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Abstract. Passive energy dissipation systems encompass a range of materials and devices for
enhancing damping. They can be used both for natural hazard mitigation and for rehabilitation
of aging or deficient structures. Among the current passive energy dissipation systems, tuned
liquid column damper (TLCD), a class of passive control that utilizes liquid in a “U” shape
reservoir to control structural vibration of the primary system, has been widely researched.
Uncertainties can arise from simplifications in the model and from nonlinearities. To quantify
uncertainties, random variables need to be associated with the systems parameters, such as stiff-
ness and damping ratio, along with their probability density function. The Maximum Entropy
Principle is used to construct the probability density function since it avoids using misinforma-
tion in the construction of model. In this paper the frequency response function of a system with
a TLCD is investigated considering two cases of parameter uncertainty: the first considering
uncertainties only in one parameter, the absorber damping ratio and the second considering
uncertainties in two parameters, the absorber damping ratio and the structure stiffness. The
results showed that, for the first case, the uncertainty is only predominant near the resonance
and anti-resonance region and can indeed interfere in the optimum condition of the absorber.
For the second case, the uncertainties are presented in all frequencies.

Keywords: Tuned Liquid Column Damper,Vibration Absorber, Model Uncertainty, Stochastic
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Suzana Moreira Ávila (Editor), ABMEC, Braslia, DF, Brazil, November 6-9, 2016



Response Variability with Random Uncertainty in a Tuned Liquid Column Damper

1 INTRODUCTION

Remarkable progress in the technology used in wind turbines has been made over the past
years, advances in the field of structural and dynamic analysis allow the creation of larger and
more efficient wind turbines. However, higher and slender structures poses challenges concern-
ing its integrity in relation to the dynamic loads from wind, ocean waves or earthquakes. Serious
efforts have been undertaken to develop the concept of vibration control of wind turbines.

The main goal of the project is reduce vibration in wind turbines using a tuned liquid
column damper (TLCD). As shown in Fig. 1, the TLCD operates based on the movement of the
liquid column. The column may have different shapes, particularly in this paper, the TLCD has
a “U” shape. The TLCD requires no extra mechanism such as springs or joints, besides that, its
geometry may vary according to design needs, making them very versatile devices. While the
apparent simplicity of the system, the damping is dependent on the amplitude of the liquid, and
therefore the dynamics of TLCD is nonlinear, which brings some mathematical complications
to the model.

Figure 1: Possible tuned liquid column damper scheme applied in wind turbine.

In this paper, the aim is to simulate the structure response to a variability in the system
parameters. It is common to find, in the literature, the excitation load modeled as a stochastic
process even though the assumption that uncertainties in structures have negligible response
can be unacceptable in real situations. For instance, the uncertainties can arise from many
reasons such as inadequate modeling of boundary conditions, fabrication process, effect of
nonstructural elements, degradation due to aging and temperature, fluctuations in structural
mass, member capacities, yield strength, inertial moment, elasticity module, etc (Marano, Greco
and Sgobba, 2010). Another major limitation of the deterministic approach is that uncertainties
in the performance-related cannot be included in the damper parameter optimization since the
damper efficiency can drastically reduce if the parameters are off-tuned to the vibration mode
(Chakraborty and Roy, 2011). For that reason, the probabilistic approach offers a rational basis
of accounting for both load and structural uncertainties in the design process.

To increase the credibility of the model, these uncertainties need to be modeled appropri-
ately. The study of randomness associated with mechanical systems was introduced in the early
20th century. However, only the external loading was considered random leaving uncertainties
related to the model unconsidered (Newland, 2012).
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To quantify uncertainties in dynamic structures, random variables need to be associated
with the system parameters along with their probability density function. Building the prob-
ability density function that best represents the physical problem is not trivial and requires
experimental data to assist in its construction (Soize, 2001). One way around this problem is to
associate the random variable a Gaussian probability density function. However this procedure
is not always advisable as it may lead to physically incoherent results.

The Maximum Entropy Principle can be used to construct the probability density function
of the random variable uncertainties of the model. The principle consist of using only the in-
formation available to build possible probability density functions (pdf) and from there, search
for the function with maximum entropy (or uncertainty). This method avoids using misinfor-
mation in the construction of model ranging from the physics of the problem (Sampaio and
Ritto, 2008). After defining the proper pdf’s, a Monte Carlo simulation is made to describe the
implications of this variability in the system.

The outline of the paper is as follows. After a brief review of the equation of motion of the
deterministic system (Section 2), the outline of the proposed uncertainty model is presented in
Section 3. Section 4 describes how the structural uncertainties are modeled using Monte Carlo
simulation. Section 5 presents the case study and the results of the application of the proposed
procedure. Finally, some concluding remarks are given in Section 6.

