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Abstract. In this study we investigated the band structure of elastic waves propagating in a 

magnetoelectroelastic phononic crystal (MPC), consisting of a polymer matrix reinforced by 

BaTiO3–CoFe2O4 inclusions in a square, triangular and honeycomb lattices. We also studied 

the influence of the inclusion geometry cross section – circular, hollow circular, square and 

rotated square with a 45° angle of rotation with respect to the x, y axes. The plane wave 

expansion (PWE) method was used to solve the constitutive equations of a 

magnetoelectroelastic material considering the wave propagation in the xy plane 

(longitudinal-transverse vibration, XY mode, and transverse vibration, Z mode). The complete 

band gaps between the XY and Z modes were observed to all types of inclusion and the best 

performance depends on the lattice. For square lattice, the best performance was found for 

square inclusion in lower frequencies, for triangular lattice, the circular, square and rotated 

square present, approximately, the same behavior and for honeycomb lattice, the best 

performance was found for circular inclusion. 

Keywords: Magnetoelectroelastic phononic crystal, In-plane wave propagation, Full band 

gaps, Vibration control, Plane wave expansion method. 
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1  INTRODUCTION 

Artificial periodic composites known as phononic crystals (PCs), consisting of a periodic 

array of scatterers embedded in a host medium, have been quite studied (Sigalas et al., 1994; 

Kushwaha et al., 1994; Pennec et al., 2010; Huang et al., 2013; Yu et al., 2013; Anjos et al., 

2015; Miranda Jr. et al., 2015; Miranda Jr. et al., 2016a). PCs have received renewed 

attention because they exhibit complete band gaps where mechanical (elastic or acoustic) 

wave propagation is forbidden. The physical origin of phononic and photonic band gaps can 

be understood at micro-scale using the classical wave theory to describe the Bragg and Mie 

resonances, respectively, based on the scattering of mechanical and electromagnetic waves 

propagating within the crystal (Olsson III et al., 2009). 

PCs can be applied in many situations, such as vibration isolation technology (Jensen, 

2003; Wang et al., 2005; Casadei et al., 2012; Miranda Jr. et al., 2016b; Miranda Jr. et al., 

2016c), acoustic barriers/filters (Ho et al., 2003; Yang et al., 2003; Qiu et al., 2005), noise 

suppression devices (Casadei et al., 2010; Xiao et al., 2012) and surface acoustic devices 

(Benchabane et al., 2006). 

Many types of smart PCs, like piezoelectric PCs (Wilm et al., 2001; Wilm et al., 2002; 

Wilm et al., 2003; Hou et al., 2004; Lian et al., 2016) and piezomagnetic PCs (Robillard et 

al., 2009; Vasseur et al., 2011; Bou Matar et al., 2012) were studied. However, only recently, 

few studies focused on magnetoelectroelastic phononic crystals (MPCs) (Wang et al., 2008; 

Wang et al., 2009). 

In this study, we focused on elastic wave propagation in a MPC. We considered the wave 

propagation in the xy plane (longitudinal-transverse vibration, XY mode, and transverse 

vibration, Z mode) in an inhomogeneous transversely isotropic elastic solid. The main 

purpose of this study was to investigate the elastic band structure of BaTiO3–

CoFe2O4/Polymer PC in a square, triangular and honeycomb lattices with different types of 

inclusion cross sections: circular, hollow circular, square and rotated square with a 45° angle 

of rotation with respect to the x, y axes. 

2  THE MODEL 

Figure 1 (a), (b) and (c) sketch the cross section of the BaTiO3–CoFe2O4/Polymer PC 

taking into account square, triangular and honeycomb lattices, respectively, with an arbitrary 

inclusion geometry. Figure 1 (d), (d) and (e) represent the irreducible Brillouin zone (IBZ) for 

the square, triangular and honeycomb lattices, respectively. It is important to highlight that 

exist three variations in the hexagonal lattice: triangular, honeycomb (or graphite) and 

kagome lattices (Dyogtyev et al., 2010). In this study we considered four types of inclusion as 

mentioned before: circular, hollow circular, square and rotated square with a 45° angle of 

rotation with respect to the x, y axes. 

