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Abstract. This paper is concerned with the numerical comparison of the weak-form collocation,
a new local meshless method, and other meshless methods, for the solution of two-dimensional
problems in linear elasticity. Four methods are compared, namely, the Generalized-Strain
Mesh-free (GSMF) formulation, the Rigid-body Displacement Mesh-free (RBDMF) formula-
tion, the Element-free Galerkin (EFG) and the Meshless Local Petrov-Galerkin Finite Volume
Method (MLPG FVM). While the RBDMF, EFG and MLPG FVM rely on integration and
quadrature process to obtain the stiffness matrix, the GSMF is completely integration free,
working as a weighted-residual weak-form collocation. This weak-form collocation readily
overcomes the well-known difficulties of the strong-form collocation, such as low accuracy and
instability of the solution. A numerical example was analyzed with these methods, in order to
assess the accuracy and the computational effort. The results obtained are in agreement with
those of the available analytical solution. The numerical results show that the GSMF, when
compared to the other methods, is superior not only regarding the computational efficiency, but
also regarding the accuracy.

Keywords: Local Meshless, Generalized-strain, Weak-form collocation, Local work theorem,
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1 INTRODUCTION
Computer modeling is used to support a broad variety of science and technology areas,

simulating the behavior of a real system. Numerical models after successful validation permit
advanced design, optimization and control of new components and processes. There are several
numerical modeling techniques available nowadays, among which the Finite Element Method
(FEM) is the most popular and widely used, mainly for engineers and scientists. Although the
method is well established and have a massive influence over the past decades, it still suffers
from several downsides. FEM requires the creation of a geometric mesh made of finite elements
discretizing the solution domain. It is known that distorted geometry may have a negative
impact on the solution accuracy, which means that the mesh becomes a major aspect of FEM.
Thus a human-labor intensive process of constructing high quality meshes is required. Other
problems of finite element mesh may also appear, for example element locking in modeling
slender structures, costly remeshing or element distortion during large deformation analyses.

In order to reduce the labor of creating the finite element mesh and reduce the computa-
tional effort, various mesh reduction techniques were researched and developed. Among them,
the Meshless methods received the attention of many researchers in a recent past.

Meshfree, or meshless, have some advantages when compared to mesh-based methods.
The essential feature of these methods is that they perform the discretization of the problem
domain and boundaries with a set of scattered field nodes that do not require any mesh for the
approximation of the field variables. In general, their formulation is based in the weighted-
residual method, see Finalyson (1972).

Some meshless methods are based on a weighted-residual weak-form formulation. After
discretization, the weak form is used to derive a system of algebraic equations through a pro-
cess of numerical integration using sets of background cells, globally or locally constructed
in the domain of the problem. Research on meshfree methods, based on a weighted-residual
weak-form formulation, significantly increased after the publication of the Diffuse Element
Method (DEM), introduced by Nayroles et al. (1992). The Reproducing Kernel Particle Method
(RKPM), presented by Liu et al. (1995), and the Element-free Galerkin (EFG) method, pre-
sented by Belytschko et al. (1994), were the first weak-form meshless methods applied in solid
mechanics.

All these weak-form meshless methods rely on background cells for the integration of the
weighted-residual weak form over the global domain, in the process of the generation of the
system of algebraic equations and therefore, they are not truly meshless methods.

In order to overcome the use of a global integration background mesh, a class of mesh-
free methods based on local weighted-residual weak forms, such as the Meshless Local Petrov–
Galerkin (MLPG) method presented by Atluri and Zhu (1998), and also Atluri and Shen (2002),
the Meshless Local Boundary Integral Equation (MLBIE) method presented by Zhu et al.
(1998), the Local Point Interpolation Method (LPIM) presented by Liu and Gu (2001) and
the Local Radial Point Interpolation Method (LRPIM) presented by Liu et al. (2002), have been
developed. Among them, the most popular of these methods is the MLPG, based on a moving
least-squares (MLS) approximation. The main difference of the MLPG method to other global
meshless methods, such as EFG or RKPM, is that local weak forms are used, for integration on
overlapping regular-shaped local subdomains, instead of global weak forms and consequently
the method does not require the use of a background global mesh, but only a background local

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
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grid which usually has a simple shape.

