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Abstract. Usually, structures contain inherent variability in geometric and material properties 

due to the complexity of manufacturing process. This variability, combined with components 

and subcomponents assemble uncertainties, provide relevant changes in the structure dynamic 

behavior with respect to the nominal design. Therefore, including those uncertainties in the 

dynamic analysis provides a wider range of response predictions improving structure reliability 

and hence reducing costs of design. A stochastic modelling is required to add these variabilities 

on the solution and probabilistic approaches are commonly used with Finite Element Analysis 

(FEA) to represent those uncertainties in dynamics analysis, named Stochastic FEA (SFEA). In 

this work, nominally identical structural components, built-up from beams and plates, are 

characterized from frequency response function measurements and natural frequencies. Some 

of their statistics, like histograms and percentiles, are then calculated. Then, some of these 

nominally identical structures are assembled and the variability of the dynamic response is 

investigated under the different possible permutations. Results are compared towards the 

existence of possible permutations leading to decreased or increased variability on the 

response of the assembly. 

Keywords: Ensemble variability, Parameters uncertainties, Stochastic analysis, Structural 

dynamics. 
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1  INTRODUCTION 

The use of structural elements such as trusses or frames is very common in the engineering 

practice. Their mechanical behavior depends on material properties, types of joints and loads, 

geometry, etc. Their manufacturing cost increases for increasing accuracy of dimensions and 

material quality. Therefore, an analysis of parameters that influence the dynamic behavior of 

such structures becomes relevant. The geometry and material properties variability of mass-

produced components result in rising safety factor (William D. Callister, Jr. 2006). The 

computational prediction for better safety factors has been the main goal of all structure 

developers because it affects directly the cost, then it should not be ignored. 

The inherent variability of manufacturing process cannot be avoided, so it must be treated 

by theories that feature this random behavior, such as the probability theory (Athanasios 

Papoulis and S. Unnikrishna Pillai 2002). By including this randomness on dynamic analysis, 

most times using Finite Element Analysis (FEA), other dimension arises to the problem 

(Stefanou, 2009, Sudret, and Der Kiuereghian, 2000), as a probability set, called Stochastic 

Finite Element Analysis (Ghanem, and Spanos, 2012, Matthies, et al., 1997, Ostoja-Starzewski, 

2007, Shang, and Yun, 2013). Many studies related with those uncertainties theories (Babuška, 

and Motamed, 2016, Moens, and Vandepitte, 2005, Möller, et al., 2000, Muscolino, et al., 2016, 

Sniady, et al., 2013, Wang, et al., 2014) combined with FEA have been done on several areas 

like, composites (Babuška, and Motamed, 2016, Murray, et al., 2015), kinematics of multi-body 

systems (Wasfy, and Noor, 1998), dynamic analysis with geometry and material variability 

(Chang, 2014, Murray, et al., 2015, Noh, 2005, Shang, and Yun, 2013, Stefanou, and 

Papadrakakis, 2004). During the last decades, this randomness has been considered by the 

researchers and the industry sectors. However, there are only a few experimental studies 

concerning variabilities and coupling combinations of structures, for instance (Murray, et al., 

2015, Wang, et al., 2014). The addition of those non-deterministic properties on the design can 

improve the estimate of reliability.  

Most engineering structures are composed of assemblies of components, generally joined 

by welds or screws. Usually, the effect of the uncertainties from each component on the 

dynamic behavior can be insignificant when compared with the whole assembly (W 

D’Ambrogio and A Fregolent 2009). This effect of the assembly uncertainty becomes even 

greater when considering joints variability (Hinke, et al., 2009, Octavio de Alba Alvarez, 2012). 

The assembly behavior prediction can be more computationally expensive when dimensional 

variabilities are included on finite element model, due to the remeshing necessary for every 

sample on a Monte Carlo sampling scheme (Reuven Y. Rubinstein and Dirk P. Kroese 2007). 