The constitutive equations of a magnetoelectroelastic material are (Wang et al., 1996): 

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝑢𝑘,𝑙 + 𝑒𝑙𝑖𝑗𝜙,𝑙 + 𝑞𝑙𝑖𝑗𝜑,𝑙, 

𝐷𝑖 = 𝑒𝑖𝑘𝑙𝑢𝑘,𝑙 − 𝜖𝑖𝑙𝜙,𝑙 − 𝜆𝑖𝑙𝜑,𝑙, 

𝐵𝑖 = 𝑞𝑖𝑘𝑙𝑢𝑘,𝑙 − 𝜆𝑖𝑙𝜙,𝑙 − Γ𝑖𝑙𝜑,𝑙, (𝑖, 𝑗, 𝑘, 𝑙 = 1,2,3),                                                                             (1) 
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where 𝜎𝑖𝑗 is the elastic stress tensor, 𝐷𝑖 is the electric displacement vector, 𝐵𝑖 is the magnetic 

induction, 𝑢𝑖 is the elastic displacement vector, 𝜙 is the electric potential, 𝜑 is the magnetic 

potential, 𝑒𝑙𝑖𝑗 are the piezoelectric coefficients, 𝑞𝑙𝑖𝑗 are the piezomagnetic coefficients, 𝜖𝑖𝑙 are 

the dielectric coefficients, Γ𝑖𝑙 is the magnetic permeability, 𝜆𝑖𝑙 are the electromagnetic 

constants, 𝑐𝑖𝑗𝑘𝑙 is the elastic stiffness.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. The transverse cross section of the binary composite system: an array of inclusions (BaTiO3–

CoFe2O4) periodically distributed in a matrix (polymer) for square (a), triangular (b) and honeycomb (c) 

lattices. The IBZ (in shaded region) for square (d), triangular (e) and honeycomb (f) lattices. 

We restricted the treatment to linear media, thus the elastic strain tensor 𝜀𝑘𝑙 is simplified. 

Additionally, based on the quasi-static approximation, there are no electromagnetic sources 

and the curls are zero, thus the electric and magnetic fields are taken as gradients of scalar 

potentials and one can write: 

𝜀𝑘𝑙 =
1

2
(𝑢𝑘,𝑙 + 𝑢𝑙,𝑘),   𝐸𝑙 = −

𝜕𝜙

𝜕𝑥𝑙
= 𝜙,𝑙,   𝐻𝑙 = −

𝜕𝜑

𝜕𝑥𝑙
= 𝜑,𝑙,                                                        (2) 

where 𝐸𝑙 is the electric field and 𝐻𝑙 is the magnetic field. 

The differential equations of motion in the absence of body forces are given by: 

𝜎𝑖𝑗,𝑖 = 𝜌𝑢̈𝑗 , 𝐷𝑖,𝑖 = 0, 𝐵𝑖,𝑖 = 0,                                                                                                                 (3) 

where 𝜌 is the mass density and dot denotes differentiation with respect to time. Substituting 

Eq. (1) in Eq. (3), considering a transversely isotropic elastic solid, if the z axis is normal to 

the plane of isotropy, and for a two-dimensional problem, 𝜕/𝜕𝑥3 = 0, one can write: 

𝜌𝑢̈1 = (𝑐11𝑢1,1 + 𝑐12𝑢2,2),1 + [𝑐66(𝑢1,2 + 𝑢2,1)],2, 

𝜌𝑢̈2 = (𝑐12𝑢1,1 + 𝑐11𝑢2,2),2 + [𝑐66(𝑢1,2 + 𝑢2,1)],1, 

𝜌𝑢̈3 = (𝑐44𝑢3,1 + 𝑒15𝜙,1 + 𝑞15𝜑,1),1 + (𝑐44𝑢3,2 + 𝑒15𝜙,2 + 𝑞15𝜑,2),2, 

0𝜙̈ = (𝑒15𝑢3,1 − 𝜖11𝜙,1 − 𝜆11𝜑,1),1 + (𝑒15𝑢3,2 − 𝜖11𝜙,2 − 𝜆11𝜑,2),2, 
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0𝜑̈ = (𝑞15𝑢3,1 − 𝜆11𝜙,1 − Γ11𝜑,1),1 + (𝑞15𝑢3,2 − 𝜆11𝜙,2 − Γ11𝜑,2),2,                                       (4) 

or in a vectorial notation: 

