois podem causar deslocamentos excessivos nas estruturas e problemas de ressonância, principalmente se atuarem em estruturas esbeltas como as treliças. Como exemplos de carregamentos dinâmicos têm-se: ventos, sismos, máquinas e terremotos. Segundo Alves (2003), problemas que envolvam a otimização de estruturas submetidas a carregamento dinâmico foram ainda pouco estudados e implementados.

Buscando solucionar esse problema realizou-se a otimização de estruturas tubulares treliçadas submetidas a cargas dinâmicas, analisando em cada passo o deslocamento máximo da estrutura e restringindo-o a um deslocamento fornecido pelo usuário. Como método de otimização utilizou-se o método de programação quadrática seqüencial.

1.1 Objetivos

Objetiva-se neste trabalho, apresentar a formulação do problema de otimização de estruturas de treliças espaciais submetidas a carregamento dinâmico.

O programa doi desenvolvido dentro da plataforma do Matlab como um módulo do programa Truss3d (Novelli et al., 2015).

O problema de análise dinâmica foi validado via Ansys. Para a solução do problema de otimização utilizou-se o método de programa quadrática sequencial.

2 ANÁLISE DINÂMICA

Dado um sistema estrutural submetido a carregamento dinâmico, a equação do movimento para este sistema deve ser:

$$Kd + C\dot{d} + M\ddot{d} = F_e(t)$$

(1)

Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering Suzana Moreira Ávila (Editor), ABMEC, Brasília, DF, Brazil, November 6-9, 2016

Onde:

K - matriz de rigidez;

C - matriz de amortecimento;

M - matriz de massa;

 $F_e(t)$ - esforços externos dependentes do tempo.

A matriz de rigidez dos elementos que relaciona as forças nodais e os deslocamentos expressos em coordenadas globais é dada por:

$$[K] = \frac{EA}{L} \begin{bmatrix} Cx^{2} & CxCy & CxCz & -Cx^{2} & -CxCy & -CxCz \\ Cy^{2} & CyCz & -CxCy & -Cy^{2} & -CyCz \\ Cz^{2} & -CxCz & -CyCz & -Cz^{2} \\ Cx^{2} & CxCy & CxCz \\ simétrico & Cy^{2} & CyCz \\ Cy^{2} & Cy^{2} & CyCz \\ Cz^{2} \end{bmatrix}_{W_{j}}^{U_{j}}$$
(2)

Onde os graus de liberdade correspondentes às linhas são mostrados ao lado da matriz e $Cx, Cy \ e \ Cz$ são os cossenos diretores, em relação aos eixos $x, y \ e \ z$, do elemento que possui os nós $i \ e \ j$.

$$Cx = \frac{x_j - x_i}{L}$$
; $Cy = \frac{y_j - y_i}{L}$; $Cz = \frac{z_j - z_i}{L}$ (3)

Segundo Cook et al. (1989) a matriz de massa consistente de um elemento de treliça é dada por:

$$M = \frac{\rho AL}{6} \begin{bmatrix} 2 & 0 & 0 & 1 & 0 & 0\\ 0 & 2 & 0 & 0 & 1 & 0\\ 0 & 0 & 2 & 0 & 0 & 1\\ 1 & 0 & 0 & 2 & 0 & 0\\ 0 & 1 & 0 & 0 & 2 & 0\\ 0 & 0 & 1 & 0 & 0 & 2 \end{bmatrix}$$
(4)

O amortecimento de Rayleigh ou amortecimento proporcional define a matriz de amortecimento C como uma combinação linear da matriz de rigidez e de massa da estrutura, como apresentado na Eq. (5).

$$C = \alpha K + \beta M \tag{5}$$

Onde:

 α - constante de amortecimento proporcional de rigidez;

 β - constante de amortecimento proporcional de massa.

As constantes $\alpha \ e \ \beta$ podem ser obtidas segundo as Eq. (6) e (7) que seguem.

$$\alpha = \frac{2(\xi_2 \omega_2 - \xi_1 \omega_1)}{(\omega_2^2 - \omega_1^2)} \tag{6}$$

$$\beta = \frac{2\omega_1\omega_2(\xi_1\omega_2 - \xi_2\omega_1)}{(\omega_2^2 - \omega_1^2)}$$
(7)

Onde:

 $w_1 e w_2$ - são duas diferentes frequências aturais de vibração;

 $\xi_1 e \xi_2$ - são frações do amortecimento crítico para as duas frequências naturais de vibração.

