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Abstract. Rotating machines are extensively used in industrial applications considering the 

flexibility of the equipment, capable of being operated at extreme speeds, the study of 

uncertainties are required, due the influence in  the dynamic behavior. The use of stochastic 

techniques have played an important function in engineering problems,  the Monte Carlo 

method (MC) and your variant called Latin Hypercube (LHS) are widely used to model 

uncertain parameters. In this context, the present work is devoted to analysis of the 

uncertainties in the parameters of a flexible rotor discretized by finite element (FE). Aiming a 

considerable saving of time, models reduced by Iterative Improved Reduction System (IIRS) 

method were used in the numerical analysis process. The analysis procedure is limited to the 

frequency domain. Solution envelopes are obtained by LHS method that allow us to describe 

the system behavior considering some parameters as random. 
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1 INTRODUCTION 

Rotating machines require attention, because the efficiency of this equipment is related to 

its operating speed, fact that enables the use of increasingly flexible rotors (Koroishi, 2013). 

Problems coming from the vibration phenomenon may result from small noise to the 

catastrophic failure of the equipment, discomfort to users and in major economic loss. 

The increased flexibility of the rotors involves the increased level of vibration when the 

rotor is operate near one of its critical speeds or when the system goes through a transitional 

regime. Excessive vibration levels increase the mechanical stress on the rotor and bearings 

which affects the performance, service life and reliability of the machine (Koroishi, 2013; 

Vance et al, 2010; Simoes et al., 2007).  

The active vibration control can reduce the vibration level by adding energy to the 

system. The most common devices used in the active control of vibration in rotating machines 

are hydraulic actuators, piezoelectric actuators and active magnetic bearings (MMAs). Due to 

its characteristics, the use of active magnetic bearings as actuator active control systems is a 

major highlight object and interest in the military, aerospace, biomedical, high-speed 

machining, among others. 

Studies focused on the use of magnetic bearings are increasing. This type of bearing has 

as main feature the absence of friction and lubrication, fact that allows the operation of 

rotating machines at high speeds. The ability to actively act and change their own parameters 

during operation also enables unique capabilities to MMAs as control the vibration level and 

act as an intelligent capable of self diagnosis system (Ujihara, 2011). 

In this context, the computational numerical simulation of rotating machines is a step 

indispensable for researchers and engineers. The numerical simulation allows a 

comprehensive understanding of the dynamic behavior of the system and the various state 

variables involved, besides the prediction of undesired mechanical behavior of the device. 

Therefore a mathematical model of greater reliability to be obtained considering various 

subsystems, as follows: first, the subsystems that can be defined by its geometry, such as the 

shaft (usually modeled via Finite Element Method), and the coupling discs; subsequently, the 

subsystems are dependent on the frequency and / or conditions, such as bearings and; finally, 

the gyroscopic effect (Cavalini Jr. et al., 2012, Meggiolaro, 1996). 

In consonance, industrial applications require mechanical systems that work with 

optimum performance under certain operating conditions requiring high reliability, robustness 

to environmental conditions and low operational requirements. Thus, the need to develop 

numerical models that adequately consider the uncertainties in parameters and system inputs 

to evaluate the effect of the variability of these parameters in the dynamic behavior of the 

generating units is of great value in the design problems (Lara-Molina et al, 2014; Cavalini Jr. 

et al, 2012). 

According to Möller and Beer (2004), uncertainties in modeling dynamic systems are 

considered mainly using three different approaches. In the first approach, the uncertainty is 

represented using a formula based on the theory of probability; the uncertainties are 

represented by probability distribution. In the second, the uncertainties are modeled by pre-

defined intervals. In the third, the uncertainties are represented using the theory of 

possibilities. 
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In accordance with Lara-Molina et al. (2014), the parametric uncertainties of numerical 

models of dynamic systems have been represented using a probabilistic approach that 

concentrated parameters are modeled by random variables with an arbitrary probability 

density function and the fields or random processes are modeled by expanding Karhunen-

Loève (Spanos and Ghanem, 1991). In most cases, the numerical simulation of the stochastic 

models is carried out with methods that show the probability density function, highlighting 

the Monte Carlo simulation and Latin Hypercube. In simulations with few random variables 

and large dispersion is used methods that do not sample the probability distribution function, 

as is the case of Chaos Polynomial (Xiu, 2010). 