Atluri et al. (2004) presented an implementation of the meshless Finite Volume Method
(FVM), through the MLPG mixed approach, for solving elasto-static problems. In this ap-
proach, both the strains and displacements are independently interpolated, at randomly dis-
tributed points in the domain, through a local meshless interpolation schemes such as MLS.
Then, the nodal values of strains are expressed in terms of the interpolated nodal values of dis-
placements, by simply enforcing the strain-displacement relationships directly by collocation at
the nodal points. This formulation eliminates the expensive process of directly differentiating
the MLS interpolations for displacements in the entire domain, to compute the strains, leading
to a high computational efficiency.

In order to further improve the computational efficiency, two formulations were presented
by Oliveira and Portela (2016), the Rigid-body Displacement Mesh-free (RBDMF) formulation
and the Generalized-Strain Mesh-free (GSMF) formulation. In the first formulation, the local
work theorem leads to a weak form that is a regular local boundary integral equation. In the
second formulation, the local work theorem generates a weak form that is completely integration
free, working as a weighted-residual weak-form collocation.

This paper is concerned with the numerical comparison of the weak-form collocation and
other meshless methods, such as the RBDMF, the EFG and the MLPG FVM, for the solution of
two-dimensional problems in linear elasticity. The GSMF performs better than the other mesh-
less methods regarding both computational efficiency and accuracy, as shown in the numerical
examples.

2 MLS APPROXIMATION

Let Ω be the domain of a body with boundary Γ and let N = {x1,x2, ...,xN} ∈ Ω be a
set of scattered nodal points that represents a meshless discretization, in which some of them
are located on the boundary Γ, as represented in Fig. 1. Circular or rectangular local supports,
centered at each nodal point, can be used. In a neighborhood of a sampling point x, the domain
of definition of MLS approximation is the subdomain Ωx, where the approximation is defined.

2.1 Shape Functions

Let Ωx be the domain of definition of the MLS approximation, in a neighbourhood of a
sampling point x. To approximate the displacement u(x) ∈ Ωx, over a number of scattered
nodes xi ∈ Ω, i = 1, 2, . . . , n, where the nodal parameters ûi are defined, the MLS approxima-
tion is given by

uh(x) = pT (x)a(x), (1)

for x ∈ Ωx, in which

pT (x) = [p1(x), p2(x), . . . , pm(x)] , (2)

is a vector of the complete monomial basis of order m and a(x) is the vector of unknown
coefficients aj(x), j = 1, 2, . . . ,m that are functions of the space coordinates x = [x1, x2]T , for
2-D problems.
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Figure 1: Representation of a global domain Ω and boundary Γ in a meshless discretization, with xi nodes
distributed within the body; Ωs, represented as ΩP , ΩQ and ΩR, is the local compact support of a node
xi, represented as xP , xQ and xR; Ωx is the domain of definition of a sampling point x and Ωq is the local
weak-form domain or quadrature domain of a node xi.

The coefficient vector a(x) is determined by minimizing the weighted discrete L2 norm

J(x) =
1

2

n∑
i=1

wi(x)
[
uh(xi)− ûi

]2
=

1

2

n∑
i=1

wi(x)
[
pT (xi)a(x)− ûi

]2
, (3)

with respect to each term of a(x), in which wi(x) is the weight function associated with the
node xi, with compact support that is wi(x) > 0, for all x in the support of wi(x). Figure 1
represents schematically the compact support of the MLS weight functions associated with a
few nodes. Finding the extremum of J(x) with respect to each term of a(x), leads to

A(x)a(x) = B(x)û, (4)

in which

A(x) =
n∑

i=1

wi(x)p(xi)p
T (xi), (5)

B(x) = [w1(x)p(x1), w2(x)p(x2), . . . , wn(x)p(xn)] (6)

and

û = [û1, û2, . . . , ûn] . (7)