Os valores das frequências naturais são escolhidos, segundo Cook et al. (1989), da seguinte forma: para " ω_1 " adota-se a menor frequência natural de vibração da estrutura e para " ω_2 " adota-se a frequência subsequente à " ω_1 ".

Para a determinação dos valores de $\alpha e \beta$ o amortecimento crítico deve ser fixado. Este parâmetro depende do tipo de material e do tipo de sistema estrutural empregado. Para estruturas de aço dota-se $0,5\% < \xi < 5,0\%$. No presente estudo foi adotado o valor de 5% para o amortecimento crítico.

Para solução da equação geral para o equilíbrio dinâmico, Eq. (1), adotou-se o método de integração do tempo. Em vez de satisfazer a equação em todo o tempo t, divide-se o tempo em intervalos de tempos iguais Δt constantes e satisfaz a equação em instantes de tempo discretos distanciados por Δt .

Os métodos de integração no tempo estão divididos em métodos explícitos e implícitos. Nos métodos implícitos o deslocamento no instante t é calculado através dos deslocamentos anteriores e das velocidades e acelerações no próprio instante t e possuem elevada exatidão e estabilidade numérica melhorada, comparados aos métodos explícitos.

Entre os métodos implícitos destaca-se o método de Newmark, que será o metodo utilizado neste estudo. O método de Newmark parte da hipótese de variação linear da aceleração entre s intervalos de tempo t e Δt . Partindo-se desta hipótese Newmark desenvolveu equações para velocidade e deslocamento.

$$u_1 = u_0 + \Delta t v_0 + \Delta t^2 \left[\left(\frac{1}{2} - \alpha \right) a_0 + \alpha a_1 \right]$$
(8)

$$v_1 = v_0 + \Delta t [(1 - \delta)a_0 + \delta a_1]$$
(9)

Onde:

$$\Delta t = t_1 - t_0 \tag{10}$$

Os parâmetros α e δ definem a variação da aceleração dentro de cada intervalo de tempo Δt e determinam a estabilidade e exatidão do método. Em análises lineares este método é incondicionalmente estável se esses parâmetros satisfazerem as seguintes condições:

$$\alpha \ge \frac{\left(\frac{1}{2} + \delta\right)^2}{4} \tag{11}$$

$$\delta \ge \frac{1}{2} \tag{12}$$

Tem-se dois exemplos principais de variação da aceleração do intervalo de tempo Δt : uma variação constante da aceleração dentro de cada intervalo, considerando $\delta = \frac{1}{2}$ e $\alpha = 1/4$ e uma variação linear da aceleração, considerando $\delta = \frac{1}{2}$ e $\alpha = 1/6$.

A partir das Eq. (8), (9) e da equação de equilíbrio dinâmico para o tempo $t + \Delta t$, é possível estabelecer um método para a solução do problema dinâmico. A partir das equações apresentadas obtem-se a aceleração do tempo $t + \Delta t$, conhecidos o deslocamento, velocidade e força exterior no tempo t. E com $\ddot{u}_{t+\Delta t}$ retorna-se as Eq. (8) e (9) para se calcular $\dot{u}_{t+\Delta t}$ e $u_{t+\Delta t}$.

Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering Suzana Moreira Ávila (Editor), ABMEC, Brasília, DF, Brazil, November 6-9, 2016

(17)

3 OTIMIZAÇÃO

Problemas de análise estrutural podem ter várias soluções ou até infinitas soluções. O objetivo dos métodos de otimização é encontrar entre essas soluções a melhor solução possível.

Em todo problema de otimização procura-se minimizar ou maximizar certa função, esta estando sujeita a restrições. Para isso são realizadas várias iterações até que se chegue a solução ótima.

Assim o problema pode ser apresentado como:

 $Minimizar f(x) \tag{13}$

Sujeito a

 $c(x) \le 0 \tag{14}$

$$Ceq(x) = 0 \tag{15}$$

$$lb \le x \le ub \tag{16}$$

Onde:

f(x) - função objetivo: função principal que deverá ser minimizada ou maximizada;

c(x)≤0 - uma das restrições. Restrições são inequações que devem ser atendidas;

ceq(x)=0 - uma das restrições;

lb - corresponde ao vetor de limites inferiores;

ub - corresponde ao vetor de limites superiores;

Função Objetivo. A função objetivo que se deseja minimizar é a função custo da estrutura que está diretamente ligada ao peso da estrutura, porém como a massa específica do aço é constante, busca-se então minimizar a área da seção transversal.