2 DETERMINISTIC MODEL

Consider the TLCD model mounted structure as sketched in Fig. 2. The idealization for the
structure is acceptable because the support has negligible mass, thus, it is possible to approach
the shear-frame system as a one degree of freedom model with stiffness and equivalent damping.

u(t)
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F (t)

Figure 2: Schematic model of the system.

The equation describing the motion of the fluid in the TLCD is given by

ρAlü(t) +
1

2
ρAξ|u̇(t)|u̇(t) + 2ρAgu(t) = −ρAbẍ(t), (1)

where u(t) is the displacement of fluid function, x(t) is the displacement of the primary system
function, ρ is the fluid density, ξ is the head loss coefficient, A is the cross section area of the
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column, b and l are the horizontal and total length of the column respectively and g is the gravity
constant. It can be observed that the TLCD mass is given by ma = ρAl, the TLCD damping
is ca = 1

2
ρAξ|u̇(t)| and the TLCD stiffness is given by ka = ρAg. The natural frequency of

oscillation in the column can be obtained by ωa =
√

2g/l.

The equation of motion of the primary structure is given by

(me +ma)ẍ(t) + ρAbü(t) + ceẋ(t) + kex(t) = F (t), (2)

where the parameterme is the structure mass, ke the structure stiffness, ce the structure damping
and F (t) the external force. Thus, combining Eq. (1) and Eq. (2). The equation of motion in
matrix form can be written asme +ma αma

αma ma

ẍü
+

ce 0

0 ca

ẋu̇
+

ke 0

0 ka

xu
 =

F (t)

0

 |u| 6 l − b
2

,

(3)

where α = b/l is the dimensionless length ratio. The condition presented by Eq. (3) is needed
to ensure that the liquid in the column do not spill water and consequently change its damping
characteristic. Eq. (3) can also be written with the mass matrix in its dimensionless form, given
by 1 + µ αµ

α 1

ẍü
+

2ωeζe 0

0 ξ|u̇|
2l

ẋu̇
+

ω2
e 0

0 ω2
a

xu
 =


F (t)
me

0

 , (4)

where ζe and ωe are the damping ratio and natural frequency of the structure, respectively. The
dimensionless parameters mass ratio µ and tuning ratio γ are defined as

µ =
ma

me

; γ =
ωa
ωe
. (5)

The nonlinear nature of the damping requires the determination of a equivalent value to
the damping coefficient. Roberts and Spanos (2003) proposed a procedure to estimate the
optimum value of the damping coefficient utilizing the statistical linearization method. It is
possible to express the error between the nonlinear system with the equivalent linear system as
ε = (1/2)ρAξ|u̇|u̇ − cequ̇, where the value of the equivalent damping ceq can be obtained by
minimizing the standard deviation of the error value, namely E{ε2}. Assuming that the liquid
velocity has Gaussian form due to wind random excitation, the expression for the equivalent
damping is given as (Roberts and Spanos, 2003)

ceq =

√
2

π
ρAξσu̇ = 2ωaζa, (6)

where σu̇ is the standard deviation of the fluid velocity. Therefore, the equivalent damping
approached by statistical linearization ceq can replace the nonlinear value ca in Eq. (3). This
method needs an iterative procedure since the value of σu̇ is not known. Furthermore, minimiz-
ing the mean square response does not necessarily correspond to the optimal design in terms of
reliability.
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Another possible strategy to find an equivalent damping is by expressing the damping as a
function of the absorber damping ratio ζa and then apply a optimization method as described in
Yalla and Kareem (2000). This method is preferred over the mean square response since it does
not rely in iterative method and produces good results.

The equation of motion can be written in the Fourier domain and one can obtain the the
frequency response function (FRF) for the two degree of freedom as follows,

Ĥ(iω) =
x̂

F̂
; Ĝ(iω) =

û

F̂
, (7)

where ω stands for the driving frequency, x̂ denotes the Fourier transform of x, û denotes the
Fourier transform of u and F̂ denotes the Fourier transform of F , then it follows

Ĥ(iω) =
−∆µα(iω)2 + (iω)2 + ζaωa(iω) + ω2

a

((iω)2(1 + µ) + 2ζeωe(iω) + ω2
e)((iω)2 + 2ζaωa(iω) + ωa)2 − (iω)4α2µ

, (8)

Ĝ(iω) =
−α(iω)2 + ∆

((iω)2(1 + µ) + 2ζeωe(iω) + ω2
e)((iω)2 + 2ζaωa(iω) + ωa)2)− (iω)4α2µ

,

(9)

where ∆ indicates the reference in the analysis of the system, when ∆ = 1, one has base
excitation and x is a relative displacement. When ∆ = 0 one has excitation in the primary
system and x is the absolute displacement. Eq. (8) is a function of frequency and it depends
on the parameters of the system such as the absorber damping ratio ζa and the structure natural
frequency, hence the structure stiffness ke. In the next section, we will concentrate in study the
uncertainties in these two parameters.

