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Abstract. In traditional design of engineering systems, it is normally assumed the mean values 

of the physical and mechanical properties. However, in real-world applications it may not 

characterize with reasonable accuracy the modifications on the dynamic behavior of the 

resulting systems induced by small changes on their design variables. Thus, it is interesting to 

perform a stochastic modeling strategy in order to take into account the presence of 

uncertainties. However, the stochastic finite element modeling of a more complex engineering 

structure composed by a large number of degrees of freedom, or its use in dynamic analyses 

requiring several evaluations such as in optimization and model updating, the computational 

cost can be prohibited or sometimes unfeasible. In these situations, the proposition of 

condensation strategy especially adapted for the resulting stochastic systems is interesting. 

This paper is devoted to the investigation of a robust model condensation strategy to reduce 

the random matrices of the stochastic system. The basis to be used is formed by a nominal 

basis evaluated by performing firstly an eigenvalue problem of the mean model enriched by 

static residues due to the small modifications introduced. To illustrate the main features and 

capabilities of the proposed strategy, numerical simulations were performed for a plate model 

in which the stochastic mass and stiffness matrices were generated by applying the so-called 

Karhunen-Loève expansion. The stochastic results are presented in terms frequency response 

function envelopes for the full and reduced stochastic dynamic systems subjected to a 

deterministic excitation. 

Keywords: Parametric uncertainties, robust condensation, stochastic finite elements method, 

dynamics.  

mailto:amglima@mecanica.ufu.br


A robust condensation strategy for stochastic systems 

CILAMCE 2016 

Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering 

Suzana Moreira Ávila (Editor), ABMEC, Brasília, DF, Brazil, November 6-9, 2016 

1  INTRODUCTION 

Engineering structures require reliability, durability and security allied with low cost. 

Deterministic finite elements method, also referred as Classic FEM, considers mean 

parameter values in order to characterize them. Mechanical and geometrical properties such as 

thickness, Young’s module and mass density are estimated via metrological procedures and 

posteriorly receive statistical treatments that are always subjected to measurement errors and 

uncertainties. This along with simplifications applied to computational models, may lead the 

deterministic approach not to characterize the dynamic behavior with reasonable accuracy. 

Therefore, nowadays the stochastic finite elements method (SFEM) is becoming widely used 

in real-world engineering structures to take into account the presence of uncertainties and 

generate responses closer to reality, although requiring a more onerous formulation and 

higher computational efforts. 

Stochastic simulations require multiple evaluations of the entire model. Time dispended 

in this process may turn prohibitive to compute exact evaluations performed over full 

matrices during each sample step. There are several methods capable of reducing dimensions 

of a structure (Craig, 2006). The main objective of this work is to propose a robust 

condensation strategy based in model updating techniques instead of extracting eigensolutions 

for each sample, as used in standard component-mode synthesis. 

After a theoretical background concerning stochastic finite elements method and model 

reduction techniques, a numerical application for an aluminum thin plate was developed. 

Effectiveness of the robust condensation strategy proposed herein is then evidenced. 

2  STOCHASTIC FINITE ELEMENT FORMULATION 

In general, uncertainties are included in engineering models following non-parametric 

(Soize, 2000; Ritto et al., 2008) and parametric (de Lima et al., 2010a) approaches. The first 

method consists in introducing uncertain variables directly in global matrices, while the 

second one includes system perturbations by the addition of a stochastic part to deterministic 

matrices. SFEM, which permits a combination of classic and statistical analysis, is included in 

the second kind (Ghanem and Spanos, 1991; Schueller, 2001). 

This section is devoted to formulate SFEM for an aluminum thin plate. Its dimensions are 

330 390mm mm , discretized by 10 10  plane rectangular finite elements mesh with four 

nodes and five degrees of freedom (DOFs) per node, which are three in-plane displacements 

0 0 0, ,u v w  and two cross-sections rotations ,x y  , comprising a total number of 605 DOFs. As 

boundary conditions, it will be considered a cantilever plate, clamped along y axis. 

Mechanical properties of the plate are presented in Table 1. 