A função objetivo é apresentada na Eq.(17), e o custo total da estrutura é obtido pelo somatório de f(x) para todas as barras.

 $f(x) = A(x) * \rho * L * custo$

Onde:

A(x) - área da seção transversal em função das dimensões;

 ρ - peso específico do aço em kg/m³;

L - comprimento da barra em m;

Custo - preço do aço por kg.

Variáveis de projeto. As variáveis de projeto em estruturas podem ser de materiais, topológicas ou dimensionais. No presente estudo se utilizará variáveis dimensionais.

Para a otimização das treliças tubulares os perfis podem ser tanto circulares, retangulares ou quadrados. Buscou-se então analisar a otimização de cada tipo de perfil separadamente, variando suas dimensões, assim a variável área a ser minimizada é calculada através das dimensões do perfil.

Restrições. As restrições atribuídas ao processo de otimização são referentes ao deslocamento máximo admitido e as dimensões do perfil. O deslocamento máximo admitido é fornecido pelo usuário e as restrições referentes às dimensões foram determinadas a partir do catálogo de Tubos estruturais da empresa Vallourec. A partir das restrições estabelecidas a otimização é realizada adimitindo-se apenas valores que estejam de acordo com estas.

O deslocamento máximo da estrutura, em qualquer direção e em qualquer nó, é determinado a partir do método de Newmark, previamente apresentado. Dessa forma, o deslocamento encontrado deve ser menor que o deslocamento máximo determinado pelo usuário.

 $u(t) \leq u_{max}$

(18)

4 PROGRAMA TRUSS3D

Para o desenvolvimento do programa utilizou-se o Software MatLab, por este ser de fácil implementação de rotinas e por possuir uma interface gráfica que facilita a utilização pelo usuário. O programa Truss3D vem sendo implementado na Universidade Federal do Espírito Santo por alunos de projetos de graduação e iniciação científica e seu funcionamento foi explicado em Novelli et al. (2015).

Para analise do comportamento de uma estrutura submetida a carregamento dinâmico primeiramente são passados a função de carga, tempo inicial, tempo final e intervalo de tempo de atuação do carregamento. A Fig. 1a seguir apresenta a tela de seleção da carga dinâmica.

🦺 plotador	
Ajuda	لا ا
Gráfico de Carga Dinâmica F(t)	
Ti (s) Tf (s) Grade Intervalo (s)	
Direção de Aplicação da carga	
Piotar	ОК

Figura 1. Tela de seleção de carga dinâmica

DadosOtimDinamica	
	Otimização
Selecione o perfil:	Custo por kg:
🔘 Circular tubular	Deslomento máximo (m):
🔘 Quadrado Tubular	
🔘 Retangular Tubular	ОК

Então, são inseridos os dados necessários para a realização da otimização, o tipo de perfil, o custo do aço e o deslocamento máximo a ser admitido, como mostra a Fig. 2.

Figura 2. Tela de seleção de carga dinâmica

Os resultados são apresentados para cada barra, como na Fig. 3. Além disso, o peso total da estrutura análisada e seu custo considerando os perfis otimizados são exibidos.

📣 ResultOtimDinar	nica						
	Resultado da Otimização						
	Dama	D (mm)	h ()	h (mm)	t ()	1	
	Barra	D (mm)	n (mm)	D (MM)	t (mm)		
	Pes	o Total da Es	trutura:]		
	Cus	to Total da Es	strutura:				

Figura 3. Apresentação dos resultados do processo de otimização

Um fluxograma do funcionamento do programa é apresentado da Fig. 4.

Figura 4. Fluxograma de funcionamento do programa

5 EXEMPLOS NUMÉRICOS

5.1 Treliça plana

O exemplo escolhido de treliça plana é composto por 21 barras e 12 nós, como mostra a Fig. 5. Seus elementos possuem módulo de elasticidade E=200GPa. A carga dinâmica foi aplicada no nó central (nó 7) e está sendo apresentada na Fig. 6.

