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Abstract. This paper presents a methodology to improve installation of friction dampers in 

civil structures. The proposed methodology involves a metaheuristic optimization technique 

called Firefly Algorithm linked with a computational routine based in the Finite Differences 

Method to carry out the simultaneous optimization of the friction forces and positions of 

friction dampers. The proposed method is illustrated in a ten-story shear building, that is, the 

method finds the best stories to locate the dampers with optimal mechanical parameters. The 

objective function used in this study is to minimize the maximum inter-story drift of the ten-

story shear building, which is located in Cúcuta, Colombia. For this purpose, the authors 

used the NSR-10 (Colombian Seismic Code). 
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1  INTRODUCTION 

In order to avoid structural damage due to natural hazards like earthquakes, the structural 

engineering has presented several advances in seismic energy dissipation control devices. 

These devices could be active or passives and their implementation depend on the project 

investment. The active devices change their properties in function of the structural response, 

for this reason, they are the most expensive. On the other hand, the passive devices are 

cheaper than active devices, presenting a low cost for installation and maintenance. 

Because of their characteristics, passive devices stand out between energy dissipation 

devices. Due to this, recently several researchers have worked in dampers optimization 

methodologies. In the literature is possible to find several papers about optimization of Tuned 

Mass Dampers, as, for instance (Sgobba et al., 2010; Rakicevic et al. 2012; Mohebbi et al. 

2013; Miguel et al. 2013), and another sort of devices like MR dampers (Amini et al., 2012). 

On the other hand, few papers about the optimization of friction dampers are found in the 

literature (Miguel et al., 2014). Some researches (Fang et al., 2012; Takewaki et al., 2013) 

have worked on optimization of viscous or viscoelastic dampers, using objective functions 

such as inter story drift, throughout the optimal location of these devices. 

The metaheuristic algorithms are able to deal with dampers optimization problems and 

some of the salient characteristics of these sort of algorithms are: (a) they do not require 

gradient information; (b) if they are correctly tuned, they do not become trapped in local 

minima; (c) it is possible to apply in problems with discontinuous functions; (d) they provide 

a set of optimal solutions rather than a single one, giving to the designer a range of options to 

choose; (e) it is possible to use to solve mixed-variable optimization problem (Miguel et al., 

2013). 

Finally, it is important to mention that the optimization of friction dampers is a relatively 

unexplored subject in the world, and this paper proposes a methodology for optimization of 

this kind of passive energy dissipation device. 

 

2  OPTIMIZATION PROBLEM 

Concerning civil structures located in regions with high seismic activity, engineers are 

usually able to suggest a suitable set of solutions to avoid structural damage. In order to avoid 

classical approaches based on trial and error, optimization techniques applied to energy 

dissipation devices have been become into an important tool for the design engineers, 

avoiding high costs in the project. In this way, it is possible obtain optimal device parameters. 

For the friction damper location problem, calculation of the structure response for every 

possible arrangement of friction dampers mechanical parameters take out to be a very time 

consuming procedure because each case requires a dynamical analysis of the structure 

subjected to an external force such as earthquake. 

The optimization problem consist in an objective function to be minimize, a search space 

defined over a set of discrete design variable and continuous design variables. Appropriate 

locations for a limited number of friction dampers in a civil structure can be represented by 

discrete variables and appropriate mechanical parameters for each optimal located damper is 

best represented by continuous variable. 
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In the last years, some researches such as Mousavi et al. (2012) have been optimizing the 

location of viscoelastic dampers using Genetic Algorithms (G.A.) for reducing the structure 

dynamic response in terms of displacement. In this research, with the aim to carry out the 

simultaneous optimization, this is, obtain the optimal location and optimal mechanical 

parameters (friction forces), at same time, of three friction dampers, the optimization 

technique has been improved through linking the computational routine developed in 

MATLAB with the Firefly Algorithm. The objective function of the simultaneous optimization 

of friction dampers proposed in this paper is to reduce the maximum inter-story drift. 

Additionally the complexity of the optimization problem, a criterion to choose the Firefly 

Algorithm, developed by Yang (2008), was because its capability to perform optimization 

problems with mix-design variables, that is, continuous variables and discrete variables at 

same time. 

Calculating inter-story drift for each arrangement of friction dampers requires a dynamic 

analysis of the structure during an earthquake. This is possible solving the motion equation 

(Eq. 1) using the routine developed based in the Finite Difference Method. 