𝜌𝑢̈𝑖 = 𝛁𝑇 ∙ (𝑐66𝛁𝑇𝑢𝑖) + 𝛁𝑇 ∙ (𝑐66
𝜕𝐮𝑇
𝜕𝑥𝑖

) +
𝜕

𝜕𝑥𝑖
[(𝑐11 − 2𝑐66)𝛁𝑇 ∙ 𝐮𝑇], (𝑖, 𝑗 = 1,2), 

𝜌𝑢̈3 = 𝛁𝑇 ∙ (𝑐44𝛁𝑇𝑢3 + 𝑒15𝛁𝑇𝜙 + 𝑞15𝛁𝑇𝜑), 

0𝜙̈ = 𝛁𝑇 ∙ (𝑒15𝛁𝑇𝑢3 − 𝜖11𝛁𝑇𝜙 − 𝜆11𝛁𝑇𝜑), 

0𝜑̈ = 𝛁𝑇 ∙ (𝑞15𝛁𝑇𝑢3 − 𝜆11𝛁𝑇𝜙 − Γ11𝛁𝑇𝜑),                                                                                      (5) 

where 𝑐66 =
1

2
(𝑐11 − 𝑐12), 𝛁𝑇 = (𝜕 𝜕𝑥1⁄ )𝐞1 + (𝜕 𝜕𝑥2⁄ )𝐞2, 𝐮𝑇 = 𝑢1𝐞1 + 𝑢2𝐞2 and 𝐞i (𝑖 =

1,2) are the basis vectors in the real space. 

Besides, considering a MPC one can note that 𝑐11 = 𝑐11(𝐫), 𝑐12 = 𝑐12(𝐫), 𝑐66 = 𝑐66(𝐫), 
𝑐44 = 𝑐44(𝐫), 𝑒15 = 𝑒15(𝐫), 𝑞15 = 𝑞15(𝐫), 𝜖11 = 𝜖11(𝐫), 𝜆11 = 𝜆11(𝐫), Γ11 = Γ11(𝐫), 
𝜌 = 𝜌(𝐫), 𝑢𝑖 = 𝑢𝑖(𝐫, 𝑡), 𝜙 = 𝜙(𝐫, 𝑡), 𝜑 = 𝜑(𝐫, 𝑡). For a two-dimensional periodicity (the 

system has translational symmetry in z direction and the material parameters depend only on 

the x and y coordinates), then 𝐫 = 𝑥𝐞1 + 𝑦𝐞2 is the two-dimensional spatial vector. 

In order to eliminate the factor time in Eq. (4) and Eq. (5), we imposed a harmonic time 

dependence on 𝑢𝑖(𝐫, 𝑡) = 𝑢𝑖(𝐫)𝑒
𝑖𝜔𝑡, 𝜙(𝐫, 𝑡) = 𝜙(𝐫)𝑒𝑖𝜔𝑡 and 𝜑(𝐫, 𝑡) = 𝜑(𝐫)𝑒𝑖𝜔𝑡, where 𝜔 is 

the angular frequency. Applying the Floquet-Bloch’s theorem (Floquet, 1883; Bloch, 1928), 

expanding 𝑢𝑖, 𝜙 and 𝜑 as a Fourier series and considering wave propagation in the xy plane 

(𝐾3 = 0), one can write: 

𝑇(𝐫) = 𝑒𝑖𝐊.𝐫𝑇𝐊(𝐫) = 𝑒
𝑖𝐊.𝐫 ∑ 𝑇(𝐆)