Solving Eq. (4) for a(x) yields

a(x) = A−1(x)B(x)û, (8)

provided n ≥ m, for each sampling point x, as a necessary condition for a well-defined MLS
approximation. In the end, substituting for a(x) into Eq. (1) results in the MLS approximation

uh(x) =
n∑

i=1

φi(x)ûi, (9)
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in which

φi(x) =
m∑
j=1

pj(x)
[
A−1(x)B(x)

]
ji

(10)

is the shape function of the MLS approximation corresponding to the node xi, schematically
represented in Fig. 2. The MLS shape functions are not nodal interpolants that is φi(xj) 6= δij .
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Figure 2: Typical weight function and shape function of the MLS approximation

The local character of the MLS approximation is preserved, since φi(x) vanishes for x not in
the local domain of the node xi. The nodal shape function is complete up to the order of the
basis. Also, the smoothness of the nodal shape function is determined by the smoothness of the
basis and of the weight function. The spatial derivatives of the shape function φi(x) are given
by

φi,k =
m∑
j=1

[
pj,k(A−1B)ji + pj(A

−1B,k −A−1A,k A−1B)ji
]
, (11)

in which (),k = ∂()/∂xk.

2.2 Weight Functions

Weight functions wi(x), schematically represented in Fig. 2, firstly introduced in Eq. (3)
for each node xi, have a compact support which defines the subdomain where wi(x) > 0, for all
sampling point x. For the sake of simplicity, this paper considers rectangular compact supports
with weight functions defined as

wi(x) = wix(x)wiy(x) (12)

with the weight function given by the quartic spline function

wix(x) =

1− 6

(
dix
rix

)2

+ 8

(
dix
rix

)3

− 3

(
dix
rix

)4

for 0 ≤ dix ≤ rix

0 for dix > rix

(13)
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and

wiy(x) =

1− 6

(
diy
riy

)2

+ 8

(
diy
riy

)3

− 3

(
diy
riy

)4

for 0 ≤ diy ≤ riy

0 for diy > riy ,

(14)

in which dix = ‖x − xi‖ and diy = ‖y − yi‖. The parameters rix and riy represent the size of
the support for the node i, respectively in the x and y directions.

2.3 Elastic Field

The elastic field is now approximated at a sampling point x. Considering Eq. (9), displace-
ment and strain components are respectively approximated as

u =

uh(x)

vh(x)

 =

φ1(x) 0 . . . φn(x) 0

0 φ1(x) . . . 0 φn(x)




û1

v̂1

...

ûn

v̂n


= Φ û (15)

and

ε = L u = L Φ û = B û, (16)

in which geometrical linearity is assumed in the differential operator L and thus,

B =


φ1,1 0 . . . φn,1 0

0 φ1,2 . . . 0 φn,2

φ1,2 φ1,1 . . . φn,2 φn,1

 . (17)

Stress and traction components are respectively approximated as

σ = D ε = D B û (18)

and

t = nσ = n D B û, (19)

in which D is the matrix of the elastic constants and n is the matrix of the components of the
unit outward normal, defined as

n =

n1 0 n2

0 n2 n1

 . (20)

Equations (15) to (19) show that, at a sampling point x ∈ Ωx, the variables of the elastic field
are defined in terms of the nodal unknowns û.
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3 LOCAL FORM OF THE WORK THEOREM

This section present the development of the local form of the work theorem, first introduced
by Oliveira and Portela (2016).

Let Ω be the domain of a body and Γ its boundary subdivided in Γu and Γt that is Γ =
Γu ∪ Γt, as represented in Fig. 3. The mixed fundamental boundary value problem of linear

Figure 3: Meshless discretization of the global domain Ω, with boundary Γ = Γu∪Γt; nodal points P , Q and
R have corresponding local domains ΩP , ΩQ and ΩR; the node Q has a local domain ΩQ, where is defined
the weighted residual associated with the node Q, with boundary ΓQ = ΓQi ∪ ΓQt ∪ ΓQu, in which ΓQi is
the interior local boundary.

elastostatics aims to determine the distribution of stresses σ, strains ε and displacements u
throughout the body, when it has constrained displacements u defined on Γu and is loaded by
an external system of distributed surface and body forces with densities denoted by t on Γt and
b in Ω, respectively.

