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Abstract. In this work we will present the computation of moments in theanisotropic plane elas-
ticity fast multipole formulation. Fundamental solutionsof plane elasticity are represented by
complex functions from the classical 2D elasticity theory.The Multipole Expansion for kernels
U (displacement field) and T (traction field) will be computedusing Taylor series expansion.
The convergence of the series expansion to the fundamental solutions is analyzed consider-
ing different numbers of series terms and different distance from the source point to the field
point. Moments will be used to evaluate integrals of influence matrices when elements are far
away from the source point, whereas the conventional approach will be applied to evaluate the
integrals in order to compare results obtained by the multipole expansion.

Keywords: Fast Multipole Method, Boundary Element Method, Anisotropic plane elasticity

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congresson Computational Methods in Engineering
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1 Introduction

Currently, the use of composite materials have long been used by different fields of science.
The reasons for the large utilization are their mechanical properties. As an example, they present
good performance in extreme temperatures (cold or hot) and the biggest specific stiffness and
specific strength if compared to other materials. Futher more, there are many projects that
require specific mechanics features, as high stiffness, or mechanical strength , low density that
can be obtained only if composite materials are used.

Over the years, with the developing of composite materials,many projects have considered
their use. Then, it was necessary to investigate the mechanical behaviour of these materials,
studing their stress and the displacement. As composite materials are anisotropic materials, the
analitical solutions are very hard to be obtained.

A numerical method used to study the mechanical behaviour ofcomposite materials is
the Boundary Element Method (BEM). [Katsikadelis(2002)],[Beer(2008)], [Aliabadi(2002)],
[Gaul(2002)], [Banerjee(1994)] are some books where it is possible to find more information
about it.

One of the disadvantages of the BEM is its inefficiency to solve large-scale problems.
The matrices produced by this method are dense and non-symmetric. With this method it is
necessary O(N2) operations to compute the coefficients of the matrices and O(N3) operations
to solve the system of equations by direct solvers, beingN the number of equations in the
linear system of DOFs. To solve this drawback, we can use FastMultipole Method (FMM) to
accelerate the solutions of BEM. As consequence, we will finda reduction in the CPU time
and a reduction in the memory used to produce the matrices andsolve the system of equations.
The union between BEM and FMM is known as fast multipole BEM orsimply fast BEM.
In recent years the use of fast multipole BEM was investigated by many authors, including
[Peirce(1995)] for 2D elastostatics, [Popov(2001)] for 3Delastostatics, [Yoshida(2001a)] and
[Yoshida(2001b)] for 3D elastostatic crack problems, [Liu(2005)] for the modelling of carbon-
nanotube composites, [Wang(2005), Wang(2004)] for the simulation of composite materials and
[Wang(2006)] for the analysis of fatigue crack growth. A recent review on the fast multipole
BEM can be found in [Nishimura(2002)]. The main idea of the FMM is to change the node-
to-node (or element-to-element) interactions to cell-to-cell interactions. With the expansion
of fundamental solutions in series and the grouping of elements into cells, it will reduce the
computational cost of the BEM.

In this paper, the operations of FMMBEM for 2D anisotropic elasticity problems is pre-
sented. The fundamental solution for anisotropic problemswill be expanded. After, it will be
introduced the operationsMoment, Moment to Moment, Local andLocal to Localto evaluate
the integrals founded in the BEM. A hierarchical tree structure will be used in this step. The
tree is used to group the elements in cells. Finally, we will compare the results of integrals pro-
duced by the BEM with results of integrals produced by fast the BEM to analyse the influence
of the number of terms in the Taylor series on the accuracy of the integration. The anisotropic
formulation used in this simulation will be modeled by Lekhnitskii formalism.
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2 Expansion of Fundamental Solution

The fundamental solutions for anisotropic problems is given by:

Uji(z, zo) = 2Re[qi1Φ1 + qi2Φ2] = 2Re[qi1Aj1 ln(zo1 − z1) + qi2Aj2 ln(zo2 − z2)] (1)

and

Tij(z, zo) = 2Re

[

gj1(µ1n1 − n2)Ai1

(zo1 − z1)
+

gj2(µ2n1 − n1)Ai2

(zo2 − z2)

]

(2)

where the termsµk, qik, gjk andAik are given:

a11µ
4 − 2a16µ

3 + (2a12 + a66)µ
2 − 2a26µ+ a22 = 0, (3)
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(6)

All terms above (µk, qik, gjk andAik) are material complex constants. Their values are
presented in the Table 1. In the equation (3), the termsa11, a12, a16, a22, a26 anda66 are the
coefficients of elastic compliance.

