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Abstract. In this work we will present the computation of moments iratfisotropic plane elas-
ticity fast multipole formulation. Fundamental solutiomisplane elasticity are represented by
complex functions from the classical 2D elasticity theditye Multipole Expansion for kernels
U (displacement field) and T (traction field) will be computesing Taylor series expansion.
The convergence of the series expansion to the fundameitaios's is analyzed consider-
ing different numbers of series terms and different distainem the source point to the field
point. Moments will be used to evaluate integrals of inflgematrices when elements are far
away from the source point, whereas the conventional agtreall be applied to evaluate the
integrals in order to compare results obtained by the moligexpansion.
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1 Introduction

Currently, the use of composite materials have long beem ligdifferent fields of science.
The reasons for the large utilization are their mechanicg@rties. As an example, they present
good performance in extreme temperatures (cold or hot) lediggest specific stiffness and
specific strength if compared to other materials. Futheremtivere are many projects that
require specific mechanics features, as high stiffness eghanical strength , low density that
can be obtained only if composite materials are used.

Over the years, with the developing of composite matennaés)y projects have considered
their use. Then, it was necessary to investigate the metdianehaviour of these materials,
studing their stress and the displacement. As compositerrastare anisotropic materials, the
analitical solutions are very hard to be obtained.

A numerical method used to study the mechanical behaviowoonfposite materials is
the Boundary Element Method (BEM). [Katsikadelis(20028eer(2008)], [Aliabadi(2002)],
[Gaul(2002)], [Banerjee(1994)] are some books where itoissfble to find more information
about it.

One of the disadvantages of the BEM is its inefficiency to edbrge-scale problems.
The matrices produced by this method are dense and non-gyimm#ith this method it is
necessary Q%) operations to compute the coefficients of the matrices afif)Ooperations
to solve the system of equations by direct solvers, bé&intpe number of equations in the
linear system of DOFs. To solve this drawback, we can useMablipole Method (FMM) to
accelerate the solutions of BEM. As consequence, we will firéduction in the CPU time
and a reduction in the memory used to produce the matricesawne the system of equations.
The union between BEM and FMM is known as fast multipole BEMswnply fast BEM.
In recent years the use of fast multipole BEM was investdjdtg many authors, including
[Peirce(1995)] for 2D elastostatics, [Popov(2001)] for 8@stostatics, [Yoshida(2001a)] and
[Yoshida(2001b)] for 3D elastostatic crack problems, [R205)] for the modelling of carbon-
nanotube composites, [Wang(2005), Wang(2004)] for thelkition of composite materials and
[Wang(2006)] for the analysis of fatigue crack growth. Aeetreview on the fast multipole
BEM can be found in [Nishimura(2002)]. The main idea of theMN$ to change the node-
to-node (or element-to-element) interactions to celtetl-interactions. With the expansion
of fundamental solutions in series and the grouping of efgmmto cells, it will reduce the
computational cost of the BEM.

In this paper, the operations of FMMBEM for 2D anisotropiasticity problems is pre-
sented. The fundamental solution for anisotropic problentisoe expanded. After, it will be
introduced the operationrdoment Moment to MomentLocal andLocal to Localto evaluate
the integrals founded in the BEM. A hierarchical tree stoetwill be used in this step. The
tree is used to group the elements in cells. Finally, we withpare the results of integrals pro-
duced by the BEM with results of integrals produced by fastBEM to analyse the influence
of the number of terms in the Taylor series on the accurachefritegration. The anisotropic
formulation used in this simulation will be modeled by LekbBhkii formalism.
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2 Expansion of Fundamental Solution

The fundamental solutions for anisotropic problems is give:

Uji(2z,20) = 2Re[qi1P1 + ¢i2P2] = 2Re[qi1 Aj1 In(201 — 21) + qinAjo In(200 — 22)] (1)
and
; —n9)A; ; —nq)A;
T;;(z,2o) = 2Re [9]1(#1711 n2) An + gjo(prany — ny) Ag 2)
(2’01 - 2’1) (2’02 - 22)
where the termgy, g;x, g and Ay, are given:.
(111,u4 - 2a16M3 + (2a12 + CL66)M2 — 2ag6pt + agp = 0, (3
2
a1y + 12 — Q16fhk
qik = (4)
aiaftk + 22/ — agg
1o 2
9] = %)
-1 -1
1 -1 1 -1 | [ A, 82/ (2mi)
M1 —Hy H2 — o Ajn ) - i1/ (2mi) ®)
Q11 —q11 Q12 —qqo Ajo 0
@1 T G2 G | | Ajo 0

All terms above [, ¢, g9;x and A;;) are material complex constants. Their values are
presented in the Table 1. In the equation (3), the tatmsaz, aig, a2, azs andagg are the
coefficients of elastic compliance.

