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Abstract. The consideration of uncertainties in numerical models to obtain the probabilistic de-
scriptions of dynamic response is becoming more desirable in the way to quantify the parametric
and non-parametric uncertainties associated with the model. In this work, an alternative ap-
proach to the spectral element formulation, in which the exact wave solutions are not required,
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Dynamics analysis of 1D structure including random parameter via state-vector equations

the spectral element matrix including random parameters is derived from the transfer matrix
formulated directly from the frequency-domain state-vector equation of motion. The analyses
were made to quantify the effect of uncertainty in the dynamic responses at high frequency
bands and the Monte Carlo simulation is used to propagate the variation in dimensional prop-
erties of the structural parameters. Some interesting results are presented, showing the effects
of uncertainty parameters in the dynamic response of the structure.

Keywords: Uncertainty quantification, Transfer matrix, State-Vector, Monte Carlo simulation,
Spectral element method.
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1 INTRODUCTION

Modern industry has continually researching new engineering tools, in order to further im-
prove safety and quality of human life. This challenge has led engineers to face constantly
new obstacles. In the field of structural dynamics, the purpose is to lower human interaction
when monitoring the integrity of a structure. In order to solve this problem, many researchers
have made significant progress in developing methods to investigate the dynamic behaviour
of structures as rods, beams, plates, etc. Another point is the crash resistance of a structure,
that depends, in part, on its capacity to propagate vibrational energy away from the crash site
(Doyle, 1997). To study this properly, an itemized analysis of the local behaviour is neces-
sary. It is a preliminary hop towards the analysis of vibration energy propagation in solids.
Although frequency domain techniques are efficient and accurate for low frequency band anal-
ysis, for high frequency band analysis the solutions are computationally intensive and often
provide more information than needed. At high frequency bands structural and acoustic modal
parameters (frequency and mode shapes) becomes very dense and impossible to analyse like in
low frequency bands. Then, to use theses result as statistical (average) instead of a deterministic
is more simple and useful for the engineers. These characteristics of classical solutions have
led many researchers to explore new methods to modelling the response of dynamic systems
at a less exact result that gives an average overall behaviour of the system. A vast amount
of research has been dedicated to the high-frequency range, and one of the techniques most
commonly used is statistical energy analysis (SEA) (Lyon and DeJong, 1975). Its limitation
comes from the inability to calculate the energy spatial variation in each subsystem. Wohlever
(J.C. Wohlever, 1992) proposed the the energy flow analysis (EFA) which is an enhanced of
SEA, since it provides the spatial energy distribution within the subsystems. Based on this two
techniques combined with the spectral element method (SEM) Doyle (1997); Lee (2004), San-
tos et al. (Santos et al., 2008) proposed the energy spectral element method (ESEM), which
consists of applying the same matrix methodology of FEM to the analytical solution of EFA .
Proposed by Lee (Lee, 2000, 2004) the spectral transfer matrix method use the spectral element
matrix computed numerically directly from the transfer (or transition) matrix formulated from
the state vector equation of motion of a structure. The transfer matrix method (TMM) can be
efficiently used especially for periodic one-dimensional structures and can also be applied to
energy-based methods.

In the present literature, SEM also TMM do not account in their formulation the presence
of uncertainties, like to the geometric parameters, material properties and boundary conditions
among others. In the last decades dynamic structure studies have been including this uncertainty
information in the models. The Direct Method consists in applying the moment equations to
obtain the random solutions. Unknowns are the moments and their equations are derived by
taking averages over the original stochastic governing equations. Otherwise, non-sampling
approaches may be used, such as the Perturbation method (Kleiber and Hien, 1992; Xiu, 2010),
Neumann expansion method (Yamazaki et al., 1988; Zhu et al., 1992), Moment Equations (Xiu,
2010), Polynomial Chaos (PC) expansion and Generalized Polynomial Chaos (Ghanem and
Spanos, 1991; Xiu, 2010), Stochastic Galerkin method (Maı̂tre and Knio, 2010), Stochastic
Partial Differential Equations (SPDEs), and Stochastic Finite Element method (Ghanem and
Spanos, 1991). Due to the simple process and high precision, Monte Carlo (MC) simulation
has been widely used in probability and statistics analysis; MC also describes the uncertainty
propagation of the input/output variables Sobol’ (1994).
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Suzana Moreira Ávila (Editor), ABMEC, Braslia, DF, Brazil, November 6-9, 2016