The derivation of equation (3) and the equation (6) can be found in [Sollero(1994)] and
[Albuquerque(2001)]:

Table 1: The values of material complex constants.

i and j µ Aij qij gij

11 -0.1623 + 0.8860i 0.0431 - 02301i -0.1411 - 0.0276i -0.1623 + 0.8860i

12 0.1446 + 0.8440i 0.0264 + 0.2301i -0.1329 + 0.0263i 0.1146 + 0.8440i

21 —— 0.1969 - 0.0041i -0.0015 - 0.1209i -1.000

22 —– -0.1972 - 0.0755i 0.069 - 01233i -1.000

The field point(z) and the source point(zo) are represented by:

z =
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(7)
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
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To exapand the fundamental solution, we will introduced thefunction:

G(zo, z) = log(zo − z) (9)

and the derivative of the equation (9):

G
′

(zo, z) =
∂G(zo, z)

∂z
=

1

(z − zo)
(10)

We will rewrite the equations (1) and (2) as:

Uij(zo, z) = 2Re [qi1Aj1G(z1o, z1) + qi2Aj2G(z2o, z2)] (11)

Tij(zo, z) = 2Re
[

G
′

(z1o, z1)gi1(µ1n1 − n2)Aj1 +G
′

(zo2, z2)gi2(µ2n1 − n2)Aj2

]

(12)

Now, a intermediate point(zci) will be introduce in the equation (9):

zci =







zc1

zc2






=







xc + µ1yc
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




(13)

G(zo, z) = log(z − zci − zo + zci) (14)

Using the results from [Reis(2013)], we can find the final expression for the equation (14):

G(zo, z) =
∞
∑

k=0

Ok(zo − zkc)Ik(z − zkc) (15)

where:

Ok(z) =
(k − 1)!

zk
, for k > 1, (16)

Oo(z) = − log(z) (17)

Ik(z) =
zk

k!
, for k > 0. (18)

For the equation (10), we can find the following expression:

G
′

(zo, z) =
∂G(zo, z)

∂z
=

1

(z − zo)
=

∞
∑

k=1

Ok(zo − zkc)Ik−1(z − zkc) (19)

The complete derivation of equations (15) and (19) can be found in [Reis(2013)]. In this
paper, our focus will be in the operations of FMM.

3 Multipole Expansion the U kernel Integral

To do the multipole expansion, consider two points, (zc1 ,zc2), near the field points (z1,z2).
So, we will consider that the distance between| z1−zc1 | and| z2−zc2 | are less than| z1o−zc1 |
| z2o− zc2 |. So,| z1− zc1 |≪| z1o− zc1 | and| z2− zc2 |≪| z2o− zc2 |. Using the new auxiliary
functionIk(z) eOk(z) we have:
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Figure 1: Mutilpole expansion around zc

∫

Γ

tjUij(zo, z)dΓ =
∫

Γ

tj(2Re [qi1Aj1G(z1o, z1) + qi2Aj2G(z2o, z2)])dΓ (20)

∫

Γ

tjUij(zo, z)dΓ = 2Re
∫

Γ

tjqi1Aj1G(z1o, z1)dΓ +

2Re
∫

Γ

tjqi2Aj2G(z2o, z2)dΓ (21)

To decrease the number of equation, we will work with the firstintegral in the right side
of equation (21) and we will just expand the result for the second integral in the left side of
equation (21). So, using the equation (15), we will write thefollowing equation:

2Re
∫

Γ

tj [qi1Aj1G(z1o, z1)]dΓ = 2Re
∫

Γ

tjqi1Aj1

(

∞
∑

k=0

Ok1(z1o − zc1)Ik1(z1 − zc1)

)

dΓ(22)

2Re
∫

Γ

tj [qi1Aj1G(z1o, z1)]dΓ = 2Re
∞
∑

k=0

Ok1(z1o − zc1)Mk1(zc1) (23)

where:

Mk1(zc1) =
∫

Sc

tjqi1Aj1Ik1(z1 − zc1)dS k = 0, 1, 2, ... (24)

Equation (24) is calledmultipole expansion. This equation can be readly evaluated , be-
cause there is no dependence on the source point(zo). So, for any position ofzo away fromSc,
this term no longer needs to be computed. As consequence, thenumber of operations decrease.
According to [Braga(2012)], this process is the key of the FMM. The same equation can be
obtained for the other integral:

2Re
∫

Γ

tj [qi2Aj1G(z2o, z2)]dΓ = 2Re
∞
∑

k=0

Ok2(z2o − zc2)Mk2(zc) (25)

where:

Mk2(zc2) =
∫

Sc

tjqi2Aj2Ik2(z2 − zc2)dS k = 0, 1, 2, ... (26)

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congresson Computational Methods in Engineering
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Figure 2: Translation zc for z
′

c

3.1 Moment to Moment Translation (M2M)

To present the operationMoment to momentopearation, consider that the points(zc1) and
(zc2) were moved to new positions(zc′1) and(zc′2). It is necessary to obtain a new moments
without recomputing the equations (24) and (26). Consider the property below:

Ik(z1 + z2) =
k
∑

l=0

Ik−l(z1)Il(z2) =
k
∑

l=0

Il(z1)Ik−l(z2) (27)

so:

Mk1(zc′1) =
∫

§c

tjqi1Aj1Ik1(z1 − zc′1)dS (28)

Mk1(zc′1) =
∫

§c

tjqi1Aj1Ik1[(z1 − zc1) + (zkc1 − zk
c′1
)]dS (29)

After some mathematics manipulations, we will find:

Mk1(zc′1) =
k
∑

l=0

Ik1−l(zkc1 − zk
c′1
)Ml1(zc) (30)

Ml1(zc) =
∫

Sc

tjqi1Aj1Il1(z1 − zc1)dS (31)

the same results can be obtained for equation (26):

Mk2(zc′2) =
k
∑

l=0

Ik2−l(zkc2 − zk
c′2
)Ml2(zc) (32)

Ml2(zc) =
∫

§c

tjqi2Aj2Il2(z2 − zc2)dS (33)

3.2 Local expansion and Moment to Local Translation (M2L)

To present the last two operations, consider a point(zL1) and (zL2) next to the source
point (zo1) and (zo2). So, considering this aproximation (| zo1 − zL1 |≪| z1 − zL1 |) and
(| zo2 − zL2 |≪| z2 − zL2 |),the equation for local expansion is given by:

2Re
∫

Γ

tj [qi1Aj1G(zo1, z1)]dΓ = 2Re
∞
∑

k=0

Ok1[(zL1 − zc1) + (zo1 − zkc)]Mk1(zc1) (34)
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Figure 3: Local expansion around zL

Using the property below, we will find another equation:

Ok(z1 + z2) =
∞
∑

l=0

(−1)lOk+l(z1)Il(z2) for |z2| < |z1| (35)

Thus:

2Re
∫

Γ

tj [qi1Aj1G(zo1, z1)]dΓ = 2Re

[

∞
∑

k=0

(−1)lOk1+l1(zL1 − zc1)Il1(zo1 − zc1)

]

Mk1(zc1)(36)

After some manipulations, the followin equations are obtained:

2Re
∫

Γ

tj [qi1Aj1G(zo1, z1)]dΓ = 2Re

[

∞
∑

l=0

Lk1(zL1)Il1(zo1 − zc1)

]

(37)

where:

Lk1(zL1) = (−1)k
[

∞
∑

k=0

Ok1+l1(zL1 − zc1)Il1(zo1 − zc1)