 

Table 1. Mean mechanical properties of the aluminum plate 

Thickness  h  

[mm] 

Young’s Module  E  

[GPa] 

Poisson ratio    Mass density    

[kg/m³] 

2.5 70 0.34 2700 
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To include uncertain variables in the model, a parametrization process is required. Design 

parameters that may be subjected to fluctuations and random effects are selected and 

posteriorly factored out of mass and stiffness matrices. An immediate consequence of this 

process is the separation into membrane and bending effects (Rosa and de Lima, 2016), as 

shown in Eqs. (1). 

3 Eh Ehm bK K K  (1.a) 

3  h hm bM M M  (1.b) 

where sub index m  and b  refer to membrane and bending effects, respectively. 

A continuous random field  , ,H x y  is a set of random variables (noted  ) indexed by 

physical coordinates ,x y  (for bi-dimensional structure such as a plate). Karhunem-Loève 

(KL) decomposition (or expansion) is a continuous representation for random fields expressed 

as the superposition of orthogonal random variables weighted by deterministic spatial 

functions (de Lima et al., 2010a). The discretized field  ˆ , ,H x y obtained by KL 

decomposition and truncated in r n  terms is presented in Eq. (2). 

       
1

ˆ, , , , ,     


  
n

r r r

r

H x y H x y f x y  (2) 

where  , ,    E H x y  is the expectation operator applied to the random field,  r  is the 

aleatory variables function and r ,  ,rf x y are the eigenvectors and eigenfunctions of the 

random field’s bidimensional covariance function. 

Ghanem and Spanos (1991) proposed a procedure to estimate r  and  ,rf x y . For this 

bidimensional application, they suggest choosing an exponential covariance function. A 

function of this kind presents the separability property, allowing to decouple the problem into 

two unidimensional fields. Thus, the eigenfunction and eigenvalue solution become 

     , r i jf x y f x f y  and r i j
, respectively. The full procedure is described in details 

and was successfully applied in recent works of Ribeiro (2015), Rosa and de Lima (2016). 

Once eigenfunctions and eigenvalues are obtained, it is possible to calculate mass and 

stiffness stochastic elementary matrices as presented below: 
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Following finite elements theory, one can formulate: 

         , , ,    
x y

T

r r r
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e
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where xL  and 
yL  are the correlation lengths,  ,x yN  is the shape functions vector used in 

FEM formulation,  ,x yB is a differential operators matrix applied to shape functions 

(following strength of materials theories),   is the mass density and H  is the mechanical 

properties matrix. 

Finally, mass and stiffness global stochastic matrices are determined by concatenation of 

elementary matrices following nodes and degrees of freedom connectivity: 

     
1

 



N

i

e

iM M  (7) 

     
1

 



N

i

e

iK K  (8) 

where N  is the number of elements. 

It is possible to formulate the movement equation for a system including proportional 

structural damping as follows: 

         M U C U K U F  (9) 

where      C K is the damping matrix,   is the damping coefficient, U  is the 

displacement vector and ,U U are its first and second time derivatives, respectively. 

Applying Fourier’s transformation to Eq. (9): 

         
1

2,       


     jU M C K F  (10) 

A frequency response function (FRF) is defined as the relation between an output and an 

input in Fourier’s domain. For this case, the relation between displacement  , U  and 

applied loading  F  is obtained. The stochastic dynamic system FRF is calculated by: 

       
1

2,      


     jG M C K  (11) 

As seen in Eq. (11), matrices inversions for each frequency step   are necessary to 

evaluate the FRF. However, computational time expended depends on the size of the model, 

which is proportional to the number of degrees of freedom. 

3  ROBUST CONDENSATION PROCEDURE 

Real-world engineering models are composed by structures usually containing many 

thousands or even millions of degrees of freedom. A major difficulty in these cases is the high 

computational cost involved in matrices operations as the one shown in Eq. (11). However it 

is possible to obtain responses in a faster way by applying model condensation procedures. 

The aim of these methods is to apply component-mode synthesis (Craig, 2006) in order to set 

a basis that represents the dynamic behavior of the nominal model. When applied to mass and 

stiffness matrices, this basis reduce the effective number of degrees of freedom, decreasing 

the computational burden and storage memory required. 
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The first assumption made is that the exact responses provided by the full model can be 

approached by projections on a reduced vector basis in an alternative subspace as shown in 

Eq. (12). 

rU TU  (12) 

where the matrix  NxNRCT  is the reduction basis, and  NR

r CU  with NNR  , being NR  

the number of component-modes retained in the basis. 