The study of uncertainties in rotating machines are performed by stochastic approaches 

mainly based on the Finite Element Method Stochastic. Didier et al. (2012) quantified the 

effects of uncertainties in the response of flexible rotors by the theory of chaos polynomial 

expansion. Koroishi et al. (2012) represented the uncertainties in the parameters of a rotor as 

homogeneous Gaussian stochastic fields discretized by expanding Karhunen-Loève. The 

system dynamic response was characterized by Latin Hypercube Sampling technique and 

Monte Carlo simulations. Lara-Molina et al. (2014) used the Finite Element Method 

Stochastic Fuzzy to quantify the effects of high order uncertainties in the response of rotating 

machinery, among others. 

The uncertainty analysis is a great strategy for implementing the evaluation of variability 

of dynamic systems response. However, the use of this strategy is an onerous task and of high 

computational cost due the use of finite element models containing high number of degrees of 

freedom and the need to calculate a large number of response samples to achieve the required 

statistical significance. Thus, computational tools have been constantly developed to decrease 

this problem. Emphasis is given to the use models reduced methods (De Lima et al, 2010; 

Guedri et al., 2006). 

In accordance with what was presented, this work aims to a preliminary study which 

analyzes the uncertainties in parameters and system inputs that affect the dynamic behavior of 

a flexible rotor model supported by active magnetic bearings, discretized by finite element. 

For this purpose we used the Latin Hypercube method. To reduce the computational cost 

time, the original model is reduced by models reduction method Iterative Improved Reduction 

System (IIRS) that provided good results in the simulations and with great saved time.  

 

2 MODELING OF FLEXIBLE ROTORS 

In the study of rotating machines, modeling tools are required. Emphasis is given to the 

use of Finite Element Method (FEM) and the Transfer Matrix of Method (MMT) (Steffen Jr., 

1981; Lallement et al, 1982; Berthier, et al., 1983). 

In the context of this work, flexible rotors are dynamic systems whose models consist of 

elements such as drives, flexible shafts and bearings. This theoretical model is constituted by 

a set of differential equations describing the system movement and are obtained using 

Newton's laws, voltage relationships - deformation and Lagrange equations (Craig, Jr. and 

Roy, 1981). It is considered that the elements coupled to the shaft are disks, the axis is an 

elastic system and the bearings as support elements, the formulation is based on the potential 

energy, kinetic, virtual work and strain energy (Koroishi, 2013; Ujihara 2011; Lallane and 

Ferraris, 1998). 
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Layane and Ferraris (1998) present the general steps to be followed to determine a rotor 

equations of motion. These steps are shown below: 

 The kinetic energy, the strain energy and the virtual work of the external forces are 

calculated for system components; 

 Applies a numerical method (FEM); 

 Applies the Lagrange equations as follows: 

 

i

iii

Fq
q

U

q

T

q

T

dt

d



























 (1) 

 

where 
iq are independent generalized coordinates, 

qiF  are the generalized forces and, T  and U 

are the kinetics and deformation of the components energies, respectively. 

A finite element axis is shown in Fig. 1, with the following features: the element has 2 

nodes, each node has 4 degrees of freedom, i.e., two translations (u, w) and two rotations (θ, 

ψ). It is assumed the cross section as linearly variables. Assume the effects of rotational 

inertia of the cross section (Rayleigh) and the shear effect of the cross-section (Timoshenko). 

 

 

Figure 1 - Degrees of freedom about an axis finite element. 

 

Using the FEM equation of motion of a flexible rotor is determined and described in a 

matrix form by Eq. (2), 

 

                )()()()( tFtxKKtxCCtxM STG    (2) 
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where  M  is the mass matrix of system,  C  is the proporcional damping matrix,  GC  is 

the gyroscopic effects matrix,  K  is the stiffness matrix can this be added to the matrix  STK  

which represents the stiffness of the system when in transient regime. All these matrices are 

associated with rotating machine parts, such as disks, the coupling and the shaft. The 

generalized displacement vector is represented by  )(tx  and the speed of rotation is given by 

 . The vector forces is given by )(tF , can be, in many applications, added to the force 

weight vector of the unbalancing forces and the force vector produced by the bearings. 