+∞

𝐆=−∞

𝑒𝑖𝐆.𝐫 = ∑ 𝑇(𝐆)

+∞

𝐆=−∞

𝑒𝑖(𝐊+𝐆).𝐫,                                             (6) 

where 𝑇(𝐫) can be 𝑢𝑖(𝐫), 𝜙(𝐫) or 𝜑(𝐫), 𝑇𝐊(𝐫) is the amplitude of the Bloch wave, note that 

𝑇𝐊(𝐫) = 𝑇𝐊(𝐫 + 𝐑) and 𝑇(𝐫 + 𝐑) = 𝑇(𝐫)𝑒𝑖𝐊.𝐑, 𝑒𝑖𝐊.𝐑 is called the Bloch periodic boundary 

condition, 𝐊 = 𝑢𝐛1 + 𝑣𝐛2 is the Bloch wave vector, 𝑢, 𝑣 ∈  ℚ are the symmetry points 

within the IBZ in reciprocal space, or one may write 𝐊 = 𝑘1𝐞1 + 𝑘2𝐞2, 𝑘1 , 𝑘2  ∈  ℝ are the 

point coordinates within the IBZ in Figure 1 (d), (e) and (f) for the reciprocal space, 𝐛i (𝑖 =
1,2) are the basis vectors in the reciprocal space defined as 𝐚i ∙ 𝐛j = 2𝜋𝛿𝑖𝑗, 𝐛1 =

2𝜋
𝐚2×𝐚3

𝐚1∙(𝐚2×𝐚3)
, 𝐛2 = 2𝜋

𝐚3×𝐚1

𝐚2∙(𝐚3×𝐚1)
, 𝐚i  (𝑖 = 1,2) are the components of the lattice vector 

𝐑 = (𝑚̅𝐚1 + 𝑛̅𝐚2), 𝑚̅, 𝑛̅  ∈  ℤ.  

For a square lattice 𝐚i = 𝑎𝐞i (𝑖 = 1,2), for triangular lattice 𝐚1 = 𝑎𝐞1, 𝐚2 =
𝑎

2
𝐞1 +

𝑎√3

2
𝐞2, for a honeycomb lattice 𝐚1 =

𝑎√3

2
𝐞1 +

3𝑎

2
𝐞2, 𝐚2 = −

𝑎√3

2
𝐞1 +

3𝑎

2
𝐞2 and 𝑎 is the lattice 

parameter. For square lattice, the reciprocal lattice vector is defined as 𝐆 =
2𝜋

𝑎
(𝑚𝐞1 + 𝑛𝐞2), 

for triangular lattice 𝐆 =
2𝜋

𝑎
[𝑚𝐞1 +

(−𝑚+2𝑛)

√3
𝐞2] and for honeycomb lattice 𝐆 =

2𝜋

𝑎√3
[(𝑚 − 𝑛)𝐞1 +

(𝑚+𝑛)

√3
𝐞2], 𝑚, 𝑛 ∈  ℤ. Note that 𝐆 is a two-dimensional vector because we 

consider a two-dimensional periodicity. 

Furthermore, one may write: 



Miranda Jr., E.J.P., Dos Santos, J.M.C. 

CILAMCE 2016 

Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering 

Suzana Moreira Ávila (Editor), ABMEC, Brasília, DF, Brazil, November 6-9, 2016 

𝑃(𝐫) = ∑ 𝑃(𝐆′)

+∞

𝐆′=−∞

𝑒𝑖𝐆
′.𝐫,                                                                                                                     (7) 

where 𝑃 is one of the 𝑐11, 𝑐12, 𝑐66, 𝑐44, 𝑒15, 𝑞15, 𝜖11, 𝜆11, Γ11, 𝜌 and 𝐆′ has the same expressions 

of 𝐆 with 𝑚′, 𝑛′  ∈  ℤ. Note that we use 𝐆′ to highlight the difference between the 

expansions of material properties and the displacements and potentials. 