A totally admissible elastic field is the solution of the posed problem that simultaneously
satisfies the kinematic admissibility and the static admissibility. If this solution exists, see
Fredholm (1906) and Fichera (2006), it can be shown that it is unique, provided linearity and
stability of the material are admitted.

The general work theorem establishes an energy relationship between any statically-admissible
stress field and any kinematically-admissible strain field that can be defined in the body. De-
rived as a weighted residual statement, the work theorem serves as a unifying basis for the
formulation of numerical models in Continuum Mechanics (Brebbia, 1985).

In the domain of the body, consider a statically-admissible stress field that is

LTσ + b = 0, (21)

in the domain Ω, with boundary conditions

t = nσ = t, (22)
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on the static boundary Γt, in which the vector σ represents the stress components; L is a matrix
differential operator; the vector t represent the traction components; t represent prescribed
values of tractions and n represents the outward unit normal components to the boundary.

In the global domain Ω, consider an arbitrary local subdomain ΩQ, centered at the point Q,
with boundary ΓQ = ΓQi ∪ ΓQt ∪ ΓQu, in which ΓQi is the interior local boundary, while ΓQt

and ΓQu are local boundaries that respectively share a global boundary, as represented in Fig. 3.
Due to its arbitrariness, this local domain can be overlapping with other similar subdomains.
For the local domain ΩQ, the strong form of the weighted-residual equation is written as∫

ΩQ

(
LTσ + b

)T
WΩ dΩ +

∫
ΓQt

(
t− t

)T
WΓ dΓ = 0, (23)

in which WΩ and WΓ are arbitrary weighting functions defined, respectively in Ω and on Γ.
When the domain term of Eq. (23) is integrated by parts, the following local weak form of the
weighted residual equation is obtained∫

ΓQ

(nσ)T WΩ dΓ−
∫

ΩQ

(
σT LWΩ − bTWΩ

)
dΩ +

∫
ΓQt

(
t− t

)T
WΓ dΓ = 0 (24)

which now requires continuity of WΩ, as an admissibility condition for integrability. For the
sake of convenience, the arbitrary weighting function WΓ is chosen as

WΓ = −WΩ, (25)

on the boundary ΓQt. Thus, Eq. (24) leads to∫
ΓQ−ΓQt

tTWΩ dΓ +

∫
ΓQt

t
T
WΩ dΓ−

∫
ΩQ

(
σT LWΩ − bTWΩ

)
dΩ = 0. (26)

Consider further an arbitrary kinematically-admissible strain field ε∗, with continuous dis-
placements u∗ and small derivatives, in order to assume geometrical linearity, defined in the
global domain that is

ε∗ = L u∗, (27)

in the domain Ω, with boundary conditions

u∗ = u, (28)

on the kinematic boundary Γu.

When the continuous arbitrary weighting function WΩ, is defined as

WΩ = u∗, (29)

the weak form (26), of the weighted residual equation, becomes∫
ΓQ−ΓQt−ΓQu

tTu∗ dΓ +

∫
ΓQu

tTu∗ dΓ +

∫
ΓQt

t
T
u∗ dΓ−

∫
ΩQ

(
σT Lu∗ − bTu∗

)
dΩ = 0 (30)
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which can be written in a compact form as∫
ΓQ

tTu∗ dΓ +

∫
ΩQ

bTu∗ dΩ =

∫
ΩQ

σTε∗ dΩ. (31)

This equation which expresses the static-kinematic duality, is the local form of the well-
known work theorem, the fundamental identity of solid mechanics, see Sokolnikoff (1956).
Equation (31) is the starting point of the kinematically admissible formulations of the local
meshfree methods presented in this paper.

It can be notice that the stress field σ, is any one that satisfies equilibrium with the applied
external forces b and t, which is not necessarily the stress field that actually settles in the body.
Also, the strain field ε∗, is any one that is compatible with the constraints u∗ = u, which is
not necessarily the strain field that actually settles in the body. This two fields are not linked by
any constitutive relationship; indeed, they are completely independent as a consequence of the
arbitrariness of the weighting function WΩ. For that reason Eq. (31) can be used under the only
assumption of geometrical linearity.