Dynamics analysis of 1D structure including random parameter via state-vector equations

In this work the dynamic behaviour of a simple rod (elementary rod theory) and a beam el-
ement (Euler-Bernoulli theory) is analysed through the perspective of longitudinal and flexural
wave propagation and considering the presence of uncertainties in axial rigidity, flexural rigid-
ity and mass per unit of length. This goal is achieved by using an spectral element formulation
derived from the transfer matrix formulated as a state vector equation of motion Lee (2000) in-
cluding the random parameter in the formulation. In additional, a study involving a state vector
equation spectrally formulated calculated by TMM is demonstrated and applied to calculate the
structural energy density and flow. Analyses were based on quantifying the effect of uncertainty
in the dynamic responses at the frequency band of interest. Some interesting results show the
effects of uncertainty parameters in the dynamic response of the structure.

2 STATE-VECTOR EQUATION BASED ON SPECTRAL ELEMENT
FORMULATION

The spectral elements are formulated by the exact shape functions derived from the wave
solutions of a structural model Doyle (1997). In this section, it will be shown that the spectral
element matrix can be derived from the transfer matrix spectrally formulated directly from a
state vector equation of motion. From dynamic system relationship a frequency-domain state-
vector equation can be obtained as,

dŷ

dx
= A(ω)ŷ (0 ≤ x ≤ L) (1)

where A(ω) is the system matrix and ŷ(x) is the state vector. For a structural system ŷ(x) =
{d̂ F̂}T , where d̂ is the nodal displacements vector and F̂ is the internal nodal forces vector.

The general solution of Eq. (1) is given by

ŷ(L) = eALŷ(0) =

 T11 T12

T21 T22


︸ ︷︷ ︸

T

ŷ(0) (2)

where T is the transfer matrix, which relates the state vector in the input side (x = 0) to those
in the output side (x = L). By rearranging Eq. (2) into the force-displacement formulation
based on a two-node element it has, F̂1

F̂2

 =

 T−1
12 T11 −T−1

12

T21 − T22T−1
12 T11 T22T

−1
12

 d̂1

d̂2

 (3)

or, in a matrix form

{F̂} = [S(ω)] {d̂} (4)

where S(ω) is the spectral element matrix. This approach does not require a previous knowledge
of the wave solutions or the exact shape functions for the problem.
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2.1 Rod model with random parameter

————————————————————————–

The elementary theory considers that the rod is a long and thin structure. Also, it assumes
that the axial deformation along the neutral axis of the rod are the same throughout the cross
section and the lateral contraction (Poisson effect) can be neglected. The frequency domain
homogeneous undamped rod equation of motion is given by:

EA(θ)
∂2û(x, θ)

∂x2
− ω2ρA(θ)û(x, θ) = 0 (5)

where A is the cross-section area, ρ is the volume mass density, EA is the longitudinal rigidity,
ρA is the mass per unit length, u is the longitudinal displacement, ω is the circular frequency,
and θ denotes random variable statement. The elastic wave characteristics within a rod element
with longitudinal rigidity and mass per unit length are considered as random variable. A hys-
teretic structural damping is assumed and introduced into the formulation by adding a complex
damping factor in the Young’s modulus. In the deterministic case it is a complex value given
by E = E0(1 + iη), where E0 is the Young’s modulus mean value, η is the damping factor
and i =

√
−1 (Doyle, 1997). In the stochastic case it is given by E(θ) = Ê(θ) + E0iη, where

the random part of the Young’s modulus is a real value, Ê(θ), and the deterministic part is the
complex value E0iη.