Substituting Eqs. (6) and (7) in Eq. (4) or Eq. (5), with 𝐆′′ = 𝐆′ + 𝐆, multiplying by 

𝑒−𝑖𝐆
′.𝐫 and integrating over the unit cell, one may write: 

∑

(

 
 
𝜔2

[
 
 
 
 
𝜌(𝐆′ − 𝐆) 𝟎 𝟎 𝟎 𝟎

𝟎 𝜌(𝐆′ − 𝐆) 𝟎 𝟎 𝟎

𝟎 𝟎 𝜌(𝐆′ − 𝐆) 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎]

 
 
 
 

)

 
 

{
 
 

 
 
u1(𝐆)

u2(𝐆)

u3(𝐆)

𝜙(𝐆)

𝜑(𝐆)}
 
 

 
 

𝐆

=∑

[
 
 
 
 
𝐐11 𝐐12 𝟎 𝟎 𝟎
𝐐21 𝐐22 𝟎 𝟎 𝟎
𝟎 𝟎 𝐐33 𝐐34 𝐐35
𝟎 𝟎 𝐐43 𝐐44 𝐐45
𝟎 𝟎 𝐐53 𝐐54 𝐐55]

 
 
 
 

{
 
 

 
 
u1(𝐆)

u2(𝐆)

u3(𝐆)

𝜙(𝐆)

𝜑(𝐆)}
 
 

 
 

𝐆

,                                                                              (8)  

where 

𝐐11 = 𝑐11(𝐆
′ − 𝐆)(𝐊 + 𝐆)1(𝐊 + 𝐆

′)1 + 𝑐66(𝐆
′ − 𝐆)(𝐊 + 𝐆)2(𝐊 + 𝐆

′)2, 

𝐐12 = 𝑐12(𝐆
′ − 𝐆)(𝐊 + 𝐆)2(𝐊 + 𝐆

′)1 + 𝑐66(𝐆
′ − 𝐆)(𝐊 + 𝐆)1(𝐊 + 𝐆

′)2, 

𝐐21 = 𝑐12(𝐆
′ − 𝐆)(𝐊 + 𝐆)1(𝐊 + 𝐆

′)2 + 𝑐66(𝐆
′ − 𝐆)(𝐊 + 𝐆)2(𝐊 + 𝐆

′)1, 

𝐐22 = 𝑐11(𝐆
′ − 𝐆)(𝐊 + 𝐆)2(𝐊 + 𝐆

′)2 + 𝑐66(𝐆
′ − 𝐆)(𝐊 + 𝐆)1(𝐊 + 𝐆

′)1, 

𝐐33 = 𝑐44(𝐆
′ − 𝐆)(𝐊 + 𝐆)1(𝐊 + 𝐆

′)1 + 𝑐44(𝐆
′ − 𝐆)(𝐊 + 𝐆)2(𝐊 + 𝐆

′)2, 

𝐐34 = 𝑒15(𝐆
′ − 𝐆)(𝐊 + 𝐆)1(𝐊 + 𝐆

′)1 + 𝑒15(𝐆
′ − 𝐆)(𝐊 + 𝐆)2(𝐊 + 𝐆

′)2, 

𝐐35 = 𝑞15(𝐆
′ − 𝐆)(𝐊 + 𝐆)1(𝐊 + 𝐆

′)1 + 𝑞15(𝐆
′ − 𝐆)(𝐊 + 𝐆)2(𝐊 + 𝐆

′)2, 

𝐐43 = 𝐐34, 

𝐐44 = −𝜖11(𝐆
′ − 𝐆)(𝐊 + 𝐆)1(𝐊 + 𝐆

′)1 − 𝜖11(𝐆
′ − 𝐆)(𝐊 + 𝐆)2(𝐊 + 𝐆

′)2, 

𝐐45 = −𝜆11(𝐆
′ − 𝐆)(𝐊 + 𝐆)1(𝐊 + 𝐆

′)1 − 𝜆11(𝐆
′ − 𝐆)(𝐊 + 𝐆)2(𝐊 + 𝐆

′)2, 

𝐐53 = 𝐐35, 

𝐐54 = 𝐐45, 

𝐐55 = −Γ11(𝐆
′ − 𝐆)(𝐊 + 𝐆)1(𝐊 + 𝐆

′)1 − Γ11(𝐆
′ − 𝐆)(𝐊 + 𝐆)2(𝐊 + 𝐆

′)2,                          (9) 

where 𝐾1, 𝐾2, 𝐺1 𝐺2, 𝐺1
′  and 𝐺2

′  are the x and y components of 𝐊, 𝐆 and 𝐆′, respectively. 