Mass and stiffness matrices are then pre and post multiplied by this basis, generating a 

complete new system with similar dynamic behavior: 

 T

RM T MT  (13) 

 T

RK T KT  (14) 

where RM  and RK  are the reduced mass matrix and reduced stiffness matrix, respectively. It 

may be also convenient to define a reduced structural damping matrix as described before 

 R RC K . 

Gèrges (2013) studied some techniques to obtain the reduction basis T , concluding that, 

for linear structures with well-known physical characteristics, it is appropriate to use Ritz 

modal basis (noted here as 0 ) enriched with static residue of a unitary load ( 1F ) as 

follows: 

1U K F  (15) 

Ritz basis is composed by the nominal system’s first vibration mode shapes, resulting in a 

vector set capable of representing the structural behavior with precision. According to Rosa 

and de Lima (2016), it is usual to perform analysis in a frequency range that is 1.5 times the 

maximum frequency desired and to compose Ritz basis with all vibration mode shapes inside 

the expanded range. Classically, 0  is obtained through the solution of the following 

eigenvalue and eigenvector problem of the nominal system: 

   i iK M 0  (16) 

It is now possible to define the standard Ritz basis 0T : 

0 0   T U  (17) 

The whole process is summarized in Fig. 1. 

With this approach, it is expected computational gain when performing matrix inversions 

such as shown before in Eq. (11). On the other hand, solving stochastic problems requires 

several evaluations of the entire process. Avoiding the calculation of eigenvalue and 

eigenvector problems for each one of the samples is a reasonable way to decrease 

computational efforts even more. 

De Lima et al. (2010b) proposed the formulation of a robust condensation basis for 

viscoelastically damped structures that is updated every time the system undergoes changes. 

The main contribution of this work is to extend this method to stochastic systems, considering 

parameter fluctuations as structural modifications. It is possible to express system global 

matrices as shown in Eqs. (18) and (19). 
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   M M M  (18) 

   K K K  (19) 

where M , K  refer to the system nominal (mean) properties andM ,K  denote variation on 

these values. 

 

 

Movement equation 

 MU KU F  

Modal basis 

 0 1 2...    NR  

Static residues 

FKU
1  

Standard basis 

0 0   T U  

Reduced FRF 

    12 
 RRRR j MCKG 

  

Figure 1. Flowchart of Ritz basis composition process  

 

Equation (20) represents the movement equation of an undamped stochastic system when 

introducing both Eqs. (18) and (19). 

      M M U K K U F  (20) 

In order to keep the left side of the equation only referring to the nominal system, the 

following manipulation can be done:  

    M KMU KU F F F  (21) 

where 
  MF MU ,   

K
F KU  are vectors of no-exact forces associated to the 

modifications.  

Since this dynamic behavior and system responses are not known, these vectors cannot be 

computed exactly. According to Masson et al. (2006) the robust condensation processes 

consists first in generating a pre-evaluation of no-exact forces to represent the subspace 

containing them. These vectors are then introduced in standard basis to represent the dynamic 

behavior of the modified model. Finally, these two steps are repeated for each sample 

subjected to parameter fluctuations. 

Being a system subjected to structural modifications on a parameter ip , it is possible to 

formulate a vector of pre-evaluation forces as: 

  
   i i ip p p

M K
F F F  (22) 

where 0 0   p

M
F M , 0  p

K
F K are associated to modification in mass and stiffness 

matrices and  0 1,...,   NRdiag  is a eigenvalue vector. 
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Now one can calculate the static residues associated to force modifications caused by 

each parameter ip  in a similar way to that shown before in Eq. (15): 

1

 
i ip pR K F  (23) 

The final step of the robust condensation procedure is to introduce these residues into the 

standard Ritz basis, generating what will be called stochastic reduction basis ST : 

 0 ST T R  (24) 

where 
1 2

...   
 
 npp p pR R R R , and np is the number of parameters subjected to random 

effects. 