]

Mk1(zc1) (38)

Equation (37) is calledlocal expansionand the equation (38) ismoment-to-local transla-
tion. Finally, the same results can be obtained for the followingequation:

2Re
∫

Γ

tj [qi2Aj2G(zo1, z2)]dΓ = 2Re

[

∞
∑

l=0

Lk2(zL2)Il2(zo2 − zc2)

]

(39)

Lk2(zL2) = (−1)k
[

∞
∑

k=0

Ok2+l2(zL2 − zc2)Il2(zo2 − zc2)

]

Mk2(zc2) (40)

3.3 Local to local translations

The last translation is thelocal to local. For this situation, consider that the pointszL1 and
zL2 were moved toz

′

L1 e z
′

L2. So, the results are:

2Re
∫

Γ

tj [qi1Aj1G(zo1, z1)]dΓ = 2Re

[

∞
∑

l=0

Lk1(zL1)Il1((zo1 − z
′

L1) + (z
′

L1 − zL))

]

(41)

2Re
∫

Γ

tj [qi1Aj1G(zo1, z1)]dΓ = 2Re
∞
∑

l=0

Lk1(z
′

L1)Ip1(z1o − z
′

L1) (42)

where:

Lk1(z
′

L1) =
p−l
∑

k=0

Ik1−l1(z
′

L1 − zL)Ll+k(zl1) (43)
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Figure 4: Translation zL for z
′

L

Equation (43) is calledlocal-to-local translation. Following the same steps, it is possible
to obtain:

2Re
∫

Γ

tj [qi2Aj2G(z1o, z2)]dΓ = 2Re
∞
∑

l=0

Lk2(z
′

L2)Ip2(z2o − z
′

L2) (44)

Lk2(z
′

L2) =
p−l
∑

k=0

Ik2−l2(z
′

L2 − zL)Ll2+k2(zL2) (45)

4 Multipole Expansion the T kernel Integral

To avoid the demonstration presented above, it will be showed only the final results for the
kernel T. These results are obtained by doing the same steps presented in the section before. So,
we have:

∫

Γ

ujTij(zo, z)dΓ =

2Re
∫

Γ

uj

[

G
′

(zo1, z1)gi1(µ1n1 − n2)Aj1 +G
′

(zo2, z2)gi2(µ2n1 − n2)Aj2

]

dΓ (46)

∫

Γ

ujTij(zo, z)dΓ = 2Re
∫

Γ

uj

[

G
′

(zo1, z1)gi1(µ1n1 − n2)Aj1

]

dΓ +

2Re
∫

Γ

uj

[

G
′

(zo2, z2)gi2(µ2n1 − n2)Aj2

]

dΓ (47)

Themultipole expansionis:

2Re
∫

Γ

uj

[

G
′

(zo1, z1)gi1(µ1n1 − n2)Aj1

]

dΓ = 2Re
∞
∑

k=0

Ok(zo1 − zc1)M̃k1(zc1) (48)

where:

M̃k1(zc1) =
∫

Sc

ujgi1(µ1n1 − n2)Aj1Ik1−l(z1 − zc1)dS k = 0, 1, 2, ... (49)

and:

2Re
∫

Γ

uj

[

G
′

(zo2, z2)gi2(µ2n1 − n2)Aj2

]

dΓ = 2Re
∞
∑

k=0

Ok(zo2 − zc2)M̃k2(zc2) (50)
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M̃k2(zc2) =
∫

Sc

ujgi2(µ1n1 − n2)Aj2Ik2−l(z2 − zc2)dS k = 0, 1, 2, ... (51)

————————————————————————–

4.1 Moment to Moment Translation (M2M)

M̃k1(zc′1) =
k
∑

l=0

Ik1−l(zkc1 − zk
c′1
)M̃l1(zc) (52)

M̃l1(zc) =
∫

Sc

tjgi1(µ1n1 − n2)Aj1Il1−l(z1 − zc1)dS (53)

M̃k2(zc′2) =
k
∑

l=0

Ik2−l(zkc2 − zk
c′2
)M̃l2(zc) (54)

