=

REVISTA
INTERDISCIPLINAR DE
PESQUISA EM
ENGENHARIA

CILAMCE
2016

XXXVII IBERIAN LATIN AMERICAN CONGRESS
ON COMPUTATIONAL METHODS IN ENGINEERING

BRASILIA - DF - BRAZIL

ADAPTIVE ITERATIVE BEM-FEM COUPLING PROCEDURESTO
ANALYZE INELASTIC MODELS

D. Soares Jr
delfim.soares@ufjf.edu.br

Structural Engineering Department, Federal Universi Juiz de Fora, CEP 36036-330iz
de Fora, MG, Brazil.

L. Godinho
lgodinho@dec.uc.pt

CICC, Department of Civil Engineering, Universityf €oimbra, 3030-788 Coimbra,
Portugal.

Abstract. The analysis of complex systems may be moreiedlgchandled considering the
combination of different numerical methods, in aywlat each numerical technique can be
applied to deal with the particularities of the nebdhat better fit its positive features. In this
sense, the adaptive iterative coupling of the BampdElement Method (BEM) and of the
Finite Element Method (FEM) is discussed here,nghknto account static nonlinear models.
Optimal relaxation parameters are employed to spepdhe convergence of the iterative
coupling, and non-matching discretizations at commoterfaces, as well as adaptive
refinement within the FEM subdomains, are allowedkbling more versatile and accurate
approaches. A single unified iterative loop is adased in order to deal with all the focused
iterative solutions simultaneously (i.e., the noeér analysis, the adaptive analysis and the
coupling analysis), rendering a very efficient noetblogy. In this context, multiple sequential
iterative loops, which represent a rather computasilly demanding approach, can be
avoided without significantly increase the numbértlme iterative steps of the dominant
iterative process, considerably improving the perfance of the method. At the end of the
paper, numerical results are presented, illustrgtihe potentialities and the effectiveness of
the proposed techniques.
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1 INTRODUCTION

The analysis of complex systems may be more effgtihandled considering the
combination of different numerical methods. In tbastext, each numerical technique can be
applied dealing with the particularities of the rebthat better fit its positive features. Taking
into account combined formulations, a great amoaintesearch works focuses on the
coupling of the Boundary Element Method (BEM) ahé Finite Element Method (FEM),
which are very popular numerical techniques thaitrdoute with complementary beneficial
features. In fact, the BEM is quite suitable to diarninfinite or semi-infinite media and high
variations or discontinuous behaviour, while theMFEE very effectively applied to model
complex configurations, in which heterogeneity,satriopy, nonlinear behaviour etc. may
occur.

Researchers have tested combinations of the BEMttad-EM in order to profit from
their respective advantages, trying to evade tisadvantages, and nowadays several works
dealing with BEM-FEM coupling are available. Clas¢iBEM/FEM coupling procedures can
pose several problems regarding efficiency, acqueand/or flexibility. Indeed, the coupled
system of equations has a banded symmetric steuctilly in the FEM part, while in the
BEM part it is non-symmetric and fully populated, @ consequence, the optimized solvers
usually employed with the FEM can no longer be usew more expensive calculations
(namely in computer time) are required. Moreovarmany cases very different physical
properties exist in each part of the model, and tlan lead to badly conditioned matrices if
direct coupling procedures are used; consequentigyerically unstable systems may be
obtained and lead to inaccurate results. Additign@l should be mentioned that standard
coupling methods require matching discretizatioltm@ the common interfaces between
subdomains, which reduce the flexibility of and getity of the techniques. Finally, if
nonlinear models are considered, standard couphmies large and complex systems of
equations to be dealt with several times withinirgle analysis, leading to excessive
computational costs.

As an alternative, iterative coupling proceduresehbeen developed by several authors.
Initially, static problems were studied consideriteyative coupling approaches, and linear
and nonlinear behaviour have been simulated (Liasl.etLl996; Elleithy et al., 2001; Jahromi
et al., 2009). Later on, dynamic problems were $ed, and time (Soares et al., 2004; Soares,
2008; 2012) and frequency domain (Bendali et #1072 Soares and Godinho, 2012; Coulier
et al., 2014) iterative analyses have been impléadefin this case, an overview is presented
by Soares and Godinho (2014)). Nowadays, advaneeldnigues regarding the iterative
coupling of the BEM and the FEM to analyze statimlmear models can be encountered in
the work of Soares and Godinho (2015).