 

3 MODELS REDUCTION METHODOLOGY 

In dynamic systems, the generalized movement equations are described as a set of linear 

differential equations of second order: 

 

       .)()(][)(][)(][ tFtxKtxCtxM    (3) 

 

where ],[M  ][C , ][K , order nn , are the respective mass, damping and stiffness matrices; 

  tx ,   tF , order 1n  are the displacement and forces vectors; n  indicates the dof of the 

complete system. 

According Koutsovasilis and Beitelschmidt (2008), many types of reduction procedures 

involve obtaining a coordinate transformation matrix. Generally, determining a subspace-

called coordinate transformation matrix ][T , order ,nm with ,nm  such that: 

 

   ,)(][)( txTtx R  (4) 

 

where   txR  is the reduced displacement vector. 

Introducing the Eq. (4) in the Eq. (3) and then multiplying the transposed portions by the 

transformation matrix, a new reduced system is obtained: 

 

       ,)()(][)(][)(][ tFtxKtxCtxM RRR    (5) 

 

where ][M , ][C , ][K , order mm , are respective mass, damping and stiffenss matrices of 

reduced order;  )(tF , order 1m  is the reduced forces vector; m  indicates the number dof 

retained in the reduced model. These matrices are defined as: 

 

   .][],][[][][],][[][][],][[][][ FTFTKTKTCTCTMTM TTTT   (6) 
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Although the size of the reduced model is much smaller than the full model, given the 

coordinate transformation matrix that is particular in each reduction method, the dynamic 

characteristics of the complete model can be preserved. 

 

3.1 Iterative improved reduction system (IIRS) 

 

Over the years, various formulations for iterative scheme IIRS are suggested. According 

Friswell et al. (1995), to obtain the transformation matrix it is part of the generalized 

eigenvalue problem of a system undamped in substructure way in terms of dof masters (m) 

and slave (s), 
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where   are the normalized eigenvectors;   is the diagonal matrix containing the 

corresponding eigenvalues arranged in ascending order. From the second set of equations of 

Eq. (7), we have: 

 

],][][[]][][[]][[]][[ mmsmssmmmmsmsmssmmsm mmkk   (8) 

 

where ][ sm  can be expressed by, 

 

 .]][][[]][][[][]][[][][ 11
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Makes, 

 

],][[][ 0 mmsm T   (10) 

 

where ][ 0T  is the transformation matrix, written in the form 
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Then, the processing degrees of freedom between the masters and the degrees of freedom 

of the complete model is written as, 
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Substituting Eq. (12) in Eq. (7) and multiplied by the transpose of the transformation 

matrix obtained above, there is obtained a reduced eigenvalue problem  
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From Eq. (13), 
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Substituting Eq. (14) to (11), Obtain: 
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Note that ][ 0T  is implicit in Eq. (15) and can not be set directly, so we propose an 

iterative scheme (Friswell et al., 1995) given by: 
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,]][[][][ )()()( kTkk TMTM   (18b) 

 

Where the index k  denotes k - th iteration ( 2k ). 

For the iterative scheme above, if 1k , ][][ )1(

GuyanTT  , is the static condensation 

method (Guyan, 1965); when 2k , is equivalent IRS technique (Friswell et al., 1995). 

Eigenvectors and eigenvalues are estimated by solving the generalized eigenvalue of the 

reduced system problem: 
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In the iterative approach, the coordinate transformation matrix is updated repeatedly until 

the required accuracy. However the process of convergence of this method may require high 

computational time. Some improvements have been made by Xia et al., (2004). In this 

approach, iterative formula for transformation matrix is modified such as to improve 

convergence speed. The formula for the new iterative scheme is: 
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For this approach, Eq. (17) and (18) are valid for estimating of eigenvectors and 

associated eigenvalues. 