It is the independence of the two admissible fields of the Eq. (31) that allows the generation
of different meshfree methods, when the strain field is locally defined through different options,
as carried out in this paper.

A final important remark, worth of mentioning, is that the local domain ΩQ, is any arbitrary
subdomain of the global domain Ω, of the body.

4 MODELING STRATEGY

Different formulations of local meshfree methods can be derived when the arbitrary kinematically-
admissible field ε∗, is locally defined in the work theorem, Eq. (31). In the following sections,
simple kinematically-admissible local fields will be used to derive the meshless formulation
presented in this paper.

On the other hand, the statically-admissible local field σ, will be always assumed as the
elastic field that actually settles in the body. Besides satisfying static admissibility, through
Eq. (21) and (22), this elastic field also satisfies kinematic admissibility defined as

ε = L u, (32)

in the domain Ω, with boundary conditions

u = u, (33)

on the kinematic boundary Γu, in which the displacements u, are assumed continuous with
small derivatives, in order to allow for geometrical linearity of the strain field ε. Therefore,
Eq. (33) must be enforced in the numerical model, in order to provide a unique solution of the
posed problem.

For a meshless discretization of the body, the local weak-form domain or quadrature do-
main ΩQ, centered at a node Q, can be defined in this paper as a rectangular or circular subdo-
main, as represented in Fig. 3.
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5 GENERALIZED-STRAIN FORMULATION

This section briefly discuss the development of the Generalized-Strain Mesh-free (GSMF)
formulation. For the complete and detailed development see Oliveira and Portela (2016).

In the local form of the work theorem, Eq. (31), the kinematically-admissible displace-
ment field u∗, was assumed as a continuous function leading to a regular integrable function
that is the kinematically-admissible strain field ε∗. However, this continuity assumption on
u∗, enforced in the local form of the work theorem, is not absolutely required but can be re-
laxed by convenience, provided ε∗ can be useful as a generalized function, in the sense of
the theory of distributions (Gelfand and Shilov, 1964). Hence, this formulation considers that
the kinematically-admissible displacement field is a piecewise continuous function, defined in
terms of the Heaviside step function and therefore the corresponding kinematically-admissible
strain field is a generalized function, defined in terms of the Dirac delta function.

For the sake of the simplicity, in dealing with Heaviside and Dirac delta functions in a
two-dimensional coordinate space, consider a scalar function d, defined as

d = ‖ x− xQ‖ that is

{
d = 0 if x ≡ xQ

d > 0 if x 6= xQ,
(34)

which represents the absolute-value function of the distance between a field point x and a par-
ticular reference point xQ, in the local domain ΩQ∪ΓQ assigned to the field node Q. Therefore,
this definition always assumes d = d(x,xQ) ≥ 0, as a positive or null value, in this case when-
ever x and xQ are coincident points. It is important to remark that, in Eq. (34), neither the field
point x nor the reference point xQ is necessarily a nodal point of the local domain.

For a scalar coordinate d ⊃ d(x,xQ), the Heaviside step function can be defined as

H(d) =

{
1 if d ≤ 0 (d = 0 for x ≡ xQ),

0 if d > 0 that is x 6= xQ,
(35)

in which the discontinuity is assumed at xQ and consequently, the Dirac delta function is defined
with the following properties

δ(d) = H ′(d) =

{
∞ if d = 0 that is x ≡ xQ,

0 if d 6= 0 (d > 0 for x 6= xQ)
and

+∞∫
−∞

δ(d) dd = 1, (36)

in which H ′(d) represents the distributional derivative of H(d). Note that the derivative of
H(d), with respect to the coordinate xi, can be defined as

H(d),i = H ′(d) d,i = δ(d) d,i = δ(d) ni. (37)

Since the result of this equation is not affected by any particular value of the constant ni, this
constant will be conveniently redefined later on.