When iterative coupling approaches are used, eabkdemain of the global model is
analyzed independently, as an uncoupled model.gdesdial renewal of the variables at the
common interfaces is then performed, until convecges achieved. Several advantages can
be identified for these iterative methodologiesewltompared to standard coupling schemes:
() the sub-domains can be analysed separatelgjnigao smaller and better-conditioned
systems of equations (different solvers, suitabteeiich sub-domain, may be employed); (ii)
the coupling procedure only requires interfaceirag, allowing the simple reuse of existing
codes (thus, coupled systems may be solved by aeparogram modules, taking full
advantage of specialized features and disciplirexpertise); (iii) non-matching nodes at
common interfaces can be used, improving the fletyiband versatility of the coupled
analyses, especially when different discretizatiethods are considered; (iv) more efficient

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-Americann@eess on Computational Methods in Engineering
Suzana Moreira Avila (Editor), ABMEC, Brasilia, DBrazil, November 6-9, 2016



D.Soares Jr. and L. Godinho

analyses can be obtained, once the global modebearduced to several sub-domains with
reduced size matrices; etc..

Here, adaptive iterative BEM-FEM coupling proceduege discussed for the analysis of
nonlinear static models, with focus in elastoptagtioblems. An adaptive FEM approach is
applied to the regions where the inelastic behasdicexpected to occur, while the BEM is
applied to the regions with an elastic material dwsbr. In the past, BEM-FEM iterative
coupling has already been reported in the liteeafor elastoplasticity (as, for example, in
Elleithy et al. (2004), Boumaiza and Aour (2014y.)e It should be noted that, in most of
these references, two iterative loops are congigevéh the complete iterative loop of the
nonlinear FEM analysis occurring within an iteratistep of the BEM-FEM iterative
coupling. This approach becomes very demanding tlemcomputational point of view. As
an alternative, here the authors use a singletiiterbbop in which three iterative analyses are
carried out together, at a common iterative stgghé FEM nonlinear analysis; (ii) the FEM
adaptive discretization; (iii) the BEM-FEM couplings described later in this work, this
unified iterative approach does not lead to a §icamt increase in the number of iterations
required by the dominant iterative analysis of thedel (if considered separately). The
technique is thus quite efficient.

Differently from the model proposed by Elleithy at (2009; 2012), in which the FEM
subdomains are expanded (and BEM subdomains arekyhas the plastic zones evolve, here
the regions modelled by the BEM do not change atbeganalysis, allowing the matrices of
the BEM subdomains to be computed only once. A smaliscretization is also initially
adopted for the FEM subdomains, and then it is takp enriched using the information of
the solution at each step. At the end of the pmcagefined FEM discretization occurs at
regions where the plastic zones occur, providingaimal FEM simulation linked to a very
efficient BEM analysis. As can be easily undersiothis adaptive approach implies non-
matching nodes at BEM-FEM common interfaces to bHewad, otherwise the BEM
discretizations would also have to adapt, increptie computational cost of the analysis.

In the present work, the authors discuss two diffeiterative coupling approaches. For
each one, either displacements or tractions maycdresidered prescribed to the BEM
common interface (and, complementarily, eithertioas or displacements are prescribed to
the FEM common interface). The use of each teclenican be decided for each model to
analyse in accordance to the characteristics ofntbdel, avoiding, for instance, singular
systems of equations to be obtained due to the dhassential boundary conditions on a
subdomain. In both cases, an optimal relaxatioarpater is introduced to speed up and/or to
ensure the convergence of the iterative couplinglyars. As previously referred in the
literature, this is of great importance in ordegt@rantee the robustness and efficiency of the
technique.

In what follows, first, the governing equations tbe elastoplastic model are briefly
presented, and general aspects of the BEM and FEMescribed; then, the iterative BEM-
FEM coupling algorithm is discussed, and some nigakexamples are presented.