The derivation of equation (3) and the equation (6) can badadn [Sollero(1994)] and
[Albuquerque(2001)]:

Table 1: Thevalues of material complex constants.

A

iand | p ij i Gij
11 -0.1623 + 0.8860| 0.0431 - 02301i| -0.1411 - 0.0276i| -0.1623 + 0.8860
12 0.1446 + 0.8440i| 0.0264 + 0.2301j -0.1329 + 0.0263| 0.1146 + 0.8440i
21 _ 0.1969 - 0.0041i| -0.0015 - 0.1209i -1.000
22 —_— -0.1972 - 0.0755| 0.069 - 01233i -1.000

The field point(z) and the source poirit,) are represented by:

|

T1 + H1T2
T+ Uolo

(7)
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ZO xO + xO
g — 1 _ 1T H1To62 (8)
202 To1 + U2To2

To exapand the fundamental solution, we will introducedftimetion:

G(20,2) = log(z, — 2) 9)
and the derivative of the equation (9):
/ 0G (2o, 2) 1
= = 1
G (z07 Z) az (Z _ ZQ) ( O)
We will rewrite the equations (1) and (2) as:
Uij(zoa z) =2Re [QilAﬂG(Zlm z1) + QiQAjQG(ZQOa 2)] (11)

Tij(Z’o, Z) = 2Re :G,(Zm, Zl)gil(,ulnl - n2)Aj1 + G/(2027 ZQ)Qz‘Q(MQ”l - 712)14]'2} (12)

Now, a intermediate poirit,) will be introduce in the equation (9):

C C + C
S I I I (13)
Zey L Te + HaYe
G(20,2) =log(z — ze;, — 20 + 2¢;) (14)

Using the results from [Reis(2013)], we can find the final espron for the equation (14):

Gz, 2 Z Ow(20 — 26 ) (2 — 21, (15)
where:
Ok(z) = w, for k>1, (16)
O,(2) = —log(2) (17)
Ii(2) = ]j for k> 0. (18)
For the equation (10), we can find the following expression:
G (29, 2) = 8G(az;,z) = Gs Z O (20 = 2k ) k-1(2 — 21.) (19)

The complete derivation of equatlons (15) and (19) can badan [Reis(2013)]. In this
paper, our focus will be in the operations of FMM.

3 Multipole Expansion the U kernel I ntegral

To do the multipole expansion, consider two points,,t.,), near the field pointsz(,z5).
So, we will consider that the distance betwéen—z., | and| z,—z, | are less thanz;,—z, |
| 220 — — 2oy || 210 — 26, | @NA| 25 — 2, | K] 220 — 2, |. Using the new auxiliary
function I, (z) e Ox(z) we have:
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Figure1: Mutilpole expansion around z.

/. tjUij (Zo, z)dF =
r

/th(QRe [QilAﬂG(Zlm 21) + QiQAjQG(ZQOa 22)])dF (20)

/. tjUij (Zo, z)dF = 2R6/ tj(]ﬂAle(Zlg, zl)df +

r r

2R€/ tjqz‘QAjQG(ZQO, Zg)dr (21)
r

To decrease the number of equation, we will work with the fmgggral in the right side
of equation (21) and we will just expand the result for theosekintegral in the left side of
equation (21). So, using the equation (15), we will writeftliiowing equation:

2R€/th [QilAle(2107 21)]dF = 2R€/thqi1Aj1 (Z Okl (210 — ZCl)[kl (21 — ch)> dF(ZZ)

k=0
2R€/th [QilAle(Zloa zl)]dF = 2R€ Z Okl(zlo — ch)Mkl (ch) (23)
k=0
where:
Mk1 (ch) = /S thilAjllkl (2’1 — ZCl)dS k’ = 0, 1, 2, (24)

Equation (24) is callednultipole expansionThis equation can be readly evaluated , be-
cause there is no dependence on the source pgintSo, for any position of, away froms,,
this term no longer needs to be computed. As consequenaeyithieer of operations decrease.
According to [Braga(2012)], this process is the key of theNEM he same equation can be
obtained for the other integral:

2R€/rtj [¢i2Aj1G (220, 22)]dI’ = 2Re Z Oy (220 — Zey ) My, (2¢) (25)
k=0
where:
Mk2 (ZCQ) = /S tjgiQAjQIkg (2’2 — ZCQ)dS k? = 0, 1, 2, (26)
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Figure2: Trandation z, for z,

3.1 Moment to Moment Translation (M2M)

To present the operatiddloment to momerdpearation, consider that the poirits; ) and
(z.2) were moved to new positior(s.;) and (z.2). It is necessary to obtain a new moments
without recomputing the equations (24) and (26). Consideproperty below:

I (21 + 22) ka 1(21) 11 (22) ZIl 21)Ik—1(22) (27)
=0 (=0
SO.
My, (z01) = /§ tign A (21 — z01)dS (28)
My (201) = /§ tigin AT [(21 — 201) + (500 — 20,,)]dS (29)

After some mathematics manipulations, we will find:

Mk1 Zc’l ZIlﬁ l chl ch/l)Mll (ZC) (30)

My, (z.) = /s tiginAnl, (21 — 2¢1)dS (31)

the same results can be obtained for equation (26):

ng Zc’2 Z]kg l Zk(-g ch/2>Ml2(Zc) (32)

M, (z.) = /é tiGinAjol1, (20 — 202)dS (33)

3.2 Local expansion and Moment to Local Translation (M2L)

To present the last two operations, consider a p6ipt) and (z7,) next to the source
point (z,1) and (z,2). S0, considering this aproximation ¢,; — 271 |<| 21 — 211 |) and
(| 2oz — 212 || 22 — 212 [

QRG/th [qilAle(Zgl, 21)]dr = 2R€ Z Okl[(ZLl — Zd) + (2’01 — ch)]Mkl(ch) (34)
k=0
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Figure 3: Local expansion around zj,

Using the property below, we will find another equation:

oo

Or(z1 + 22) = lz:(—l)lOk+l(Zl)[l(Z2) for |z| < |z| (35)
Thus: B
2R€/1;tj[ql'1Aj1G(201, 21)|dl" = 2Re ki(_]‘)lOk‘l-Hl(le — 2z )1, (201 — 2’01)] My, (2.1)(36)
After some manipulations, the foIIowi-n equations are oledi
2Re/rtj[qi1Aj1G(zol, z1)]dI’ = 2Re ngl(le)[h(zol — zal)] (37)
where: _
Ly, (z01) = (=1)* Li Oy, (221 — 2e1) 1y (201 — 261)1 My, (2e1) (38)

Equation (37) is calletbcal expansiorand the equation (38) imoment-to-local transla-
tion. Finally, the same results can be obtained for the follov@ggation:

2R€/ tj [qZ‘QAjQG(Zol, 22)]dF = 2Re [i Lk2 (ZLQ)[ZQ (202 - ch)‘| (39)

r 1=0

Ly (212) = (1) li Opyr1y (212 — 2e2) 11y (202 — 202)] My, (2c2) (40)
k=0

3.3 Local tolocal translations

The last translation is thiecal to local For this situation, consider that the poiats and
21 Were moved ta;, e z;,. So, the results are:

2R€/I;tj[qi1Aj1G(201, ZQ]dF = 2Re [i Lk1 (ZLl)]ll((Zol — ZlLl) —+ (Z,L1 — ZL)) (41)

=0

2Re /1‘ tj [QilAle(Zoh 21)]dF = 2Re Z Lkl (’Z/Ll)lpl (zlo — z/Ll) (42)
=0
where;:
! p_l 1
Ly (210) = > Iny -, (200 — 20) Ligw (201 (43)
k=0
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Figure4: Trandation z;, for z;

Equation (43) is calletbcal-to-local translation Following the same steps, it is possible
to obtain:

2R€/th [qZ‘QAjQG(Zlo, 22)]dF = 2R€Z LkQ (’Z/LQ)IPQ (ZQO — z/LQ) (44)
=0
! p_l !
Lk2 (ZLQ) = Z ]k2—lz (ZLQ - ZL)L12+k2(ZL2) (45)
k=0

4 Multipole Expansion the T kernédl Integral

To avoid the demonstration presented above, it will be skioywdy the final results for the
kernel T. These results are obtained by doing the same steparted in the section before. So,
we have:

/ u;Tij(2o,2)dl" =
r

2R€/1‘uj [G/(Zol, Zl)gil (,uml — n2)Aj1 + G/(2027 22)91'2(,[12711 — nz)Ajz} dl’ (46)