The rod element state vector in its spectral form is given by

ŷ(x, θ) =

 d̂

F̂

 =

 û(x, θ)

EA(θ)û
′
(x, θ)

 (6)

where d̂ and F̂ are the spectral components of the longitudinal displacement and axial force,
respectively. Consider a clamped-free rod excited by a harmonic punctual force as show in
Fig. (1). Then, Eq. (5) can be transformed into the state-vector form given by Eq. (1) to obtain,

Figure 1: Clamped-free rod with external load.

A(ω, θ) =

 0 1/EA(θ)

−EA(θ)k2 0

 (7)

where k = ω
√
ρA(θ)/EA(θ) is the rod wavenumber. Since the exponential of system matrix

(Eq. 7) can be expressed in closed form, it has

eA(ω,θ)x =

 cos(kx) 1
kEA(θ)

sin(kx)

−kEA(θ) sin(kx) cos(kx)

 (8)
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The transfer matrix for rod member T can be readily derived as

T = eA(ω,θ)L =

 cos(kL) 1
kEA(θ)

sin(kL)

−kEA(θ) sin(kL) cos(kL)

 (9)

and the state vector of motion for a finite rod element with length L will be

ŷ(x, θ) =

 d̂

F̂

 =

 F sec(kL) sin(x)/(kEA(θ))

F cos(kx) sec(kL)

 (10)

From the spectral state-vector element (Eq. 10) the longitudinal displacement are obtained
and used to calculate rod element energy density and energy flow. The energy density for
longitudinal waves in a rod can be written as time-average of instantaneous potential plus kinetic
energy densities (Kinsler et al., 1982) to obtain,

〈e〉 (x, θ) =
ρA(θ)ω2

4
{û(x, θ)û(x, θ)∗}+

EA(θ)

4

{
dû(x, θ)

dx

dû(x, θ)

dx

∗}
, (11)

where 〈•〉 and ∗ represent the time-averaged quantity and the complex conjugate, respectively.
The energy flow for longitudinal waves in a rod can be written as time-average of half of the
real part of input axial force times conjugate of longitudinal velocity (Cho and Bernhard, 1998),
than it has

〈q〉 (θ) =
1

2
<
{
−iωEA(θ)

dû(x, θ)

dx
û(x, θ)∗

}
. (12)

2.2 Beam model with random parameter

The undamped governing equation with random flexural rigidity (EI) and mass per unit of
length (ρA) for the Euler-Bernoulli beam model (Lee, 2000) is given by

EI(θ)
∂4û

∂x4
− ω2ρA(θ)û = 0 (13)

It can be transformed into four first-order ordinary differential equations, which provides a
state-vector equation similar to Eq. (1) but with

ŷ(x, θ) =

 d̂B

F̂B

 =



v̂(x, θ)

φ̂(x, θ)

−EI(θ)v̂
′′′

(x, θ)

EI(θ)v̂
′′
(x, θ)


(14)

where v̂ and φ̂ = v̂
′ are the spectral components of vertical displacement and slope, respec-

tively. Consider a clamped-free beam exited by a harmonic punctual transverse force as show
in Fig. (2).
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Figure 2: Beam clamped-free and external load.

The matrix A(ω, θ) of the state vector Eq. (1) is derived as

A(ω, θ) =


0 1 0 0

0 0 0 1/EI

−EIk4B 0 0 0

0 0 −1 0

 (15)

where kB =
√
ω[ρA(θ)/EA(θ)]1/4 is the beam wavenumber. The spectral transfer matrix can

be obtained as

eA(ω,θ)L = T =

 T11 T12

T21 T22

 , (16)

where the sub-matrices Tij are given by

T11 =
1

2

 cos(kL) + cosh(kL) k(sin(kL) + sinh(kL))

k(sinh(kL)− sin(kL)) cos(kL) + cosh(kL)