2 GOVERNING EQUATIONS

The basic governing equations related to elastoplamterials are given by:

i =V (1)
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dO'U = D”ekﬁ d£k| (2)

dgj =L(dy; +dy;) (3)

where equation (1) is the equilibrium equation egdations (2) and (3) stand for incremental
relations. The Cauchy stress, using the usual ialdicotation for Cartesian axes, is
represented byo;, and u; and ); stand for displacement and body force distribution
components, respectively (inferior commas indigetdial space derivatives). Equation (2) is
the constitutive law, written incrementally. Theciemental strain componentds; are
defined in the usual way from the displacementsjexcribed by equation (3). In equation
(2), Dy} is a tangential tensor defined by suitable stagables and the direction of the

increment. Within the context of associated isatropork hardening theory (Chen, 1988;
Khan and Huang, 1995), the tangent constitutiveders defined as:

Duek? =Dy — A/ ¢)Dynana.,D (4)

ijmn™~"mn™~‘op =" opkI

where
Diju =2uv IQL=2v)9;0, + (0,9, *+9,9;) (5a)
a, =001d0, (5b)
¢ =2;Djga +H (5¢)
H =dg,/0gP (5d)

In equations (5),0 and £P are the equivalent (or effective) stress and jolastrain,
respectively;o, is the uniaxial yield stress$i is the plastic-hardening modulus (for the case
of a perfectly plastic materigi =0); ¢ andv stand for the shear modulus and the Poisson
ratio, respectively; and, is the Kronecker delta. In case of elastic analysiee Cauchy
stresses can be defined ky =D, ¢&,, where D, (see equation (5a)) is the elastic
constitutive tensor (this linear relation is a martr case of equation (2)).

In addition to equations (1)-(5), boundary condiiare prescribed as follows, in order to
completely define the problem:

u =u atl, (62)
r,=o0,n =T atl, (6b)

where the prescribed values are indicated by overwad 7, stands for traction components
along the boundary whose unit outward normal vedorepresented by . Following
equations (6), the boundary of the model) (s divided into an essential () and a natural
(I,) boundary, wherd' O, =" andl',nl, = Q

In the next section, boundary and finite elemeahniques are briefly described. Here,

elastoplastic regions are treated by the FEM, vdseetastic subdomains may be analyzed by
the BEM or by the FEM.
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3 SUBDOMAINSDISCRETIZATION

Assuming a boundary element discretization, etaat@ models may be analyzed by the
following system of equations (Brebbia et al., 19Brebbia and Dominguez, 1998):

(CH+H)uG =G +dih (7)

whereu andt stand for displacement and traction vectors, respdy. The superscripi+1
stands for the current incremental step of theyaimaland the subscrip¢+l stands for its
iterative step (an iterative coupled nonlinear gsialis aimed in this work)C stands for the
location matrix andG and H are influence matrices. Vectar accounts for domain terms,
such as body force contributions. MatricBsand H can be computed taking into account
each boundary elemeset of the model, and vectod can be evaluated considering each
domain integration cett:

H={J[T'Ndr (8a)
er,
G={JJuNdr (8b)
er
dii = Juriido (8c)
c Q,

In equations (8),T" and U™ stand for traction and displacement fundamentaioes,
respectively, antll represents the adopted BEM interpolation matrix.

By re-arranging the system of equations (7), takmg account the boundary conditions of
the problem, just known and unknown variables cardisposed at the right and at the left
hand side of the system of equations, respectiadliywing its solution. Equations (7-8) only
intend to summarily describe the boundary elemennélation considered here; for further
details on the topic, the books of Brebbia etE84) and Brebbia and Dominguez (1998) are
suggested.

Considering a finite element discretization, tlhsib equation describing a nonlinear model
is given by:

f(upn) =fos ©)
where f(u) andf stand for internal and external forces, respelgtiveaking into account a

linearized incremental approach, equation (9) camewritten as (Simo and Hughes, 1998;
Belytschko et al., 2000):

K, &, =0 = f (10a)

ups =ult+di,, (10b)

n+l

where K, stands for the tangent nonlinear stiffness matff%: — f (uy™) represents the

nonlinear residual vector andu,,, is the variation of the incremental displacements,
calculated at each iterative step.

For elastoplastic models, the vectors and matniepsesented in equation (10a) may be
described as follows, considering each finite eleree
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i =(J(NTypdQ + [Nz dr) (11a)
e Q. Mre
fuy = j BT6!dQ (11b)
e Q
K, ={J [B"DFBdQ (11c)
e Q,

whereB stands for the strain matrix af’ is the nonlinear constitutive matrix (as described

by equation (4))N stands for the adopted FEM interpolation matrike Tstress state in
equation (11b) can be evaluated following equati¢®s and (3); i.e., by considering

o' =¢"+do]" =¢" +DPde]" = 6" +DPBdu]?, wheredu]™ =u" -u".