3 UNCERTAINTY MODEL

Uncertainty analysis is important in order to describe how the system parameters may im-
pact the device performance and improve design reliability considering the optimum damping
and its variability. The probabilistic parameters are assumed to be the viscous damping coeffi-
cient ζa and the stiffness of the structure ke. The masses are assumed to be deterministic.

First, the probability distribution function (pdf) will be constructed using the Maximum
Entropy principle (Soize, 2001). By relying only on the information available, it is possible to
obtain the optimum probabilistic model using the one with maximum entropy (uncertainty).

The parameters considered as uncertain are the TLCD damping ratio ζa and the structure
stiffness ke. The random variable Z is associated to the damping ratio and K for the structure
stiffness. A underline bar is used to represent the mean value of these parameters. The procedure
to find the pdf is similar for both parameters, for that reason, the following analysis will show
only the pdf construction of the Z parameter.

The basic available information are the mean reduced model, the positive-definiteness of
the random variable and the existence of second-order moments, in other words: (1) the support
of the probability density function is ]0,+∞[, (2) the mean value is assumed to be known,
E{Z} = Z and (3) the condition E{ln(Z)} < +∞, which implies that zero is a repulsive
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value (Cataldo, Bellizzi and Sampaio, 2010). The probability density function pZ has to verify
the following constraint equations (Kapur and Kesavan, 1992)∫ +∞

−∞
pZ(z)dz = 1, (10)∫ +∞

−∞
zpZ(z)dz = Z, (11)∫ +∞

−∞
ln(Z)pZ(z)dz < +∞, (12)

applying the Maximum Entropy Principle yields the following probability density function
(Cataldo, Bellizzi and Sampaio, 2010)

pZ(z) = 1]0,+∞[(z)
1

Z

(
1

δ2Z

) 1

δ2Z 1

Γ(1/δ2Z)

(
1

Z

) 1

δ2Z
−1

e

−z
δ2ZZ , (13)

where δZ = σZ/Z is the coefficient of dispersion of the random variable Z and σZ is the
standard deviation of Z such that 0 ≤ δZ ≤ 1/

√
2 . It can be verified that Z is a second-order

random variable and that E{1/Z2} < +∞ (Soize, 2001). The Gamma function is defined as

Γ(1/δ2Z) =

∫ +∞

0

t1/δ
2
Z−1e−tdt, 1/δ2Z > 0. (14)

The pdf for the structural stiffness follow the same procedure and is given by

pK(k) = 1]0,+∞[(k)
1

K

(
1

δ2K

) 1

δ2K 1

Γ(1/δ2K)

(
1

K

) 1

δ2K
−1

e

−k
δ2KK , (15)

since the values of coefficient of dispersion are not known for both parameters, the following
sections will show results for a variation of this parameter. From the constructed pdf’s, we can
now perform a Monte Carlo simulation.

4 MONTE CARLO SAMPLING

The Monte Carlo method is a class of computational techniques based on synthetic gener-
ation of random variables in order to deduce the implications for the probability distribution.
In probabilistic simulations, we must ensure that the probability density function of the random
variable has significant physical meaning.

Simulation convergence criterion is given by (Sampaio and Ritto, 2008)

conv(ns) =
1

ns

ns∑
j=1

∫
B

‖Hj(θ, ω)− Ĥ(ω)‖2dω, (16)

where ‖Hj(θ, ω)‖ is the stochastic system response in the frequency domain calculated for the
θ realization, ‖Ĥ(ω)‖ is the mean stochastic system response.
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The deterministic model is obtained by using the mean value of damping ratio Z. The value
of Z is determined by a optimization method developed by Yalla and Kareem (2000) which, for
a white-noise excitation and considering undamped primary system, it can be expressed as

Z =
α

2

√√√√ 2µ
(
α2µ

4
− µ− 1

)
(α2µ2 + α2µ− 4µ− 2µ2 − 2)

, (17)

where for α = 0.9 and µ = 0.05 it follows that Z = 0.0965.

The mean values of the structure stiffness K is obtained by a simplified model of cantilever
beam (Murtagh, Basu and Broderick, 2004)

K =
π4

32L
EI (18)

where L is the beam length and EI is the flexural stiffness. Using L = 60 m, 3 m width and
0.015 m thickness, E = 2.1 x 1011 N/m2, density of the steel ρ = 7, 850 kg/m3 one can find
K = 463, 671 N/m. The rotor mass is M = 19, 876 kg. Using the dimensionless parameter
length ratio α = 0.9 and ν = 0.1, it follows that ωe = 3.6450 rad/s and ζe = 0.0018 (Avila
et al., 2009).