 

4  NUMERICAL SIMULATIONS 

In this paper, for the various cases of uncertainty analysis in the parameters of rotor using 

Latin Hypercube Sampling (LHS) it is considered a flexible rotor supported by active 

magnetic bearing whose parameters for the beam and disk elements are shown in Table 1. 
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Table 1. Rotor Parameters 

 

Beam elements Disk elements 

NV L D ND NOD L 
iD  eD  

1 32.6x10-3 17 x10-3 1 2 30.4x10-3 39.35x10-3 74.25 x10-3 

2 30.4 x10-3 39.35x10-3 2 3 8.8x10-3 39.35x10-3 74.25 x10-3 

3 8.8x10-3 39.35x10-3 3 4 8.8x10-3 27.56x10-3 52 x10-3 

4 8.8 x10-3 27.56x10-3 4 6 7x10-3 55x10-3 70 x10-3 

5 28.9x10-3 21.45x10-3 5 7 37.75x10-3 39.35x10-3 74.25x10-3 

6 7x10-3 21.45x10-3 6 9 37.75x10-3 39.35x10-3 74.25x10-3 

7 37.75x10-3 39.35x10-3 7 10 9.9x10-3 55x10-3 70x10-3 

8 37.75x10-3 39.35x10-3 8 12 8.8x10-3 27.56x10-3 52x10-3 

9 9.9x10-3 21.45x10-3 9 13 8.8x10-3 39.35x10-3 74.25x10-3 

10 22.05x10-3 21.45x10-3 10 14 30.4x10-3 39.35x10-3 74.25x10-3 

11 8.8x10-3 27.56x10-3      

12 8.8x10-3 39.35x10-3 

13 30.4x10-3 39.35x10-3 

14 71.95x10-3 17x10-3 

 

In this table, NV is the number of beam element, L is length,  is material density 

 3/ mkg , where the beam element is 7850 and of disk is 6770, modulus of elasticity of steel 

or young's modulus is 210 GPa. ND is number of disk, NOD is node where the disk is 

applied, iD  internal diameter (m) and eD  external diameter (m). Also, bearings are located in 

node 3 (first bearing) and node 13 (second bearing). This distribution can be observed in Fig. 

2. 
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Figure 2. Rotor representation. 

 

Through the resolution of an eigenvalue problem the natural frequencies were obtained. 

The Figure 3 illustrates the frequency response function (FRF) estimated in a range of 0 to 

800 Hz for the rotor model shown in Fig. 2. 

 

 

Figure 3. Frequency response function of the rotor. 

 

4.1  Study of the effect of uncertainty in bearing of the rotor 

 

The bearing has the function of supporting the rotors, absorb or attenuate the vibratory 

energy and to restrict the degree of freedom for the drive shaft. It is considered some random 

parameters using the method of sampling LHS, where 1000 samples are generated. In this 

case, two bearings are applied to nodes 3 and 13 and have the following rigidity values 
31049x  N/m and 31060x  N/m.  

Considering the effect of 30% obtained the Fig. 4. In these figures, it is observed that the 

full model and the reduced were obtained similar curves, i.e., range of values are close in both 

cases. 
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Figure 4. Effect of 30% uncertainty in the stiffness of the bearing to (a) complete model and (b) 

reduced model. 

 

In Table 2 are listed the values of computational time. 

 
Table 2. Values of computational time and standard deviation for the complete model and reduced. 

 

Figure Time (s) Percentage (%) 

( a ) 144660  100 

( b ) 72410  50 

 

With this simulation, it was found that the bearings are not sensitive, in this case, the 

consideration of uncertainty, since, even considering a high value of uncertainty (30%) range 

of values showed up close.  

Furthermore, it was obtained a satisfactory time when used the IIRS reduction method. In 

Table 2 shows savings of 50%. These simulations showed that the reducing method was of 

great value in reducing the computational time, i.e., this will be used in the next simulations. 

 

 

4.2 Study of uncertainty effect in the diameter of beam element 

 

Once confirmed the time savings obtained by IIRS reduction method, so in the next 

simulations will be used this method. 

First, it is considered the diameter of the second element of the beam as a random 

variable. After, is performed again simulations with the LHS method where there is the 

consideration of the uncertainty in the diameter of the third, subsequently, has two random 

variables such as, in this case, the diameters of the third and ninth and finally, is considerate 

the seventh and thirteenth simultaneously.  

It is noteworthy that in the tests the bearings will be used applied to us [3 13], with the 

values of 31049x  N/m and 31060x N/m. 



Numerical Evaluation of the Effect of Uncertainties in Rotating Machinery using Reduced Model. 

 

CILAMCE 2016 

Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering 

Suzana Moreira Ávila (Editor), ABMEC, Brasília, DF, Brazil, November 6-9, 2016 

Therefore, it has the effect of 10% uncertainty in the diameter of the second beam 

element, thus, by LHS method, the envelopes of solution are obtained. 