Kronecker delta function can be defined through Heaviside step function as

∆(d) = H(d)−H(−d) + 1 =

{
1 if d = 0 that is x ≡ xQ,

0 if d > 0 that is x 6= xQ,
(38)
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which has the distributional derivative always null that is

∆′(d) = δ(d)− δ(−d) = δ(d)− δ(d) = 0, (39)

as a consequence of the symmetry of Dirac delta function.

Now consider that dl, dj and dk represent the distance function d, defined in Eq. (34), for
corresponding field points xl, xj and xk. Then, the kinematically-admissible displacement field
can be defined as a linear combination of Kronecker delta function evaluations at an arbitrary
number of collocation points, conveniently arranged in the local domain ΩQ ∪ ΓQ of the field
node Q, that is

u∗(x) =

[
Li

ni

ni∑
l=1

∆(dl) +
Lt

nt

nt∑
j=1

∆(dj) +
S

nΩ

nΩ∑
k=1

∆(dk)

]
e, (40)

in which e = [1 1]T represents the metric of the orthogonal directions; ni, nt and nΩ represent
the number of collocation points, respectively on the local interior boundary ΓQi = ΓQ−ΓQt−
ΓQu with length Li, on the local static boundary ΓQt with length Lt and in the local domain ΩQ

with area S. This assumed displacement field u∗(x), a discrete rigid-body unit displacement
defined at collocation points, schematically represented in Fig. 4, conveniently leads to a null

Boudary Collocation
Interior Collocation

Figure 4: Schematic representation of the displacement u∗(x) of Eq. (40), a discrete rigid-body unit dis-
placement defined at collocation points, of the Generalized-Strain Mesh-free formulation, for a local domain
associated with a field node Q.

generalized strain field that is

ε∗(x) = 0, (41)

as a consequence of Eq. (39). The local work theorem, Eq. (31), can be written as∫
ΓQ−ΓQt

tTu∗ dΓ +

∫
ΓQt

t
T
u∗ dΓ +

∫
ΩQ

bTu∗ dΩ =

∫
ΩQ

σTε∗ dΩ (42)

which, after considering the assumed displacement and the strain components of the kinematically-
admissible field, respectively Eq. (40) and (41), leads to

Li

ni

ni∑
l=1

∫
ΓQ−ΓQt

tT∆(dl) e dΓ+
Lt

nt

nt∑
j=1

∫
ΓQt

t
T

∆(dj) e dΓ+
S

nΩ

nΩ∑
k=1

∫
ΩQ

bT∆(dk) dΩ = 0. (43)
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Now considering the properties of Kronecker delta function, defined in Eq. (38), the Eq. (43)
simply leads to

eT

[
Li

ni

ni∑
l=1

txl
+
Lt

nt

nt∑
j=1

txj
+

S

nΩ

nΩ∑
k=1

bxk

]
= 0 (44)

and finally to

Li

ni

ni∑
l=1

txl
= −Lt

nt

nt∑
j=1

txj
− S

nΩ

nΩ∑
k=1

bxk
. (45)

Equation (45) states the equilibrium of tractions and body forces, pointwisely defined at col-
location points, as schematically represented in Fig. 5; obviously, the pointwise version of the

Figure 5: Schematic representation of the equilibrium of tractions and body forces, of Eq. (45), pointwisely
defined at collocation points of a local domain associated with a field node Q, of the Generalized-Strain
Mesh-free formulation.

Euler - Cauchy stress principle. This is the equation used in the Generalized-Strain Mesh-
free (GSMF) formulation which, therefore, is free of integration. Since the work theorem is
a weighted-residual weak form, it can be easily seen that this integration-free formulation is
nothing else other than a weighted-residual weak-form collocation.

Equations (45), of the Generalized-Strain Mesh-free formulation, can be derived from an-
other kinematically-admissible displacement field, directly defined in terms of Heaviside step
function, see Oliveira and Portela (2016).