Equation (8) represents a generalized eigenvalue problem of 𝜔2(𝐊) and should be solved 

for each 𝐊 into the IBZ for square, Fig. 1 (d), triangular, Fig. 1 (e) and honeycomb lattices, 

Fig. 1 (f). 

The Fourier coefficients are: 

𝑃(𝐆) = {
𝑓𝑃A + (1 − 𝑓)𝑃B for 𝐆 = 𝟎 
(𝑃A − 𝑃B)𝐹(𝐆) for 𝐆 ≠ 𝟎  

,                                                                                             (10) 
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where the indexes A and B of Eq. (10) are related to the inclusion (BaTiO3–CoFe2O4) and the 

matrix (polymer), respectively, 𝐹(𝐆) is the structure function and 𝑓 is the filling fraction of 

each type of inclusion, i.e. circular section of radius r', square section of width 2l, rotated 

square section of width 2l with a 45° angle of rotation with respect to x and y axes and a 

hollow circular section with external radius R' and internal radius r, R' > r'. The hollow 

cylinder has an internal radius r' of polymer and a thickness R' – r' of BaTiO3–CoFe2O4. The 

filling fraction 𝑓 = 𝑆𝐴/𝑆𝑐, where 𝑆𝐴 is the cross section area of the inclusion and 𝑆𝑐 =
‖𝐚1 × 𝐚2‖ is the cross section area of the unit cell and for square lattice is: 

𝑓 =

{
 

 
𝜋𝑟′2 𝑎2  for circular section   ⁄

4𝑙2 𝑎2 for square section  ⁄

4𝑙2 𝑎2 for square rotated section⁄  

𝜋(𝑅′2 − 𝑟′2) 𝑎2⁄  for  hollow section 

.                                                                                 (11) 

The filling fraction 𝑓 for triangular lattice is: 

𝑓 =

{
 
 

 
 2𝜋𝑟′2 √3𝑎2⁄  for circular section

8𝑙2 √3𝑎2⁄  for square section

8𝑙2 √3𝑎2⁄  for square rotated section 

2𝜋(𝑅′2 − 𝑟′2) √3𝑎2⁄  for  hollow section 

,                                                                         (12) 

and for honeycomb lattice is: 

𝑓 =

{
 
 

 
 4𝜋𝑟′2 3√3𝑎2⁄  for circular section

16𝑙2 3√3𝑎2⁄  for square section

16𝑙2 3√3𝑎2⁄  for square rotated section 

4𝜋(𝑅′2 − 𝑟′2) 3√3𝑎2⁄  for  hollow section 

.                                                                      (13) 

The structure function 𝐹(𝐆) for square and triangular lattices is defined as: 

𝐹(𝐆) =
1

𝑆𝐴
∬𝑒−𝑖𝐆∙𝐫 𝑑2𝑟.                                                                                                                     (14) 

The integral in Eq. (14) is performed over the cross section of the BaTiO3–CoFe2O4 

inclusion. The structure functions of the inclusions for square and triangular lattices are: 

𝐹(𝐆)

=

{
 
 

 
 

2𝑓𝐽1(𝐺𝑟′) 𝐺𝑟′⁄  for circular section

𝑓[sin(𝐺1𝑟′)/𝐺1𝑟][sin(𝐺2𝑟
′)/𝐺2𝑟′] for square section

𝑓 {
sin[(𝑙 √2⁄ )(𝐺1 + 𝐺2)]

(𝑙 √2⁄ )(𝐺1 + 𝐺2)
} {
sin[(𝑙 √2⁄ )(−𝐺1 + 𝐺2)]

(𝑙 √2⁄ )(−𝐺1 + 𝐺2)
}  for square rotated section

2𝑓[𝐽1(𝐺𝑅′) − (𝑟′ 𝑅′⁄ )𝐽1(𝐺𝑅′)]/(𝐺𝑅′) for hollow section

, (15) 

where 𝐺 = ‖𝐆‖. 