Although reduced mass and stiffness matrices in this case presents larger dimensions, 

drastic reduction of the computational time is expected owing to only one solution of the 

eigenvalue and eigenvector problem of the nominal system. For each sample, the basis is re-

updated based on the iterative process shown in Fig. 2. 

 

 

Nominal Model 
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Standard Basis  0T  
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Figure 2. Block-diagram of the condensation robust process (Extract of de Lima et al., 2010) 

 

4  NUMERICAL APPLICATION 

A SFEM numerical application was performed and is presented in this section comparing 

three cases: (a) full model, (b) condensed model through Ritz standard basis  0T  and (c) 

condensed model through robust stochastic basis  ST . Monte Carlo Simulation (MCS) was 

used as stochastic solver (Rubinstein, 1981). All three cases considered thickness variations 
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and had samples generated by Latin Hypercube (LHC) sampling (Florian, 1992) with 10% 

uncertainty level over a three-sigma deviation from the mean. 

Simulations consist in obtaining FRF envelopes due to a load applied on the middle node 

of the free boundary edge and displacement was measured in the same point. The desired 

frequency band is [0-200 Hz]. Following recommendations, this band is expanded to [0-300 

Hz] and Ritz standard basis is composed with all vibration mode shapes inside it. For this 

particular case, it will be composed by 8 eigenvectors plus one static residue. 

As no-exact forces vector’s dimensions also depends on the number of eigenvectors both 

for mass and stiffness, robust basis has Ritz nominal basis dimension plus 16 stochastic 

residues from the modified structure. 

In order to estimate an optimal number of samples  sn  and to validate results, a 

convergence analysis via root-mean-square deviation (RMSD) of the nominal system’s FRFs 

was performed. Its formulation is presented below: 

     
2

1

1 sn

s

is

RMSD n
n

 


 G G  (25) 

After applying Eq. (25), RMSD is normalized by its mean and shown in Fig. 3. At about 

250sn   samples a satisfactory convergence is noted, concluding that this is an optimal 

number for LHC sampling. 

 

 

Figure 3. Convergence analysis via RMSD for the nominal system 

 

Figure 4(a) shows the displacement FRF envelopes computed by either the full model and 

both reduction basis. The maximum difference noticed between the full model and standard 

Ritz basis results was 0.17% and for robust stochastic basis the maximum difference stood 

around 0.69%. Despite the first error percentage been lower, both approaches presented 

excellent results. Seeing these differences is very difficult only analyzing Fig. 4(a). Therefore, 

a zoom was applied in a small rectangle of envelope’s upper boundary and is shown in Fig. 

4(b). 
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(a) 

 

 

(b) 

Figure 4. Comparison of results between the full model, standard Ritz basis and robust stochastic basis (a) 

Displacement FRF envelopes. (b) Rectangular zoom area of the upper boundary 

 

In the sequence, it was analyzed computational time dispended during FRFs calculation 

in the complete stochastic process concerning 500 samples. Results are summarized in Table 

2. As expected, robust basis results carry less calculation efforts despite having larger 
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dimensions. As mentioned before, solving the eigenvalue and eigenvector problem causes a 

great computational burden, and is needed for each sample when applying standard Ritz basis 

but not for the robust method. When comparing results between both reduction methods, a 

computational gain of 87.8% is noticed. 

 

Table 2. Model dimensions and computational gain comparison 

 Full model Standard Ritz basis Robust stochastic basis 

Dimensions 605 605  9 9  25 25  

Computational gain - 70.4% 96.4% 

 

5  CONCLUDING REMARKS 

A strategy for uncertainty propagation based on stochastic finite element concerning 

Karhunen-Loève decomposition combined with a robust model reduction technique has been 

suggested. The main objective is to analyze computational gain of a technique first developed 

for different approaches (viscoelastically damped structures) and after expanded for the 

stochastic context described herein. Numerical simulations showed that the robust model 

condensation strategy is as efficient as standard Ritz basis enriched with static residues to 

approach full model FRF envelopes. They have provided accurate and effective results with a 

low computational cost, mainly generated by the drastic reduction of the number of DOFs, 

which suggested that the robust basis is well adapted to be applied to stochastic models.  
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