Figura 5. Treliça Plana

Figura 6. Carga dinâmica

Primeiramente realizou-se a análise dinâmica utilizando o perfil circular 38,1x3,6mm (3,9cm²) e obteu-se um deslocamento máximo, no nó 7, de 3,6cm. Realizou-se, então, a otimização da estrutura para perfis tubulares circulares restringindo a um deslocamento máximo de 3,6cm e um custo de 3,85R\$/kg. A Fig. 7 apresenta o resultado da otimização e a Tabela 1 apresenta o cálculo do peso total da estrutura considerando todas as barras com o mesmo perfil de 38,1x3,6mm.

			umzayav	,
Barra	D (mm)	h (mm)	b (mm)	t (mm)
1	33.4000			3.2000
2	33.4000			3.2000
3	33.4000			3.2000
4	33.4000			3.2000
5	34.0349			4.1674
6	33.4000			3.2000
7	33.4000			3.2000
8	33.4000			3.2000
9	39.0446			5.5778
10	33.4000			3.2000
11	34.0321			4.1656
12	33.4000			3.2000
13	33.4000			3.2000
14	39.0446			5.5778
15	33.4000			3.2000
16	33.4000			3.2000
17	33.4000			3.2000
18	34.0349			4.1674
19	33.4000			3.2000
20	33.4000			3.2000
21	33.4000			3.2000
				1

Figura 7. Resultado da otimização da treliça plana

Barra	Diâmetro (mm)	Espessura (mm)
1	38,1	3,6
2	38,1	3,6
3	38,1	3,6
4	38,1	3,6
5	38,1	3,6
6	38,1	3,6
7	38,1	3,6
8	38,1	3,6
9	38,1	3,6
10	38,1	3,6

Tabela 1	. Peso	total d	a estrutura	sem	otimização
----------	--------	---------	-------------	-----	------------

CILAMCE 2016

Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering Suzana Moreira Ávila (Editor), ABMEC, Brasília, DF, Brazil, November 6-9, 2016

Peso total (k	(g)	107,85
21	38.1	3.6
20	38,1	3,6
19	38,1	3,6
18	38,1	3,6
17	38,1	3,6
16	38,1	3,6
15	38,1	3,6
14	38,1	3,6
13	38,1	3,6
12	38,1	3,6
11	38,1	3,6

A partir da comparação entre as análises sem e com a utilização do processo de otimização, para o mesmo deslocamento máximo, nota-se uma considerável diferença do peso total da estrutura, cerca de 15,09%, o que representa uma economia de seu custo final, considerando a utilização da estrutura otimizada.

5.2 Treliça espacial 1

O primeiro exemplo de treliça espacial possui 21 elementos e 11 nós, como apresentado na Fig 8, e sua geometria na Fig. 9. A treliça possui módulo de elasticidade E=200GPa e a carga dinâmica foi aplicada no nó central (nó 6). A função do carregamento está representada na Fig. 10.

Figura 8. Treliça Espacial

Figura 9. Dimensões da Treliça Espacial

Figura 10. Dimensões da Treliça Espacial

As Tabelas 2 e 3 apresentam o resultado da otimização para os perfis circulares, quadrado e retangulares. Para a otimização utilizou-se um custo do aço estrutural de 3,85R\$/kg e restringiu o deslocamento máximo a 1cm.

Barra	Diâmetro (mm)	Espessura (mm)
1, 3, 4, 7, 8, 9, 10, 11, 12, 13, 23, 27	33,4000	3,2000
2	44,8560	6,1886
5	38,7448	5,5350
6	44,8515	6,1889
14	44,8545	6,1889
15	66,1673	7,9792
16	44,8554	6,1889
17	44,8527	6,1887
18	66,1672	7,9792
19	44,8513	6,1881
20	44,8569	6,1891
21	44,8557	6,1885
22	44,8568	6,1890
24	44,8527	6,1887
25	38,7486	5,5355
26	44,8543	6,1883
Peso Total:		268,2781
Custo total:		1032,8705