5 RESULTS

Two cases are studied in this section, in the first case, uncertainties are considered only in
the damping ratio parameter. In the second case, uncertainties are also included in the structural
stiffness parameter. In both cases, we are interested in construct the frequency response function
of structure H(ω) from Eq. (8) for different coefficients of dispersion using Monte Carlo (MC)
simulation.

Figure 3 shows, for different values of δZ , the mean model, the mean response of the
stochastic model and the boundary lines representing the confidence region of 95%, which
means that the response is inside the envelope with probability 95%. The statistics of the re-
sponse were calculated using 3,000 MC samples.

It can be noticed from Fig. 3 that the mean value of all realizations does not coincide with
the deterministic value except for the first case, δZ = .2, in Fig. 3 (a), in which they are very
similar. The uncertainty is only predominant near the resonance and anti-resonance region. As
the value of δZ increases, the uncertainty also increases in the two peaks and in the region in
between the peaks. This shows that the uncertainty in the damping parameter interfere in the
amplitude of displacement of the primary structure not changing the resonance frequencies,
as expected, significantly affecting the performance of the damper, by changing the amplitude
values at design frequency.

The convergence rate for all dispersion coefficients is shown in Fig. 4, occurring way
bellow the 3,000 Monte Carlo samples.

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
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Figure 3: FRFs with damping ratio uncertainties of the deterministic model, mean response of the stochastic
model, and 95% confidence region for different values of δZ’s: (a) .2 (b) .4 (c) .6 (d) .7.
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Figure 4: Mean square convergence for different values of δZ .
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Figure 5: FRFs with damping ratio uncertainties of the deterministic model, mean response of the stochastic
model, and 95% confidence region for different values of δZ and δK: (a) .2 & .05 (b) .4 & .15 (c) .6 & .25 (d)
.7 & .35.
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Figure 6: Mean square convergence for different values of δ.
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Suzana Moreira Ávila (Editor), ABMEC, Braslia, DF, Brazil, November 6-9, 2016



Response Variability with Random Uncertainty in a Tuned Liquid Column Damper

For the second case, the uncertainty in the structure stiffness parameter is included in the
model. The values of coefficients of dispersion have a small variation which means that the
random variable associated to the structural stiffness has a small standard deviation since the
mean value is fixed.

Figure 5 shows, for different values of δZ and δK , the mean model, the mean response of
the stochastic model and the boundary lines representing the confidence region of 95%. The
statistics of the response were calculated using 3,000 MC samples.

From Fig.5, it is clear that uncertainty in the primary-system stiffness is much more signif-
icant than uncertainty in the damping ratio parameter, since the damping ratio uncertainty only
changes the FRF amplitudes and in this case we have uncertainties occurring in all frequencies.
The uncertainties in the primary-system stiffness comes from, generally, the reduction in model
to a 1 degree of freedom model. When the value of the coefficients of dispersion increases, the
response limits becomes to wide to give any satisfactory insight in the dynamic of the system.
Furthermore, since the magnitude of the structural stiffness is big, a large variation would result
in unsatisfactory results and the simulation would not converge. For that reason, it is important
to keep the dispersion of this parameter as small as possible.

The convergence rate for all dispersion coefficients is shown in Fig. 6, occurring way
bellow the 3,000 Monte Carlo samples.

6 CONCLUDING REMARKS

In this paper, we investigated parameters uncertainties in a TLCD applied in wind turbines.
The assumption that uncertainties in structures have negligible response can be unacceptable in
real situations and beside that, the uncertainties in the performance-related cannot be included
in the damper parameter optimization. For that reason, to increase the credibility of the model,
these uncertainties were included to help describe the range of potential outputs of the system
at some probability level and estimating the relative impacts of input variable uncertainties.

The method consisted of inserting uncertainties in the absorber damping ratio and the struc-
tural stiffness element, constructed the probabilistic model from the Maximum Entropy princi-
ple and then, performed a Monte Carlo simulation. Two cases were studied in this paper, the
first only considering uncertainties in the absorber damping ratio and the second case consid-
ering both uncertainties in the absorber damping ratio and the structural stiffness. The results
showed that the uncertainties can indeed interfere in the TLCD performance since it change the
FRF amplitude considerably in both cases and that uncertainty in the primary-system stiffness
is relatively more significant than uncertainty in the damping ratio parameter although the last
one interferes in the design performance.
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Suzana Moreira Ávila (Editor), ABMEC, Braslia, DF, Brazil, November 6-9, 2016