Frame structures are build-up from beams, plates connected by joints. The beams are 

responsible for the flexure and torsional modes as well as the plates for the plate modes. The 

joint is responsible for the stiffness of the coupling between the plates and beams and are often 

different from each other. This difference can have a great influence on the dynamics of the 

structure. The dimension of each component of the frame also have an inherent variability due 

to manufacturing process that can only be reduced. In addition, every component created has 

different mechanical properties, including stiffness and density. The welded joints properties 

are also very difficult to be controlled, because the fusion/solidification process never create 

the same crystalline set, influencing on the stiffness of each joint (Robert W. Messler, Jr. 1999). 

These variabilities, when combined, changes dynamic behavior of each frame, increasing the 

resonances range and affecting safety factors for engineering applications. 

Usually, the uncertainties on experimental analysis are composed by a random and a 

systematic part. This last one is associated to the part that remains constant on a sample of 

repeated measurements. It can be obtained by past experience, means, design specifications, or 
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other information. The random part is associated to the part that cannot be predicted on repeated 

experiments obtained by statistical analysis of a sample of measurements. Possible sources of 

error that influences on FRF behavior are experimental setup errors, for example, different 

excitation points, clamping mechanisms and joints not providing the constraint condition, etc. 

In this paper, an experimental investigation on the variability of the dynamic response of 

nominally identical frames and assemblies of such frames joined by screws is presented. The 

investigation aims to compare the statistics of the ensemble of components with the ensemble 

of assemblies towards the existence of possible permutations leading to decreased or increased 

variability on the response of the assembly. Frequency response measurements are obtained 

from a modal hammer and accelerometer. Section 2 presents the experimental procedure. 

Section 3 shows some preliminary experimental results obtained and a discussion. In Section 

4, some concluding remarks are drawn as well as the further steps of the work. 

2  EXPERIMENTAL PROCEDURE 

In this section, the experimental setup and procedure are presented. Ten nominally 

identical frames, i.e., manufactured under the same specification, are analyzed. Each individual 

structure is built-up from 4 beams and 2 plates spot welded and with 4 holes on each plate for 

further assembly. The beams and plates are made of steel, except the welded spots. The 

assembly is done by steel screws, using a torquemeter to normalize the grip level and guarantee 

that the joints are clamped, necessary condition to transfer the injected energy through the joint. 

Each frames is numbered from 1 to 10, with 5 measuring and 1 excitation positions on the top 

plate of each frame, as illustrate at Fig. 1. 

 

  
 

 

Figure 1. Picture of single frame test setup (left), schematic frame draft (middle) and picture of one 

assembly (right). 

 

The test procedure was divided in two main steps. The first one aims the characterization 

of dynamic behavior variability of the ensemble of the nominally identical structures. Then, 

each one of the 10 single frames is measured via impact hammer/accelerometer in the 5 

positions and FRF were calculated using a H2 estimator and the Welch’s method (Periodogram) 

(Kihong Shin and Joseph K. Hammond 2008) approach with 10 samples. The measurements 

are presented as Hi
(j), where i is the measured position and j is the component number. In 

addition, the natural frequencies are given by 𝜔𝑘
(𝑗)

, for the 𝑘𝑡ℎ frequency from the 𝑗𝑡ℎ 

component. The component number 10 was arbitrarily chosen for comparison.  

The second step is the characterization of the variabilities in the dynamic behavior of the 

assemblies. For that, 3 frames were chosen and assembled under the 6 possible combinations, 

in order to analyze the variability imposed by the assembly position. The measurements were 
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made on the top plate of the top frame of the assembly, using the same positions as shown in 

Fig 1. The combinations were assembled using the components 7, 9 and 10, as shown in Table 

1. They were chosen because they were the more physically similar each other. 

 

Table 1. Assembly combinations using the numbered frames 7, 9 and 10. 

Cj Order 

C1 7-9-10 

C2 7-10-9 

C3 9-7-10 

C4 9-10-7 

C5 10-7-9 

C6 10-9-7 

 

The measurements were performed through an acquisition data board (NI cDAQ-9174, 

frame 4 slots USB, 15 W, 9 – 30 V, 5 – 500 Hz), transduced by a quartz accelerometer (PCB 

353B03, 10 mV/g, 1 – 7000 Hz) and impact hammer (PCB 086C03), acquired and processed 

on LABView.  