Discretization of Eq. (45) is carried out with the MLS approximation, Eq. (15) to (19), for
the local domain ΩQ, in terms of the nodal unknowns û, thus leading to the system of two linear
algebraic equations

Li

ni

ni∑
l=1

nxl
DBxl

û = − Lt

nt

nt∑
j=1

txj
− S

nΩ

nΩ∑
k=1

bxk
(46)

that can be written as

KQ û = FQ, (47)
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in which KQ, the nodal stiffness matrix associated with the local domain ΩQ, is a 2×2n matrix
given by

KQ =
Li

ni

ni∑
l=1

nxl
DBxl

(48)

and FQ is the respective force vector given by

FQ = − Lt

nt

nt∑
j=1

txj
− S

nΩ

nΩ∑
k=1

bxk
(49)

Consider that the problem has a total of N field nodes Q, each one associated with the
respective local region ΩQ. Assembling Eq. (47), for all M interior and static–boundary field
nodes leads to the global system of 2M × 2N equations

K û = F. (50)

Finally, the remaining equations are obtained from the N −M boundary field nodes on the
kinematic boundary. For a field node on the kinematic boundary, a direct interpolation method
is used to impose the kinematic boundary condition as

uhk(xj) =
n∑

i=1

φi(xj)ûik = uk, (51)

or, in matrix form as

uk = Φk û = uk, (52)

with k = 1, 2, where uk is the specified nodal displacement component. Equations (51) are
directly assembled into the global system of equations (50).

6 NUMERICAL RESULTS

This section presents some numerical results comparing the Generalized-Strain Mesh-free
(GSMF) formulation with the Rigid-Body Displacement Mesh-free (RBDMF) formulation, the
Element-free Galerkin (EFG) and the Meshless Local Petrov–Galerkin Finite Volume Method
(MLPG FVM).

For a generic node i, the size of the local support Ωs and the local domain of integration Ωq

are respectively given by

rΩs = αs ci, (53)

and

rΩq = αq ci, (54)

in which ci represents the distance of the node i, to the nearest neighboring node; for the ap-
plications presented in this paper, αs = 3.0 ∼ 4.5 and αq = 0.5 ∼ 0.6 were used. Only local
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meshless methods like the RBDMF, the GSMF and the MLPG FVM use local domains; the
EFG use background cells for integration purpose.

Displacement and energy norms can be used for error estimation. These norms can be
computed, respectively as

‖u‖ =

∫
Ω

uTu dΩ

1/2

(55)

and

‖ε‖ =

1

2

∫
Ω

εTD ε dΩ

1/2

. (56)

The relative error for ‖u‖ and ‖ε‖ is given, respectively by

ru =
‖unum − uexact‖
‖uexact‖

(57)

and

rε =
‖εnum − εexact‖
‖εexact‖

. (58)

6.1 Cantilever Beam

Consider a beam of dimensions L ×D and of unit depth, subjected to a parabolic traction
at the free end as shown in Fig. 6. The beam is assumed in a plane stress state and the parabolic

Figure 6: Timoshenko cantilever beam.

traction is given by

t2(x2) = − P
2I

(
D2

4
− x2

2

)
, (59)

where I = D3/12 is the moment of inertia. The exact displacement components for this prob-
lem are given by

u1(x1, x2) = −Px2

6EI

[
(6L− 3x1)x1 + (2 + ν)

(
x2

2 −
D2

4

)]
(60)
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and

u2(x1, x2) =
P

6EI

[
3νx2

2(L− x1) + (4 + 5ν)
D2x1

4
+ (3L− x1)x2

1

]
(61)

and the exact stress components are given by

σ11(x1, x2) = −P (L− x1)x2

I
, σ12(x1, x2) = − P

2I

(
D2

4
− x2

2

)
and σ22(x1, x2) = 0. (62)

Material properties are taken as Young′s modulus E = 3.0 × 107 and the Poisson′s ratio
ν = 0.3 and the beam dimensions are D = 12 and L = 48. The shear force is P = 1000. To
solve this problem, a regular nodal distribution, represented in Fig. 7, was considered with a

0 6 12 18 24 30 36 42 48

6

−6

3

0

−3

x1

x
2

Figure 7: The regular nodal distribution of the cantilever-beam discretization.

discretization of 33× 5 = 165 nodes.