The structure function 𝐹(𝐆) for honeycomb lattice is defined as (Cassagne et al., 

1996): 

𝐹(𝐆) = 2 cos(𝐆 ∙ 𝐮1
′ )
1

𝑆𝐵
∬𝑒−𝑖𝐆∙𝐫 𝑑2𝑟,                                                                                            (16) 

where 𝐮1
′ = −𝐮2

′ = 𝑎(0,1/2) are the vectors that define the central position of the two 

scatterers into the honeycomb unit cell. We chose these vectors similar as Gao et al. (2013). 
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Thus, the structure functions of the inclusions for honeycomb lattice are the same of Eq. (15) 

multiplied by cos(𝐆 ∙ 𝐮1
′ ), considering 𝑓 from Eq. (13), or the same of Eq. (15) multiplied by 

2cos(𝐆 ∙ 𝐮1
′ ), considering 𝑓 = 𝑓/2 from Eq. (13), because we defined for honeycomb lattice 

𝑓 = 2𝑆𝐴/𝑆𝑐. 

3  RESULTS AND DISCUSSION 

The physical parameters of BaTiO3–CoFe2O4 (A) and the polymer (B) are listened in 

Table 1. 

Table 1. Physical parameters of BaTiO3–CoFe2O4 (material A) and polymer (material B) (Wang et al., 

2009). 

 𝜌  𝑐11 𝑐12 𝑐44 𝑐66 𝑒15 𝜖11 𝑞15 Γ11 𝜆11 

A 5.73 166 77 43 44.5 11.6 11.2 550 5 0.005 

B 1.15 7.8 4.7 4.6 1.55 0 0.0398 0 5 0 

𝜌 in 103  kg m3⁄ , 𝑐𝑖𝑗  in 109  N m2⁄ , 𝑒15 in C m2⁄ , 𝜖11 in 10−9 C2 Nm2⁄ , 𝑞15 in  N Am⁄ , Γ11 in  N𝑠2 C2⁄ , λ11 in 

10−9  Ns VC⁄ . 

We calculated the band structure considering a fixed filling fraction (0.45) and a lattice 

parameter (0.022 m) for the four inclusions considering square, triangular and honeycomb 

lattices. In the course of the numerical calculations, the integers 𝑚, 𝑛, 𝑚′, 𝑛′ were limited 

to the interval [−10, 10] for all results, i.e. 441 plane waves. This resulted in a very good 

convergence. One can note that we restricted the band structure plots comparison until a 

maximum frequency (150 kHz) instead of fixing the number of bands. 

The Fig. 2 (a-d) compares the band structure of a square lattice illustrated in Fig. 1 (a) 

and (d) for the four types of inclusions, considering the XY (red) and Z (blue) modes. Note 

from Eqs. (4), (5) or (8) that only the Z mode contains the piezoelectric and piezomagnetic 

effects. We plot the band structure in the three principal symmetry directions of the IBZ 

(Fig. 1 (d)). The plots are given in terms of frequency in Hz versus the reduced Bloch wave 

vector 𝐤 = 𝐊𝑎/2𝜋. In Fig. 2 (a), three complete band gaps are found for circular cross 

section inclusion. 

The relation between the parameters 𝑅′ and 𝑟′ for hollow circular cross section 

inclusion was fixed in 𝑟′ = 0.2𝑅′ and we did not investigate the influence of the thickness 

𝑅′ − 𝑟′ of BaTiO3–CoFe2O4 in the band structure. Figure 2 (b) presents one complete band 

gap and one can observe that the first bands occur in higher frequencies compared to the 

other inclusions. Figure 2 (c) shows two complete band gaps for square cross section 

inclusion and its first band gap is the broader one for a square lattice. 