Two kinds of support were tested to simulate the free boundary condition. Supporting the 

structures on sheets of foam material and hanging up the structure on thin strings. Figure 2 

shows a typical FRF using both supports. It can be seen that they present a very good agreement 

between 80 Hz to 500 Hz.  The hammer spectrum remains flat up to 500 Hz, where after the 

results diverge with low coherence. For convenience, due to the ease of handling, the foam 

support was selected to carry out all of the experiments. 

 

Figure 2. Typical amplitude and phase of the FRFs from a frame tested on foam (red) and hang by strings 

(black). 
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3  RESULTS AND DISCUSSION 

In this section, measures and results obtained by statistical treatment are presented.  All of 

the components are made of steel, small damping factor. It is assumped that randomness in the 

shape, geometry and material properties are responsible for changes on the mass and stiffness 

parameters, affecting the ensemble FRFs. Material e geometrical properties are assumed to 

homogeneous over the plate and beams. The uncertainty due to the assembly using screws is 

assumed to be negligible due to the normalization of the grip level by the torquimeter. The 

frame welded joints are assumed to be the similar. Ten samples were made of each test to ignore 

the systematic error. Component 10 was arbitrary chosen for represent the ensemble behavior. 

Table 2 shows the mean, standard deviation and coefficient of variation, defined by COV =
(standard deviation)/(mean value), of the geometrical parameters from measuring all of the 

10 frames. 

 

Table 2. Mean and deviation of dimensional parameters 

 Parameter Mean [mm] 
Standard 

Deviation [mm] 

COV 

Plate 

Thickness 6.56 0.21 0.034 

Length 301.28 4.73 0.016 

Width 200.69 3.94 0.020 

Beam 

Thickness 6.49 0.17 0.026 

Length 199.21 4.15 0.021 

Width 20.14 0.76 0.038 

 

Figure 3 shows modulus, phase and coherence of 𝐻1
(10)

. At the very low frequencies (0 – 

50 Hz), an oscillation behavior can be seen on Fig. 2 due to foam material support. The first 

three resonance peaks are seen on 100 – 250 Hz and are presented on Fig. 4. The frequency 

band selected for analysis was between 100 – 250 Hz where 3 natural frequencies because they 

have the best coherences. The natural frequencies from each of the 10 components, estimated 

assuming light damping and a peak picking approach, are shown on Table 3. 
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Figure 3. FRF modulus, phase and coherence of component #10 measured at point 1 

 

Figure 4. FRF of component #10 with analyzed frequencies pointed 
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Table 3. Natural frequencies estimated from the j-th frame within the frequency band under analysis. 

j ω1
(j) ω2

(j) ω3
(j) 

1 118.76 149.76 236.02 

2 130.01 154.01 240.27 

3 127.01 152.01 237.02 

4 123.76 149.75 234.77 

5 114.76 149.76 234.77 

6 127.51 150.51 235.77 

7 134.26 158.26 244.52 

8 127.01 151.26 237.52 

9 134.76 153.51 239.27 

10 131.76 155.01 241.52 

 

Figure 5 shows the measured FRF for each component and the mean value. It can be 

noticed that the randomness arising from differences on the dimensional/material properties 

significantly affect frequency response in the range in frequency of the third resonance 

frequency. This typical behavior is seen throughout the frequency band under analysis. 

 

Figure 5. FRF of component j (black) and mean FRF (green) pointing the third natural frequency 

 

 Table 4 shows the mean value, standard deviation and COV calculated for each natural 

frequency within the frequency band under analysis.  
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Table 4. Mean, standard deviation and Coefficient of Variation (COV) of the natural frequencies 

estimated from the component ensemble. 

Frequency 

Mean value ± 

standard 

deviation[Hz] 

COV 

ωn1 126.91 ± 6.46 0.0509 

ωn2 152.33 ± 2.68 0.0175 

ωn3 238.08 ± 3.18 0.0134 

 

Figure 6 shows the 95% percentile of FRFs determined on the 5 positions, for the 

ensemble. All positions mean FRFs and components FRFs are in this range and it can be seen 

on Fig. 7 which shows the histogram of natural frequency estimated from of all of the 

components. 