  ̈      ̇                        .        (1) 

Equation (1) represents the dynamic behavior of a multi-degree of freedom (MDOF) 

system with friction dampers and subjected to external force, in which M and K are the n x n 

size structural mass and stiffness matrices, respectively, and n is the number of degree of 

freedoms. C is the damping matrix proportional to M and K matrices. The n-dimensional 

vector      represents the relative displacement with respect to the base and the differentiation 

with respect to the time is represented with a dot over the displacement vector symbol. The 

external force and the Coulomb friction force are represented by        and      , 
respectively. 

Coulomb friction force is representing by Eq. 2 in which   is the friction coefficient 

(assumed as constant), N is the normal force vector, sgn() is the signal function and v(t) is the 

relative velocity vector between the ends of the damper. 

                        (2) 

It is important to highlight that the magnitude of the friction force is constant but its 

direction is always opposite to the sliding velocity. The changes in the direction of the 

velocity cause discontinuities in the friction force, leading to difficulties to evaluate the 

response of a system with friction dampers. For this reason, it was implemented the 

continuous function                   with       , proposed by Mostaghel and Davis 

(1997) that represents the discontinuity of Coulomb friction force, where    is the parameter 

that control the level of accuracy of the function representing the friction force. The 

continuous function    was already used in previous studies, as Miguel and Riera (2008). 

Before perform the friction dampers optimization, the numerical routine developed was 

validated using the commercial software ANSYS. The system in free vibration showed in the 

Fig. 1 is represented by Eq. (3). For its similarity to Eq. (1), the reader can take the 

explanation given above. Thus, the system response obtained by the proposed numerical 

routine is compared and validated using ANSYS. The properties of the three degree of freedom 

(3-DOF) system implemented to the numerical routine validation are presented in Table 1. 

  ̈      ̇                          (3) 

  



Template for CILAMCE 2016 (double-click to edit short title field) 

CILAMCE 2016 

Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering 

Suzana Moreira Ávila (Editor), ABMEC, Brasília, DF, Brazil, November 6-9, 2016 

 

Figure 1. Three DOF system. 

Table 1. Properties of the three DOF system 

DOF (i) 
Mass (mi) 

in [kg] 

Stiffness 

(ki) in 

[N/m] 

Viscous 

Damping (ci) 

in [Ns/m] 

Friction 

Force (Fai) 

in [N] 

Initial 

displacement 

(xi) in [m] 

Initial 

Velocity 

in [m/s] 

1 103017.33 4.04x108 6.4513x104 3x105 0.08 0 

2 103017.33 4.04x108 6.4513x104 3x105 0.10 0 

3 103017.33 4.04x108 6.4513x104 3x105 0.12 0 

 

The response of the system obtained by the developed numerical routine was compared 

with the response obtained in the transient analysis from ANSYS. The comparison was done 

using all the response information from ANSYS and plotted with the numerical response using 

an integration interval of 2e-3 seconds in MATLAB. As can be seen in Fig. 2, there is 

overlapping between the numerical response and the ANSYS response, leading to the 

conclusion that the developed numerical routine is correct. 

 

 

Figure 2. Comparison of response between ANSYS and the proposed numerical method 

The Firefly Algorithm will evaluate the objective function, i.e., the inter-story drift, after 

solving the equation of motion for each optimal arrangement of friction dampers through the 
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routine developed. In each iteration, n objective functions are evaluated where n is the 

fireflies’ population, in other words, each firefly will evaluate one objective function. Firefly 

Algorithm pseudo code is shown in Fig. 3. 

 

Figure 3. Firefly pseudocode. 

For purposes to guarantee optimal response preventing the Firefly Algorithm converges to 

local optimum, the fireflies’ population settled in one hundred fireflies and the iterations 

settled in one thousand. In every iteration, Firefly Algorithm will analyze one hundred 

objective functions, saving the best objective in each iteration and comparing it with the 

above until accomplish number of iterations. In terms of compute time, convergence criteria 

by iterations number present a moderated cost, around five hours using an Intel Core I7-

4700MQ processor. In order to improve the optimization technique, the authors developed 

other convergence criteria using the mean and standard deviation of all the objective functions 

evaluated, iteration by iteration. Thus, the Firefly Algorithm may converge by either of the 

two convergence criteria. It is worth highlighting that the convergence criteria developed 

reduces the computational time, in the best case, up to a third of the time spent by the 

convergence criteria of number of iterations. 