Tabela 2. Tabela comparativa para perfis circulares

Tabela 3. Tabela comparativa para perfis quadrados e retangulares

Quadrado				Retangular	•
	Largura	Espessura	Largura		
Barra	(mm)	(mm)	(mm)	Altura (mm)	Espessura (mm)
1, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 23, 25, 27	50,0000	3,6000	60,0000	40,0000	3,6000
2	50,0296	3,9502	60,0000	40,0116	3,9519
6	50,0281	3,9496	60,0000	40,0125	3,9511
10	50,0302	3,9504	60,0000	40,0126	3,9521
14	50,0301	3,9500	60,0000	40,0125	3,9516
15	54,9520	7,4323	60,0000	50,0142	7,1194
16	50,0302	3,9504	60,0000	40,0125	3,9521
17	50,0284	3,9501	60,0000	40,0126	3,9516
18	54,9519	7,4323	60,0000	50,0142	7,1194
19	50,0280	3,9496	60,0000	40,0124	3,9511
20	50,0298	3,9507	60,0000	40,0118	3,9524
21	50,0297	3,9502	60,0000	40,0117	3,9519

CILAMCE 2016 Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering Suzana Moreira Ávila (Editor), ABMEC, Brasília, DF, Brazil, November 6-9, 2016

Custo total:	1290,3591		1290,3591		
Peso Total:	335	,1582		335,1582	
26	50,0301	3,9499	60,0000	40,0125	3,9516
24	50,0284	3,9501	60,0000	40,0126	3,9516
22	50,0298	3,9507	60,0000	40,0119	3,9523

A partir da análise dos resultados da otimização para os três tipos de perfis pode-se observar uma diferença de peso de cerca de 24,93%, mostrando-se o perfil circular ser mais vantajoso. Isso pode ser devido ao fato que o menor perfil tubular quadrado possuir uma área bem maior que o menor perfil circular.

Outro fato a ser observado é que muitas barras da treliça necessitam apenas do menor perfil o que reduz consideravelmente o peso da estrutura.

5.3 Treliça espacial 2

O segundo exemplo de treliça espacial trata-se de um domo treliçado com 52 barras, conforme Fig. 11 e Fig. 12, e suas dimensões na Fig. 13. Os elementos possuem módulo de elasticidade E = 200GPa.

Figura 11. Projeção plana do domo

Figura 12. Vista frontal do domo

Figura 13. Dimensões do domo em m

O carregamento vertical aplicado no nó central do domo (nó11) é apresentado na Fig.14.

Figura 14. Carregamento dinâmico

As Tabelas 4 e 5 apresentam o resultado da otimização do domo. Para otimização utilizou-se um custo do aço de 3,85R\$/kg e restringiu-se os deslocamentos a um deslocamento máximo de 4,8cm.

Barra	Diâmetro (mm)	Espessura (mm)
1, 2, 3, 4, 5, 6, 9, 11, 12, 13, 15, 16, 19, 20, 21, 29, 31, 32, 33, 34, 37, 38, 39, 41, 43, 44, 47, 48, 49, 50, 51, 52	33,40	3,20
7	34,1012	4,2785
8	36,3038	4,5036
10	34,1039	4,2780
14	34,1044	4,2778
17	85,7835	11,4803
18	64,6216	8,6453
22	34,1047	4,2779

Tabela 4. Resultado da otmização para perfis circulares

CILAMCE 2016

Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering Suzana Moreira Ávila (Editor), ABMEC, Brasília, DF, Brazil, November 6-9, 2016

Custo total:		2297,7912
Peso Total:		805,8029
46	34,1110	4,2766
45	36,3057	4,5035
42	34,1108	4,2771
40	34,1010	4,2785
36	64,5809	8,6528
35	85,8357	11,4705
30	36,3018	4,5039
28	85,5081	11,5307
27	64,6813	8,6345
26	85,5023	11,5317
25	64,7395	8,6241
24	34,1092	4,2773
23	36,3050	4,5037

Tabela 5. Resultado da otmização para perfis quadrados e retangulares

	Qua	idrado	Retangular		
	Largura	Espessura	Largura	Altura	Espessura
Barra	(mm)				
1, 2, 3, 4, 5, 6, 7, 8, 9,					
10, 11, 12, 13, 14, 15,					
16, 19, 20, 21, 22, 23,					
24, 29, 30, 31, 32, 33,	50,00	3,60	60,0	40,00	3,60
34, 37, 38, 39, 40, 41,					
42, 43, 44, 45, 46, 47,					
48, 49, 50, 51, 52					
17	69,1369	8,9317	60,0	65,2560	9,2971
18	52,6156	6,6303	60,0	47,5714	6,2406
25	52,9308	6,5777	60,0	47,5715	6,2378
26	69,1798	8,9242	60,0	65,2373	9,2979
27	52,7383	6,6096	60,0	47,5422	6,2389
28	69,1299	8,9329	60,0	65,2290	9,2965
35	69,1504	8,9292	60,0	65,2490	9,2994
36	52,6971	6,6165	60,0	47,5888	6,2429
Peso Total:	1281,878		1281,878		
Custo total:	4935,2304		4935,2304		