 ,

T12 =
1

2EIk3

 sin(kL)− sinh(kL) cosh(kL)− cos(kL)

cos(kL)− cosh(kL) sin(kL) + sinh(kL)

 ,
T21 =

EI

2

 −k3(sin(kL) + sinh(kL)) k2(cos(kL)− cosh(kL))

k2(cosh(kL)− cos(kL)) k(sinh(kL)− sin(kL))

 ,
T22 =

1

2

 cos(kL) + cosh(kL) k(sin(kL)− sinh(kL))

−k(sin(kL) + sinh(kL)) cos(kL) + cosh(kL)

 (17)

The closed-form solution of state vector of motion (Eq. 14) for a finite beam element of
length L is

ŷ(x, θ) =

 d̂B

F̂B

 = (18)
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F (sin(k(L−x))−sinh(k(L−x))+sinh(kL) cos(kx)+cos(kL) sinh(kx)+sin(kL)(− cosh(kx))−cosh(kL) sin(kx))
2EIk3(cos(kL) cosh(kL)+1)

−F (cos(k(L−x))+sinh(kL) sin(kx)+sinh(kx)(sin(kL)+sinh(kL))+cosh(kL)(cos(kx)−cosh(kx))−cos(kL) cosh(kx))
2EIk2(cos(kL) cosh(kL)+1)

−F (cos(k(L−x))+cosh(k(L−x))+sinh(kL) sin(kx)−sin(kL) sinh(kx)+cosh(kL) cos(kx)+cos(kL) cosh(kx))
2 cos(kL) cosh(kL)+2

−F (sin(k(L−x))+sinh(k(L−x))+sinh(kL) cos(kx)−cos(kL) sinh(kx)+sin(kL) cosh(kx)−cosh(kL) sin(kx))
2(k cos(kL) cosh(kL)+k)


Similarly to rod model the energy analysis is performed to beam model. From the Euler-

Bernoulli beam model the flexural displacements are obtained (Eq. 18) and used to calculate
energy density and energy flow. For a harmonic excitation, the time-averaged energy density
and flow due to flexural waves can be written as (Cho and Bernhard, 1998),

〈e〉F (x, θ) =
ρA(θ)ω2

4
{v̂(x, θ)v̂(x, θ)∗}+

EI(θ)

4

{
dv̂(x, θ)

dx

dv̂(x, θ)

dx

∗}
, (19)

and

〈q〉F (x, θ) =
1

2
<
{
−iωEI

(
d3v̂(x, θ)

dx3
v̂(x, θ)∗ − d2v̂(x, θ)

dx2
dv̂∗(x, θ)

dx

)}
. (20)

3 MONTE CARLO SIMULATION

The Monte Carlo simulation has been used for decades, it is a method based on random
samples used in approximations. The name itself is taken from the famous casino located in
Monte Carlo Sampaio and Lima (2012). Simulation methods are also named exact methods,
because the simulation result leads to exact outcomes when the sample number goes to infinity.
To avoid certain approximations which occur in analytical methods and to be a non-intrusive
method are another advantages of this type of techniques. Thus, the general idea of the method
is solving mathematical problems by the simulation of random variables Sobol’ (1994). An
Monte Carlo method example of application is the multidimensional integral approximation.
Supposing the integral of a given real multidimensional function g in a certain region B ⊂ R,

I =

∫
B

g(θ)d(θ) (21)

If g is a simple function, its integral (I) can be calculated easily. However, if g is a difficult
function or is defined in a region with complicated contour can does not exist a closed form for
(I). In such cases, numerical integration methods must be applied for if approximations for (I),
such as the trapeze method, Simpson method and Monte Carlo simulation. Assuming that (I) is
a one-dimensional integral, p and function density probability of a random variable θ, rewriting
equation (21) it is

I =

∫
B

h(θ)p(θ)d(θ) (22)

where h(θ) = g(θ)/p(x)∀θ ∈ B. The integral I can be interpreted as the expected value of
h(θ), it is:

I = E[h(θ)] =

∫
B

h(θ)p(θ)d(θ) (23)
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Thus, and approximation (Î) for the integral can be expressed as

Î =
n∑
i=1

h(θi) (24)

where θ(1), θ(2), ..., θ(n) are samples of the random vector Θ with probability density function
p.