The location of friction dampers is a discrete design variable and the friction forces of each 

device is represented by a continuous number, this is, a continuous variable. On the other 

hand, the constraints of the optimization problem are the number of available positions for the 

friction dampers and the maximum number of dampers to be installed. In the ten-story shear 

building, the maximum number of positions is ten (one in each story) and the maximum 

number of friction dampers to be optimized, determining its position and its friction force 

simultaneously is three. For the discrete design variables (positions) the lower and upper 

boundaries highlight stories of the structure. For the continuous design variable (friction 

forces) the limits adopted are 100kN-1500kN. 

In order to guarantee acceptable levels of acceleration in all stories, ten inequality 

constraints were implemented for accelerations, one for each story (Table 2). 

Table 2. Acceleration constraints [m/s
2
]. 

Story 1 Story 2 Story 3 Story 4 Story 5 Story 6 Story 7 Story 8 Story 9 Story 10 

 ̈1<6.0  ̈2<6.0  ̈3<6.0  ̈4<6.0  ̈5<6.0  ̈6<6.0  ̈7<6.0  ̈8<6.0  ̈9<6.0  ̈10<6.0 
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Thus, grouping the design variables (positions and friction forces) in vector  ⃗, the 

optimization problem can be posed as shown in Eq. (4), in which the objective function    ⃗  

is minimize the maximum value of the inter-story drift vector(   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), subjected to number of 

available positions, maximum number of dampers and acceleration for each story. 

 

Find   ⃗ 

Minimize    ⃗     (   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )        (4) 

Subjected to    (number of available positions), 

   (maximum number of dampers), 

   ⃗    ⃗⃗̈    
                  (acceleration constraints for each story) 

 

3  NUMERICAL SIMULATION 

This section presents a numerical example. A ten story shear building, 3.96m high on each 

floor and 6.10m wide is adopted in the numerical simulations. The structure is represented as 

lumped mass system as shown in Fig. 4, in which is shown diagonal disposition of the friction 

dampers and the arrows represent the degrees of freedom of each mass. The properties of the 

structure are given in Table 3. It is noteworthy that the damping ratio assumed for the first and 

second vibration mode is 0.5 percent (=0.005). Table 4 shows the natural frequencies of the 

ten story shear building. 

 

Figure 3. Schematic model of a shear building represented as lumped mass system. 

Table 3. Mechanical properties of the ten-story shear building. 

Story (i) Mass (mi) in [kg] Stiffness (ki) em [N/m] 

1-4 60000 3.0x10
7
 

5-7 50000 2.4x10
7
 

8-10 40000 2.1x10
7
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Table 4. Frequencies (Hz) of the ten-story shear building. 

f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9 f 10 

0.585 1.562 2.549 3.557 4.402 5.187 5.796 6.387 6.790 6.925 

 

As dynamic load, a one-dimensional artificial earthquake was implemented in which the 

acceleration  ⃗⃗⃗    are zero-mean normal random processes simulated by superposition of 

harmonic waves, as showed by Shinozuka and Jan (1972). 

 ⃗⃗⃗  ∑ √          
 
                         (5) 

In this method, the frequency band of interest must be divided into N intervals, such that 

               and    is the phase angle, which is a random variable with a uniform probability 

distribution function between 0 and 2 . The power spectral density function    (Eq. 6 and Fig. 

5) used in this paper is the proposed by Kanai (1961) and Tajimi (1961) known as the Kanai-

Tajimi filter technique. 

      [
  

       
   

   

       
       

   
   ],      

      

       
    

      (6) 

In which,    is a constant spectral density,    is the ground damping, assumed equal to 0.3, 

and    is the ground frequency, assumed equal to 20rad/s. 

 

Figure 5. Power Spectral Density Function    of Kanai Tajimi. 

In order to simulate common earthquakes that have taken place in Cucuta, Colombia, the 

authors have used horizontal peak ground acceleration (PGA) equal to 0.3g of intermediate 

vibration periods from the mentioned region.    is equal to 0.3 and    is equal to 20rad/s. 

Thus, the time history of the Kanai-Tajimi excitation, with PGA equal to 0.3g, used for the 

friction damper’s optimization, is shown in Fig. 6. 

4  ANALYZING RESULTS 

This section presents the numerical results obtained with the proposed methodology. After 

three simulations, the optimization algorithm has converged in the same optimal positions for 

the three friction dampers with similar friction forces for each one when the ten-story 
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structure is subjected to the artificial earthquake presented in Fig.6. Furthermore, in each 

simulation has obtained similar best objectives as shown in Table 5. 

 

 

Figure 6. Time history of the Kanai-Tajimi excitation. 

Table 5. Results of the three simulations. 