For the local kinematic formulations rectangular local domains were considered, with 1
collocation point to compute the weak form of GSMF and 10 Gauss-quadrature points to in-
tegrate the weak-form of RBDMF, placed on each boundary of the local domain. The EFG
considered 10 Gauss-quadrature points on each background cell and the MLPG FVM consid-
ered 10 Gauss-quadrature points distributed on the local domain. A first-order polynomial basis
was considered in MLS approximation.

The weak-form collocation of GSMF represents a clear reduction of the computational
effort when compared to other meshless methods. The GSMF require only 1 collocation point,
placed on each boundary of the local domain, to obtain the most accurate results, see Oliveira
and Portela (2016), while the other methods require at least 10 Gauss-quadrature points in order
to obtain a good accuracy. This important feature is measure through CPU time consumption
and convergence rates.

The displacements obtained with the four methods, represented in Fig. 8, show very good
agreement with the results of the exact solution, although the MLPG FVM is slightly less accu-
rate than the others. In this initial analysis, the fastest computation is obtained with the GSMF,
which is 21% faster than the MLPG FVM, the second best result.

In order to further the study of the computational efficiency of the presented method, three
regular discretizations of the cantilever-beam, with 65×9 = 585, 97×13 = 1261 and 129×17 =
2193 nodes were considered. Only the major computational cost that is the cost of generating
the global stiffness matrix and solving the system of algebraic equations, was measured. All the
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Figure 8: Normalized displacements of the cantilever-beam discretization with 165 nodes.

routines were compared when using MATLAB 2015a on an Intel Core I7-4700MQ computer
with CPU of 2.4GHz and 16 GB of RAM.

The results obtained are presented in Fig. 9, where it can be seen that CPU time of GSMF
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Figure 9: CPU time consumption of a cantilever-beam with 585, 1261 and 2193.

is always much lower than CPU time of the other methods, using the same parameters. The
CPU time consumption of the GSMF is 28% faster than the second best value that is the one
obtained with the MLPG FVM. This important result clearly evidences the high computational
efficiency of GSMF.

Another test was performed to assess the accuracy and convergence of the analyzed meth-
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ods, using the relative energy norm. Since the MLPG FVM obtained the least accurate re-
sult among all methods, it was not compared in this test. Three regular discretizations with
65×9 = 585, 97×13 = 1261 and 129×17 = 2193 nodes were considered. Figure 10 presents
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(a) Accuracy.
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Figure 10: Accuracy and convergence rates for the cantilever-beam discretization with 585, 1261 and 2193
nodes; ci is the distance of a generic node i, to the nearest neighboring node, as defined in Eq. (53) and (54).

the results obtained for the accuracy and convergence rates. The results show that the GSMF is
more accurate than the RBDMF and the EFG, with better convergence rates when compared to
both of them.

CONCLUSIONS

A numerical comparison of the weak-form collocation and three meshless methods is per-
formed, for the solution of two-dimensional problems in linear elasticity.

The Rigid-body Displacement Mesh-free (RBDMF) formulation, the Element-free Galerkin
(EFG) and the Meshless Local Petrov-Galerkin Finite Volume Method (MLPG FVM) rely on
integration and quadrature process to obtain the stiffness matrix; while the Generalized-Strain
Mesh-free (GSMF) formulation is completely integration free, working as a weighted-residual
weak-form collocation.

A numerical example was analyzed with these methods, in order to compare the accuracy
and the computational effort, using the same parameters. The results obtained with all methods
are in agreement with those of the available analytical solution. The MLPG FVM led to very fast
computations, although obtained the least accurate results among all methods. The EFG and the
RBDMF obtained very accurate results with a good convergence rate, but are computationally
more expensive than the other methods. Among all methods, the GSMF obtained the most
accurate results with the fastest computation.

All the numerical results obtained clearly demonstrate that this weighted-residual weak-
form collocation readily overcomes the well-known difficulties posed by the weighted-residual
strong-form collocation, regarding accuracy and stability of the solution. The results obtained
using only 1 collocation point led to accurate results with incredible fast computations, surpass-
ing all the other analyzed methods. This features make the GSMF superior when compared to
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the other meshless methods presented in this paper, making it a robust formulation for solving
two-dimensional problems in linear elasticity.
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