M̃l2(zc) =
∫

Sc

tjgi2(µ2n1 − n2)Aj2Il2−l(z2 − zc2)dS (55)

4.2 Local expansion and Moment to Local Translation (M2L)

2Re
∫

Γ

tj [gi1(µ1n1 − n2)Aj1G(zo1, z1)]dΓ = 2Re

[

∞
∑

l=0

L̃k1(zL1)Il1(zo1 − zc1)

]

(56)

where:

L̃k1(z1L) = (−1)k
[

∞
∑

k=0

Ok1+l1(zL1 − zc1)Il1−1(zo1 − zc1)

]

M̃k1(zc1) (57)

For the other equation, we have:

2Re
∫

Γ

tj [gi1(µ2n1 − n2)Aj2G(zo2, z2)]dΓ = 2Re

[

∞
∑

l=0

L̃k2(zL2)Il2(zo2 − zc2)

]

(58)

L̃k2(z2L) = (−1)k
[

∞
∑

k=0

Ok2+l2(zL2 − zc1)Il2−1(zo2 − zc2)

]

M̃k1(z2c) (59)

4.3 Local to local translations

2Re
∫

Γ

tj [gi1(µ1n1 − n2)Aj1G(zo1, z1)]dΓ = 2Re
∞
∑

l=0

L̃k1(z
′

L1)Ip1(zo1 − z
′

L1) (60)

where:

L̃1k(z
′

L1) =
p−l
∑

k=0

Ik1−l1(z
′

L1 − zL)L̃l+k(zl1) (61)

Equation (61) is calledlocal-to-local translation. For the other integral, we have:

2Re
∫

Γ

tj [gi2(µ2n1 − n2)Aj2G(zo1, z2)]dΓ = 2Re
∞
∑

l=0

L̃k2(z
′

L2)Ip2(z2o − z
′

L2) (62)

Lk2(z
′

L2) =
p−l
∑

k=0

Ik2−l2(z
′

L2 − zL)Ll+k(zl2) (63)
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Figure 5: Boundary subdivided by square - fonte: [Liu(2009)]

5 Tree hierarchy strucure

To explain how the operations of the FMM are used, we will introduce the tree hierarchy
strucure. First of all, we will circumscribe the boundary bya square. This step is known as level
zero. Then, divide this square into four equal pieces. We will create four new squares from the
square which circumscribes our boundary. Each square created will be known as cell. This step
is known as level 1. Therefore, when we create these two levels, an inter-dependency between
the zero level and level 1 is built. The square of the level zero is considered the father of the
four square cells of the level 1. We will continue the subdivision of each squares in four new
squares, until reach a certain level. The above process willbe interrupted when the number of
nodes in each cell does not exceed a predetermined number. Finally, we will call leaf cell the
cells that are no longer divided.

Now, we will show the operations presented in the previous sections. For the squares known
as leaf cells, we will create a center. We will use themultipole expansionto transfer the position
of the node to the centroid of the leaf cell. Then, we will transfer the position of the centroid in
the leaf cell to the centroid of the father cell. After, this centroid will be transfered to his father
cell centroid. For this step, we will use the translationM2M . We will continue this process
until we reach the level 2, carrying the position of these centroides with operationM2M . The
described process is known asupward. The Figure 6 represents theupwardstep.

After the level 2 is reached, we will use the translationsM2L, L2L and thelocal expansion.
This step is known asdownward. First of all, before use the tranlastionsM2L, L2L and thelocal
expansion, we must use the subdivison created by tree hierarchy to qualify elements that are
near, well separated and distant far from the leaf cell that contains the source point. According
to [Liu(2009)], near cellsare those that have, at least, one vertex in common with the leaf
cell. For a cell to be consideredwell separated, we should look at the relationship between the
father cell of the leaf cell and the father cell of the other cells. If the father cells are adjacent
cells, the cell will be consideredwell separatedfrom the leaf cell. Finally, a cell is considered
far from of the cellthat has the leaf cell if they do not have adjacent fathers cells. Figure 7
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Figure 6: Upward process

Figure 7: Relation between the cells

illustrates what was described above.