Simulation 1 Simulation 2 Simulation 3 

Number of iterations = 426 Number of iterations = 673 Number of iterations = 385 

Best objective = 0.0299 [m] Best objective = 0.0294 [m] Best objective = 0.0297 [m] 

Stories for the 

optimal 

location 

Optimal 

friction forces 

[N] 

Stories for the 

optimal 

location 

Optimal 

friction forces 

[N] 

Stories for the 

optimal 

location 

Optimal 

friction forces 

[N] 

1 104560 1 88974 1 96900 

2 41306 2 58997 2 51617 

3 80517 3 71739 3 66835 

 

As was mentioned before, a new convergence criteria was performed, in this way, the 

Firefly Algorithm has two convergence criteria. Concerning to the results shown in Table 5, 

for three simulations the optimization algorithm converges with a number of iterations smaller 

than the programmed number for convergence criteria by iterations (1000 iterations), so, the 

computation time is reduced. 

Is noteworthy that in three simulations, inter-story drift is less than one percent of the 

height of the story, respecting the limit imposed by the Seismic Code of Colombia, NSR 10. 

In the case of study, the structure has a height of 3.96 m for each story, thus, according to the 

limit imposed by the referred code, the inter-story drift must to be less than 0.0396 m. 
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The optimization results concerned with second simulation are given in the following. The 

goal is to reduce the maximum inter-story drift to accomplish the Colombian Seismic Code 

NSR 10 and with that, is possible to reduce several dynamic variables like the displacement 

and acceleration in each story, as shown in Figs 7 a) to 9 a). The responses on the frequency 

domain are shown in Figs. 7 b) to Fig. 9 b) and are possible to appreciate the reduction on the 

amplitude. It is also interesting to note that the greatest peaks are presented in the value of 

first natural frequency of the structure. 

 

 

a) 

 

b) 

Figure 7 a) Inter-story drift for first story on the time domain. b) Inter-story drift for first story on the 

frequency domain. 
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a) 

 

b) 

Figure 8. a) Displacement for tenth story on the time domain. b) Displacement for tenth story on the 

frequency domain. 
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a) 

 

b) 

Figure 9. a) Acceleration for tenth story on the time domain. b) Acceleration for tenth story on the 

frequency domain. 

 

Table 6 shows the behavior of each response (drift, displacement and acceleration) for each 

story when the three dampers are located in its optimal places with optimal forces and how 

decrease each response in terms of percentage. 
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Table 6. Comparison of the structure responses with and without friction dampers. 

Story 

Max. Drift [m] Max. Displacement [m] Max. Acceleration [m/s2] 

Wh./D 

(1) 

W./D 

(2) 

%R 

(3) 

Wh./D 

(1) 

W./D 

(2) 

%R 

(3) 

Wh./D 

(1) 

W./D 

(2) 

%R 

(3) 

1 0.064 0.0294 54.07 0.064 0.0294 54.07 7.404 4.777 35.47 

2 0.059 0.0289 51.34 0.122 0.0577 52.56 9.330 5.858 37.21 

3 0.054 0.0264 51.25 0.173 0.0832 52.02 8.787 5.166 41.20 

4 0.048 0.0242 49.22 0.216 0.1058 50.99 10.174 4.682 53.97 

5 0.063 0.0268 57.14 0.254 0.1303 48.63 9.580 4.888 48.96 

6 0.065 0.0249 61.47 0.280 0.1488 47.21 8.348 4.935 40.88 

7 0.061 0.0232 61.97 0.308 0.1595 48.19 10.916 4.913 54.99 

8 0.055 0.0231 57.93 0.360 0.1670 53.67 10.042 4.598 54.20 

9 0.040 0.0181 54.82 0.397 0.1751 55.90 11.331 4.903 56.72 

10 0.026 0.0120 52.94 0.414 0.1844 55.51 13.435 5.870 56.30 

(1)
Without Dampers, 

(2)
With Dampers, 

(3)
Reduction in terms of percentage. 

 

5  CONCLUSIONS 

Concerning the results, it is possible to appreciate that the proposed optimization technique 

is efficient, reducing the response in terms of inter-story drift in more than 50%, with only 

three friction dampers, becoming below the limit imposed by the Seismic Code of Colombia, 

NSR 10. The response in terms of displacement decreases over 50% and the response in terms 

of acceleration is reduced over 55%, respecting all acceleration constraints. 

Additionally, the technique developed in this research has demonstrated its robustness 

because after three simulations and a few iterations, the objective function has gotten similar 

values in all simulations and the optimal places for the friction dampers did not change. 
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