Analisando os resultados da otimização para os diferentes tipos de perfis é possível observar que para perfis quadrados e retangulares o peso total da estrutura foi o mesmo. Além disso, estes perfis apresentaram uma diferença no peso total de cerca de 59,08% em comparação com o perfil circular, sendo este último o mais vantajoso para a situação

estudada. Essa grande diferença pode ter ocorrido devido ao fato que o menor perfil tubular quadrado possuir uma área bem maior que o menor perfil circular.

Outro fato a ser observado é que muitas barras da treliça necessitam apenas do menor perfil o que reduz consideravelmente o peso da estrutura.

6 CONCLUSÕES

A partir da utilização do programa elaborado foi possível realizar a análise de estruturas treliçadas sob efeito de carga dinâmica, encontrando a solução ótima, a partir das restrições previamente estabelecidas, de forma relativamente rápida e eficaz, assegurando-se que o deslocamento máximo na estrutura é menor que o deslocamento fornecido pelo usuário. Com o cálculo otimizado para cada estrutura foi possível observar a redução significativa do peso das estruturas, o que corresponde à uma queda no custo total da mesma.

A solução ótima desse tipo de etrutura vem como uma alternativa que visa manter as condições estruturais, diminuindo seu peso e consequentemente seu custo, melhorando a produdividade. Através da comparação dos resultados para os diferentes tipos de perfis é possível analisar qual perfil é mais vantajoso. Outra possível análise, a partir dos resultados da otimização, é a observação das barras que necessitam apenas do menor perfil do catálogo mostrando que a área destas barras pouco influencia no deslocamento máximo da estrutura provocado pela carga dinâmica.

Conclui-se, assim, que o programa implementado mostrou-se como uma ótima ferramenta tanto para profissionais quanto para estudantes, onde é possível uma análise rápida da influencia de carregamentos dinâmicos em estruturas reticuladas.

REFERÊNCIAS

Alves, E.C., Vaz, L. E., 2013. *Optimum design of plates structures under random loadings*, Revista da Escola de Minas, Ouro Preto, Vol. 66, pgs 41-47.

Alves, E.C., 2003. Análise de Sensibilidade e Otimização de Estruturas Submetidas a Vibrações Aleatórias, Tese de Doutorado, Instituto Nacional de Pesquisas Espaciais, São José dos Campos - SP, Brasil.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, 2008. Projeto de Estruturas de Aço e de Estruturas mistas de aço e concreto de edifícios, NBR 8800, Rio de Janeiro.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, 2013. Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edificações com perfis tubulares, NBR 16239, Rio de Janeiro.

Bathe, K. J., 2006. Finite Element Procedures. Cambridge, MA: Klaus-Jürgen Bathe.

Cook, R. D., Malkus, D. S., Plesha, M.E., 1989. *Concepts and applications of finite element Analysis*, *3^a edição*, Jonh Wiley & Sons.

Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering Suzana Moreira Ávila (Editor), ABMEC, Brasília, DF, Brazil, November 6-9, 2016

Fonseca, M., 2007. *Otimização de estruturas treliçadas planas e espaciais sob carregamento estáticos e dinâmicos, usando algoritmos genéticos e redes neurais*. Dissertação de mestrado, Universidade Federal de Ouro Preto, Ouro Preto.

Novelli, L., Alves, E. C., Gomes Filho, H., Garozi, M. Jr. P., Sias, F. M., Azevedo, M. S., 2015. *Ferramenta computacional para o dimensionamento de estruturas tubulares treliçadas*. XXVI Iberian LatinAmerican Congress on Computational Methods in Engineering, Rio de Janeiro.

Vaz, L. E., 2011. Método dos elementos finitos em análise de estruturas. Rio de Janeiro: Elsevier.