So, after this classification, we will start thedownwardprocess. The beginning of it is
the level 2. We will use theM2L translation on all cells to change the centroid position of
well separatedand cells that arefar from the cell. TheL2L will be used to transfer the position
of the centroid of the parent cell to the centroid of the leaf cell. Finally, we will use thelocal
expansionto transfer the position of the centroid of cell to the point source.
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Figure 8: Downward process with M2L translation

Figure 9: Downward process with M2L translation

6 Numerical Results

This section aims to demonstrate operations of the FMMBEM and also the efficiency of
the number of terms in the Taylor series expansion for matrixes[H ] and [G]. We will do this
using elements 15 and 16 presented in the Figure 10. Sources points are nodes 2 and 3. Figure
11 shows the numbering of cells. This problem was assumed themaximum number of elements
per cell equal to 1. Figure 12 shows the numbering of the nodesalong with the cells. First
of all, matrixes[H ] and[G] are calculated by using the FMMBEM in the following sequence:
calculate themomentsof the elements 15 and 16 in relation to the center of the cells54 and
55, respectively (see Fig 11). Then, usingM2M operation, we will make the translation to
the center of cell 37, which is the parent of cells 54 and 55. Then, sum up the two moments,
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since both are calculated from the same point (center of cell37). Then, usingM2L, compute
the local expansionL from the center point of the cell 37 to the center of the cell 20, which is
the parent cell of cells 38 and 39. Cells 38 and 39, in turn, contain the sourcers points, which
are nodes 2 and 3 (see Figure 12). The translation of expansion of the cell location 20 to the
centers of the cells 38 and 39 is next. Thereafter, usinglocal translation, calculate integrals of
matrixes[G] and[H ]. Finally, to compare the results, we compute matrices[G] and[H ] using
the standard boundary element method. Table 2 shows a comparison of the FMMBEM with
different number of terms in the series expansion with standard BEM.
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Figure 10: Element mesh with constant number of nodes.
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Table 2: Comparison between FMM and BEM

Number of terms [G] node 2 [H ] node 2 [G] node 3 [H ] node 3

1 −0.38176 0.029265 −0.37402 0.03004

2 −0.38036 0.033828 −0.37136 0.035655

4 −0.3804 0.034124 −0.37128 0.036273

6 −0.3804 0.034112 −0.37128 0.036256

8 −0.3804 0.034112 −0.37128 0.036256

BEM −0.3804i 0.034112 −0.37128 0.036256

As it can be seen, the agreement between FMMBEM and BEM is verygood even with few
terms in the series expansion. The agreement improve with the increase of terms on the Taylor
series. Furthermore, for the same accuracy, matrix H demands a higher number of terms in the
Taylor series that matrix G. This can be explained by the order of singularity of matrix H that is
higher than the order of matrix G.

6.1 Conclusion

This paper showed the influence of number of terms of the Taylor series in the operations of
the FMMBEM. We change the number of terms from 1 to 8. As expected, with more numbers
of terms in the series, more accurate the results are. The same conclusion can be founded in
[Reis(2013)], where it was studied the influence of number ofterms of the Taylor series in the
expansion of fundamental solution for anisotropic problems. With the increasing of number of
terms, more accurate the results were found. Another feature is the number of terms used to
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Suzana MoreiráAvila (Editor), ABMEC, Braslia, DF, Brazil, November 6-9, 2016



Template for CILAMCE 2016 (Fast multipole for anisotropic materials)

obtain the same accuray on matrices H and G. Matrix[G] converges more quickly than matrix
[H ]. One reason for this features is the presence of strong singularity in the fundamental solution
[Tij(z, zo)]. By the end, these results show that the operations of the FMMfor anisotropic
materials have been completely obtained, being this formualtion one option to solve problems
that BEM is inefficient due to large number of unknowns. For fundamental solutions with the
presence of singularity, it is necessary to use more numbersof terms on th Taylor series, to
preserve the accuracy of the problem.
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