The figure 6 is shown the effect of 10% of the uncertainty in the diameter of the second 

beam element, where it was observed that the value ranges are distant, that is, a sensitive 

parameter the consideration of uncertainty. 

 

 
Figure 6. Effect of 10% of the uncertainty in the diameter of the 2° beam element. 

  

In Table 4 illustrates the value of the standard deviation. It is observed that the ranges of 

values are far since the value of the standard deviation obtained is high. 

 
Table 4. Value of the standard deviation. 

 

Standard deviation 

8.01 

 

In this case, the simulation is carried out considering the diameter of the third beam 

element. Therefore, in Fig. 7 is illustrated the envelope of solution with 10% of uncertainty, it 

is concluded that the range of values (maximum, medium and minimum) with a lower 

sensitivity than in the case described in Fig. 6. 
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Figure 7. Effect of 10% of the uncertainty in the diameter of the 3° beam element. 

 

Given the value in Table 5, it can be concluded that the range of values are closer 

compared to the value obtained where it was considered the uncertainty in the diameter of 

second beam element shown in Table 4. 

 

Table 5. Value of the standard deviation. 

 

Standard deviation 

5.41 

 

Once, it was perceived a small sensitivity of the parameters corresponding the diameters 

of second and third beam element will be now considered two cases of two random variables, 

namely, first is diameter corresponding the third and ninth beam element and in the last case, 

considers the diameter the seventh and thirteenth simultaneously.  

In Figure 8 is considered the effect of 10% uncertainty in the diameters corresponding to 

the third and ninth beam elements. It is observed by envelopes of solution, the sensitivity 

parameters the uncertainty, as is visible in the distance between ranges of values. 
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Figure 8. Effect of 10% of the uncertainty in the diameters of the 3° and 9º beam element. 

 

The Table 6 shows the value of the standard deviation found for this case. Can be 

confirmed with the value of the standard deviation emphasizing that the envelope of solution 

illustrated in Figure 8 are distant, that is, there is a case that sensitivity to external factors 

(uncertainty). 

 

Table 6. Value of the standard deviation. 

 

Standard deviation 

27.29 

 

In addition, in this simulation has the effect of 10% uncertainty in the diameters of the 

corresponding beam element to the seventh and thirteenth. In Figure 9 (a) has the envelope of 

solution where it is observed that the ranges of values (maximum, medium and minimum) 

show their distance, i.e., are parameters that are sensitive to uncertainty. 

 

 

Figure 9. Effect of 10% of the uncertainty in the diameters of the 7° and 13º beam element. 

 

In Table 7 describes the value of the standard deviation relating to the envelope of 

solution Fig. 9. As in the previous case, it is evident a large distance between the maximum 

value of the range as the minimum. 

 

Table 7. Value of the standard deviation. 

 

Standard deviation 

14.86 
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4 CONCLUSION 

This paper presented a preliminary study which analyzes the uncertainties in the 

parameters of a flexible rotor supported by assets of magnetic bearings was discretized by 

finite elements. We used a stochastic method called Latin Hypercube Sampling. Through 

numerical simulations it was characterized the response in the frequency domain in the 

presence of uncertainties. Furthermore, the use of reduced models provides good 

representability and low computational cost, and hence, great savings of time. 

In particular, modeling by finite elements of a flexible rotor supported by active magnetic 

bearings have been proposed and implemented. The reduction of the model was obtained 

using the IIRS method. Thus, the uncertainties in the design variables that characterize the 

flexible rotor were inserted to different case studies that show that the envelopes of the 

solution lead to important information regarding the effect of the variability of these 

parameters in the dynamic behavior of the rotor in question. 

In general, it is concluded that in the consideration for uncertainty in the rigidity of the 

bearings is seen that this is not a sensible variable in the consideration of uncertainty, since 

the ranges of values were close. As for the uncertainty of consideration in diameter of the 

beam element, was obtained for the cases considered ranges that are distant, mainly when it 

was considered more of a parameter as uncertain where, we can see a great sensitivity to 

external factors. 

Therefore, with the numerical results, it is that the proposed strategy shows the 

importance of introducing uncertainties in the design variables from the perspective of the 

design of rotating machines, constituting itself as an important tool for analysis and design. 
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