 

 

Figure 6. Mean value and upper and lower 95% percentile from the measured FRFs on positions (a) 1, (b) 

2, (c) 3, (d) 4 and (e) 5.  
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Figure 7. Experimentally obtained histogram of the natural frequencies from the ensemble of components. 

 

Table 5 shows the estimated natural frequencies from the six possible combination of 

assemblies, Tab. 1, and Tab. 6 presents the mean value, standard deviation and COV for three 

natural frequencies estimated within the frequency band under analysis. Figure 8 shows 

histogram of measures for each natural frequency of the predetermined assemblies with a 

percentile analysis with 95% range of confidence.  

 

Table 5. Measurements of resonance frequencies of j-th ensemble and these respective coherences 

Cj ω1
(j) ω2

(j) ω3
(j) 

C1 123.26 148.26 260.52 

C2 123.76 146.01 258.52 

C3 121.51 150.76 235.27 

C4 121.01 137.51 224.76 

C5 121.76 145.51 240.02 

C6 121.26 139.51 252.77 

 

Table 6. Mean, standard deviation estimation and covariance factor of ensembles resonance frequencies 

 Frequency ± Standard Deviation [Hz] COV 

ωn1 122.09 ± 1.14 0.0093 

ωn2 144.59 ± 5.11 0.0353 

ωn3 245.31 ± 14.23 0.0580 
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Figure 8. Experimentally obtained histogram from the natural frequencies (left) and 95% upper and 

lower percentile of the frequency response (right) from the assemblies. 

Figure 9 presents the upper and lower 95% percentile of the FRF obtained at position 1 

from the ensemble of components and from the ensemble of assemblies. Overall, it can be 

noticed that most of the dynamical behavior observed in the components ensemble has changed 

when compared to the assemblies, as expected, due to the structural changes. However, it can 

also be noticed, by analyzing only the percentiles, i.e. only the variability, that the assembly 

variability is comparable to the component ensemble variability, even though the same three 

components have been used in the assemblies, only by changing their positions. This result 

suggests that there might be best choices to reduce the variability in the frequency response 

when selecting components build the given assembly. Moreover, the assembly variability 

affects differently some the frequency bands. This is likely due to the vibration modes 

sensitivity with respect to the kind of assembly, in this by connecting the upper and lower plate 

by screws. Therefore, it can be inferred that the modes sensitivity are differently influenced by 

the structure changes. The same kind of variability change can be noticed when comparing the 

natural frequency statistics from Tabs. 4 and 6. 

 

Figure 9. Mean FRFs (thick) and respective percentiles (thin) of component (green) and ensemble (blue) 
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4  CONCLUSIONS 

An experimental investigation on the variability of the dynamic response of nominally 

identical frames and assemblies of such frames joined by screws was presented. The 

characterization of dynamic behavior variability of the ensemble of components and ensemble 

of assemblies was done and compared with statistical treatment. Over this analysis, it can be 

concluded that the assembling of components with uncertainties parameters included, need to 

be considered. The variabilities arises from parameters uncertainties and also from different 

combinations of assemblies even considering the same components on different positions. 

Furthermore, the assembly variabilities of a chosen set of components can be much bigger than 

ensemble variabilities considering all components.  

Variabilities can be powered depending on the others parameters influence and band 

analyzed, leading to different sensitivities on different modes. On frames assembled case, the 

structural changes affected the sensitivity on low frequency band decreasing the variabilities on 

natural frequencies. The structural changes influenced directly on changing the dynamic 

behavior almost on all bands. The sensitivity caused by assembling components on different 

positions using the same components should be considered. On low working frequencies of the 

assembled structure this variabilities can be reasonable instead high ones. Previous sensitivity 

analysis of uncertain parameters and assembly variabilities can reduce costs of production 

aiming the tolerance allocation on parts that are more influent on dynamic behavior. 

For further steps, a stochastic finite element analysis will be done to compare results from 

the assembly and ensemble variabilities, in order to fit a model that consider the joint stiffness 

and material properties with measurements, towards some criteria for selective assembly. 
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