The mean and the standard deviation of the result are calculated through the samples gener-
ated. LetX(ξ, ω) be the frequency response of the stochastic system calculated for a realization
ξ, generated by the Monte Carlo method Rubinstein (2008). The mean-square convergence
analysis with respect to independent realizations of the random variable θ, denoted by Θj(ξ, ω),
is carried out studying the function nS 7→ conv(nS) defined by:

conv(nS) =
1

nS

nS∑
j=1

∫
B

‖Θj(ξ, ω)‖2 dω (25)

4 NUMERICAL TESTS

Rod

A numerical example is considered to illustrate the application of the rod spectral state-
vector model presented in Section 2.1. A clamped-free simple rod structure with the length
L = 1.2 m and cross-section area A = 0.04 cm2 is analysed. The rod is made of steel with
average material properties: density ρ = 7860 kg/m3 and elastic modulus E = 210 GPa. The
structural damping coefficients is assumed to be η = 0.01. The axial rigidity and mass per unit
length are assumed to be Log-normal random variable with coefficient of variation (COV) of 2
and 10% of the mean values of the random variables. The response is calculated at the rod free
end attributable to a unit harmonic force at the same end.

Figure 3 shows the real part of rod longitudinal displacement response calculated with rod
spectral state-vector model using EA and ρA parameters as deterministic and random variables
(mean and standard deviation) for COV = 0.02 and COV = 0.1. Results show that for COV
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Figure 3: Rod displacement response using deterministic and stochastic (mean and STD envelope) random
variables for COV = 2% (LHS) and 10%(RHS).

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
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= 0.02 (Figure 3 LHS) the deterministic and stochastic longitudinal displacement are almost
coincident between the excitation/response point (L = 1.2 m) and around L = 0.8 m. After
that position deterministic and mean rod displacement present some mismatches but still very
close for the majority of the path along rod length until the left-end. Standard deviation (STD)
envelop is coincident also with the other curves. Such behaviour should be expected considering
the low variability of random variables. As the coefficient of variation is raised for a more
significant value (COV = 0.1) rod displacement deterministic, mean and STD envelop (Figure 3
RHS) are coincident close to the excitation/response point, but presents statistically consistent
results for the rest of rod length.

Energy density and flow for rod longitudinal waves are frequency-avareged at 1/3-octave
frequency band with centre frequency fc = 50 kHz. Figures Fig. (4) and Fig. (5) show rod en-
ergy density and energy flow calculated by Eq. (11) and (12) using deterministic and stochastic
mean displacement responses with COV = 0.02 and 0.1.
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Figure 4: Deterministic, mean and standard deviation envelope rod energy density along the rod (fc = 50
kHz) for COV of 2% (LHS) and 10%(RHS).
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Figure 5: Deterministic, mean and standard deviation envelope rod energy flow along the rod (fc = 50 kHz)
for COV of 2% (LHS) and 10%(RHS).

The mean curve is different from the deterministic curve and the standard deviation is
biased by the mean. A homogeneous behaviour as for the mean as for the standard deviation
envelope is observed along of the rod. These results are obtained by using a Monte Carlo
simulation with 1,000 samples which is verify by a convergence analysis (eq. 25) shown in
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Figure 6: Rod convergence analyse for COV of 2% (LHS) and 10%(RHS).

Fig. (6). For small COV the mean convergence is with around 100 samples, and standard
deviation with approximately 300 samples. The mean convergence for COV of 10% is around
350 samples and standard deviation with 500. The computational time used to run the 1000
samples was 20.35 minutes. It was computed by using a Intel(R)Core(TM) i7 CPU @2.20Hz
with installed memory (RAM) of 8GB.