/FujTZ-j(zo, Z)dF = 2R€/FUJ' |:G/(Zol, zl)gﬂ(uml — HQ)AJ'J dl’ +
2R€/1‘uj |:G/<z02, zz)gig(,uin — HQ)A]'Q} dl’ (47)
Themultipole expansiors:

2R6/Fuj [G,(zol, 21) i1 (ang — ng)Aﬂ} dl' = 2Re Z Ok(zo1 — ch)Mkl(ch) (48)

k=0
where:
Mkl (ch) = /S ujgﬂ(ulnl — nQ)Ajllkl—l(Zl — Zq)ds k’ = 0, ]_,2, (49)

c

and:

2R6/Fuj [G,(zog, 29)Gia (o — ng)Aﬂ} dI' = 2Re Z Ok(zo2 — 262)]\;[@(202) (50)

k=0
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MkQ (Zc2> = /S ujgl-g(ulnl — ng)Ajzle,l(Zg — ZCQ)dS k= 0, 1, 2, (51)

c

4.1 Moment to Moment Translation (M2M)

My, (2e1) Z[kl (2, — ch,l)Mll(Zc) (52)
]\;[ll(zc) = / tigin(pang — ng)Aj L, (21 — ze1)dS (53)
Mk2 Ze2) ZIkz (2o, — ch,2)M12(Zc) (54)
Mb (ze) = /SC tiGi2(pony — no)Ajoly, (22 — 2e2)dS (55)

4.2 Local expansion and Moment to Local Translation (M2L)

2R€/th [gil (,ulnl — ng)Ale(Zgl, zl)]dF = 2R€ [Z Ekl(le)Ill (2’01 — ch)] (56)
=0

where:

Ly, (211) = (—1)* li Oky4: (201 = 2e1) Iy —1 (201 — ch)] My, (2a1) (57)
k=0

For the other equation, we have:

2Re/t gi1(pany — n2) Aj2G (202, 22)|dI" = 2Re [Z Ly (zr2) 11, (202 — 202)1 (58)
1=0

Ly (201) = (1) li Okgis (202 — 2e1) I1—1(202 — 202)1 My, (22¢) (59)
k=0

4.3 Local tolocal trandations

2Re/t gi1(pna — n2) Ajn G201, 21)]dl = 2ReZLkl zm)[pl(zol le) (60)
1=0
where:
~ 12 pil 12 ~
Li(zp1) = Y Ty, (201 — 20) Ligr(21) (61)
k=0

Equation (61) is calletbcal-to-local translation For the other integral, we have:

2R€/th [9ia(pan1 — n2) Aj2G (21, 22)]dT = 2Re Y Ly, (215) Ly, (220 — 212) (62)
=0
! p_l !
Liy(215) = > Inyto (205 — 20) L (21,) (63)
k=0
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Figure5: Boundary subdivided by square - fonte: [Liu(2009)]

5 Treehierarchy strucure

To explain how the operations of the FMM are used, we willadtrce the tree hierarchy
strucure. First of all, we will circumscribe the boundaryabgquare. This step is known as level
zero. Then, divide this square into four equal pieces. Weonelate four new squares from the
square which circumscribes our boundary. Each squaresci@all be known as cell. This step
is known as level 1. Therefore, when we create these twodeaalinter-dependency between
the zero level and level 1 is built. The square of the levebzerconsidered the father of the
four square cells of the level 1. We will continue the subslmh of each squares in four new
squares, until reach a certain level. The above procesbwviliterrupted when the number of
nodes in each cell does not exceed a predetermined numbatlyFwe will call leaf cell the
cells that are no longer divided.

Now, we will show the operations presented in the previous@as. For the squares known
as leaf cells, we will create a center. We will use thaltipole expansioto transfer the position
of the node to the centroid of the leaf cell. Then, we will sfan the position of the centroid in
the leaf cell to the centroid of the father cell. After, thentroid will be transfered to his father
cell centroid. For this step, we will use the translatigi?)/. We will continue this process
until we reach the level 2, carrying the position of thesetrmedes with operation/2M . The
described process is known@sward The Figure 6 represents tbpwardstep.