When these square inclusions are rotated 45° with respect to x and y axes, another gap 

was created in higher frequencies and one narrow gap was created around 50 kHz, as 

illustrated in Figure 2 (d). The square inclusion presented the best performance (broader 

band gap) in lower frequencies compared to the other inclusions for square lattice. 

However, the circular and rotated square inclusions presented more band gaps. 

Figure 3 shows the band structures for a triangular lattice illustrated in Fig. 1 (b) and 

(e) considering XY and Z modes. For circular, square and rotated square inclusions, Fig. 3 

(a), (c) and (d), respectively, presents a complete wide band gap between the XY and Z 

mode bands in, approximately, the same range of frequency, i.e. 40–75 kHz. For hollow 
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inclusion, with the same thickness as cited above, only one wide gap was created between 

73–100 kHz. 

In Figure 4, for honeycomb lattice as illustrated in Fig. 1 (c) and (f), the band 

structures of square and rotated square inclusions presented almost the same gaps. The 

band structure of circular inclusion creates four gaps, however, all of them narrower than 

the gaps of square and triangular lattices. For hollow inclusion, one can observe one 

complete band gap and the first bands occur in higher frequencies compared to the other 

inclusions, similar to square and triangular lattices. 

 

 

Figure 2. Elastic band structures of XY (red) and Z (blue) modes of BaTiO3–CoFe2O4 inclusions in a 

polymer matrix for a square lattice. The following types of inclusions are considered: (a) circular, (b) 

hollow circular, (c) square and (d) rotated square with a 45° angle of rotation with respect to the x, y axes. 

 

(a) 

(b) 

(c) (d) 
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Figure 3. Elastic band structures of XY (red) and Z (blue) modes of BaTiO3–CoFe2O4 inclusions in a 

polymer matrix for a triangular lattice. The following types of inclusions are considered: (a) circular, (b) 

hollow circular, (c) square and (d) rotated square with a 45° angle of rotation with respect to the x, y axes. 

 

(a) (b) 

(c) (d) 

(a) (b) 
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Figure 4. Elastic band structures of XY (red) and Z (blue) modes of BaTiO3–CoFe2O4 inclusions in a 

polymer matrix for a honeycomb lattice. The following types of inclusions are considered: (a) circular, (b) 

hollow circular, (c) square and (d) rotated square with a 45° angle of rotation with respect to the x, y axes. 

4  CONCLUSIONS 

We obtained relatively broad complete band gaps between XY and Z modes where the 

propagation of elastic waves is forbidden. In the case of triangular array of BaTiO3–

CoFe2O4 inclusions embedded in a polymer background, the band structures considering 

circular, square and rotated square with a 45° angle of rotation with respect to the x, y axes 

inclusions presented approximately the similar behavior and the complete band gap arise in 

almost the same range of frequency. The band structure considering hollow circular 

inclusion presented one complete band gap between 73–100 kHz for 𝑟′ = 0.2𝑅′. Unlike 

triangular lattice, for the square lattice, different behaviors of the band structure have been 

obtained for all inclusions. The best performance in lower frequencies was found for 

square inclusion. 

For honeycomb lattice, the band structures of square and rotated square inclusions 

present almost the same gaps, however, all of them narrower than the gaps of square and 

triangular lattices. For hollow inclusion, only one complete band gap was created. The best 

performance for honeycomb lattice was considering the circular inclusion. 

We considered square, triangular and honeycomb arrays of inclusions perfectly 

embedded in an elastic background. This means that we neglected the effects due to 

decohesion of the fibers from the polymer matrix and to roughness at the interface between 

the inclusions and the matrix. These defects could modify the elastic wave propagation in 

composite materials, altering the band structure of them. The elastic band gaps in MPC 

enlarge the potential applications for vibration management. 
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