Beam

A simple numerical example is considered to illustrate the application of the formulation
derived for the Euler-Bernoulli beam. The mean material properties are considered as ρ = 7860
kg/m3 and E = 210 GPa. The length of the beam is L = 2 m and the rectangular cross
section has a width of 20 mm and a thickness of 6 mm. The area moment of inertia of the cross
section I = 1.33−9 m4 and the structural damping coefficients are assumed to be η = 0.1. A
clamped- free boundary condition is considered for this example. The standard deviations of
both the random fields are assumed to be 2 and 10% of their mean values. We also consider
the displacement response at the free end of the beam attributable to a unit harmonic vertical
force at that end. The displacement response of the deterministic system, the mean, and the
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Figure 7: Deterministic, mean and standard deviation envelope beam displacement response along the beam
for COV of 2% (LHS) and 10%(RHS).
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standard deviation of the real value of the response calculated with eq. (18) are shown in Fig. (7).
Similar to rod structure, the mean curve is different from the deterministic curve for the both
coefficient of variation (2 and 10%). This difference is larger at higher COV value and as far
as the excitation/measured point. Closer to the excitation/measured point, standard deviation
is biased by the mean, but as distance as of the point increases, the standard deviation curve
flattens.
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Figure 8: Deterministic, mean and standard deviation envelope beam energy density along the beam (fc =
50 kHz) for COV of 2% (LHS) and 10%(RHS).
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Figure 9: Deterministic, mean and standard deviation envelope beam energy flow along the rod (fc = 50
kHz) for COV of 2% (LHS) and 10%(RHS).

Analysis of the energy density calculated using eq. (19) and energy flow using eq. (20) are
shown in Fig. (8) and Fig. (9). They are calculated at 1/3-octave frequency bands with centre
frequency fc = 50 kHz. The energies analysis for the beam structure is more sensible than
rod, which generates a large difference between mean curve from the deterministic and mean
curves, especially for high COV. The standard deviation is biased by the mean. These results
are obtained by using a Monte Carlo simulation with 1,000 samples which is also verify by a
convergence analysis (eq. 25) shown in Fig. (10). For COV of 2% the mean and standard devi-
ation convergence are with around 200 samples. The mean and standard deviation convergence
for COV of 10% are around 800 samples. The computational time used to run the 1000 samples
was 24.05 minutes.
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Figure 10: Beam convergence analyse for COV of 2% (LHS) and 10%(RHS).

5 CONCLUSION

The basic formulation for the the spectral transfer matrix method including random pa-
rameters were presented. The consideration of uncertainties in numerical models to obtain the
probabilistic descriptions of dynamic response turns the analysis more realistic. The analyses
were made to quantify the effect of uncertainty in the dynamic responses at high frequencies
and use the Monte Carlo simulation to propagate the variation in dimensional properties of the
structural parameters. Even for rod as beam, the displacement and energies (density and flow)
are calculated at 1/3-octave frequency bands with centre frequency fc = 50 kHz. The displace-
ment response of the deterministic system, the mean, and the standard deviation with COV’s of
2 and 10% were demonstrated. In both structures (rod and beam) the mean curve is different
from the deterministic curve. This difference is larger at higher COV value and as far as the
excitation/measured point. Closer to the excitation/measured point the standard deviation is
biased by the mean, as distance of the point increases, the standard deviation curve flattens.

The mean and standard deviation of the energy density and energy flow is homogeneous
along the rod. However for beam the energies showed a oscillation because the beam structure
is more sensible than the rod. There is a large difference between deterministic and mean
curves due to the greater beam sensibility. These results are obtained by using a Monte Carlo
simulation with 1,000 samples which is also verified by a convergence analysis. For small
COV’s the sample number required for a good simulation is smaller than for high COV as
demonstrated in this paper. Whole simulations were computed by using a Intel(R)Core(TM) i7
CPU @2.20Hz with installed memory (RAM) of 8GB.
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