After the level 2 is reached, we will use the translatiéngl, L2L and thdocal expansion
This step is known adownward First of all, before use the tranlastioh&L, L2L and thdocal
expansionwe must use the subdivison created by tree hierarchy tofgeddments that are
near, well separated and distant far from the leaf cell tbhatains the source point. According
to [Liu(2009)], near cellsare those that have, at least, one vertex in common with tife le
cell. For a cell to be considerauell separatedwe should look at the relationship between the
father cell of the leaf cell and the father cell of the othdiscelf the father cells are adjacent
cells, the cell will be consideredell separatedrom the leaf cell. Finally, a cell is considered
far from of the cellthat has the leaf cell if they do not have adjacent fathens.cétigure 7
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—— Multipole expansion

=== M2M translation

m  Center of parent cells

s Center of leaves

Figure 6: Upward process
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Figure7: Relation between the cells

illustrates what was described above.

So, after this classification, we will start tliwnwardprocess. The beginning of it is
the level 2. We will use thé/2L translation on all cells to change the centroid position of
well separate@nd cells that aréar from the cell The L2L will be used to transfer the position
of the centroid of the parent cell to the centroid of the ledf. cFinally, we will use thdocal
expansiorio transfer the position of the centroid of cell to the pomtise.
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Figure9: Downward processwith M2L trandation

6 Numerical Results

This section aims to demonstrate operations of the FMMBEM @so the efficiency of
the number of terms in the Taylor series expansion for mesfi¥| and[G]. We will do this
using elements 15 and 16 presented in the Figure 10. Sounads pre nodes 2 and 3. Figure
11 shows the numbering of cells. This problem was assumeadaxenum number of elements
per cell equal to 1. Figure 12 shows the numbering of the nattesy with the cells. First
of all, matrixes|H] and[G] are calculated by using the FMMBEM in the following sequence
calculate thanomentsf the elements 15 and 16 in relation to the center of the &dland
55, respectively (see Fig 11). Then, usiM@M operation, we will make the translation to
the center of cell 37, which is the parent of cells 54 and 5%enTisum up the two moments,
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since both are calculated from the same point (center of3@@Il Then, usingM2L, compute
the local expansioi, from the center point of the cell 37 to the center of the ce|l\&Bich is
the parent cell of cells 38 and 39. Cells 38 and 39, in turnfaiarthe sourcers points, which
are nodes 2 and 3 (see Figure 12). The translation of expansiine cell location 20 to the
centers of the cells 38 and 39 is next. Thereafter, ukiogl translation calculate integrals of
matrixes[G| and[H|. Finally, to compare the results, we compute matric8sand|H| using
the standard boundary element method. Table 2 shows a cizmpaf the FMMBEM with
different number of terms in the series expansion with stech@EM.
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Figure 10: Element mesh with constant number of nodes.
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Figure 12: Cellsand number of nodes.
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Table 2: Comparison between FMM and BEM

Number of terms| [G] node 2| [H] node 2|| [G] node 3|| [H] node 3
1 —0.38176 || 0.029265 | —0.37402 0.03004
2 —0.38036 || 0.033828 || —0.37136 || 0.035655
4 —0.3804 0.034124 || —0.37128 || 0.036273
6 —0.3804 0.034112 || —0.37128 || 0.036256
8 —0.3804 0.034112 || —0.37128 || 0.036256
BEM —0.3804:¢ 0.034112 || —0.37128 || 0.036256

As it can be seen, the agreement between FMMBEM and BEM isg@oy even with few
terms in the series expansion. The agreement improve watintimease of terms on the Taylor
series. Furthermore, for the same accuracy, matrix H desnamigher number of terms in the
Taylor series that matrix G. This can be explained by therasfisingularity of matrix H that is
higher than the order of matrix G.

6.1 Conclusion

This paper showed the influence of number of terms of the Tagioes in the operations of
the FMMBEM. We change the number of terms from 1 to 8. As exgmbavith more numbers
of terms in the series, more accurate the results are. The santlusion can be founded in
[Reis(2013)], where it was studied the influence of numbeeohs of the Taylor series in the
expansion of fundamental solution for anisotropic proldevith the increasing of number of
terms, more accurate the results were found. Another feasuthe number of terms used to
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obtain the same accuray on matrices H and G. Méfrixconverges more quickly than matrix
[H]. One reason for this features is the presence of stronglaniigun the fundamental solution
[T:;(z,2,)]. By the end, these results show that the operations of the FdtMnisotropic
materials have been completely obtained, being this foltoneone option to solve problems
that BEM is inefficient due to large number of unknowns. Ferdamental solutions with the
presence of singularity, it is necessary to use more nundfeleyms on th Taylor series, to
preserve the accuracy of the problem.
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