Equations (9-11) briefly describe the finite eleméarmulation considered here; for
further details on the topic, the books of Simo &haghes (1998) and Belytschko et al.
(2000) are suggested. Once equations (7-11) arsideyed, subdomains modelled by the
BEM or by the FEM can be analyzed. In the nextisactthe iterative coupling of these
subdomains is discussed.

4 COUPLED ANALYSIS

To perform the coupled BEM-FEM analysis, continugtyd equilibrium equations must
hold at the common interfaces between subdomaamselty:

Fu="u (12a)
Fr,+°r, =0 (12b)

where the superscrip® andF indicate if a variable is related to the BEM orthe FEM
subdomain, respectively.

Here, two different configurations can be consderegarding the BEM-FEM interface:
() in the first configuration (configuration 1)hé common interface is considered as an
essential boundary for the BEM, with prescribeglisements, and as a natural boundary for
the FEM, with prescribed tractions; (ii) in the sed configuration (configuration 2), the
common interface is considered as a natural boyrfdathe BEM, with prescribed tractions,
and as an essential boundary for the FEM, withopitesd displacements. For both cases, an
iterative renewal of the variables at the commdarface is carried out, taking into account
equations (12).

For the BEM-FEM iterative coupling algorithm comesred here, the analysis starts with
the FEM subdomain, and the FEM displacemehtg{) or tractions (t};;) at the common

interface are evaluated (in this case, tractioescamputed as projections of the stress state,
as indicated by equation (6b)). After this, theresponding values are applied to the BEM as
prescribed boundary conditions, following equati¢h®) and the configuration in focus (i.e.,
configuration 1 or 2) for the common interface.

In this process a relaxation parameter,is considered, which is introduced here in order
to ensure and/or to speed up convergence. Thufltbeing variables may be computed:

U = @)1 Cu) +-a) i (13a)
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TL =@ () - P (13b)

where| stands for spatial interpolation functions; equadi (13a) and (13b) are related to
configuration 1 and 2, respectively.

It is important to remark that non-matching BEMI&EM nodes can easily be considered
(which is particularly important if adaptive disteations are used). Thus, a routine to
spatially link the FEM and BEM computed values misttaken into account. In equations

(13), 127 and 1?" link the displacements and tractions computedatfinite element nodes

and faces, respectively, to their respective vahtethe boundary element functional nodes.
These interpolation routines can be carried ouédasther on the interpolation functions of
the elements, or considering enriched approaches.

Once the prescribed variables at the BEM commoerfate are computed, the BEM
n+l

subdomains can be analyzed, allowing to computalatiements {u}:, configuration 2) or

n+l

tractions (t}.;, configuration 1) at the common interface. Theakies are applied to the

FEM as prescribed boundary conditions, followingattpns (12). Thus, in order to obtain the
FEM prescribed values, the following variables rhaycomputed:

b Bt Gt A (14a)
RS P Gl THi (14b)

where, once again, stands for spatial interpolation functions andamguns (14a) and (14b)
are related to configuration 1 and 2, respectivilyequations (14)17® and I® link the

displacements and tractions computed at the bovredament functional nodes, respectively,
to their respective values at the finite elemerttaso

After computing the FEM prescribed boundary condis, the iterative cycle is reinitiated,
and all the above described procedures are repeatgd achieving convergence. It is
important to highlight that just one iterative logpconsidered here to deal with several types
of iterative approaches, namely: (i) FEM nonlinaaalysis; (i) FEM adaptive discretization;
(i) BEM-FEM coupling. As illustrated in the nesection, this approach seems to be very
appropriate, since the number of iterative stepgiired by the isolated dominant iterative
procedure is not significantly increased by considgall the iterating procedures together, in
the same iterative loop. The usual alternativeht® gingle iterative approach is a multiple
iterative algorithm. In this case, an entire ite@toop is carried out within each iterative step
of the “host” iterative loop. Thus, the multiplernative procedure may considerably increase
the computational effort of the analysis, once toany iterative steps occur and/or iterative
processes are considered.

It is important to observe that the effectivenekthe present iterative coupling algorithm
is intimately related to the relaxation parame&edion. An inappropriate selection for
can drastically increase the number of iteratiomsthe analysis or, even worse, make
convergence unfeasible. In this work, the followiegpression for an optimal relaxation
parameter is considered:

a=Cw,w-"w) /|| Pw-"w|f (15)
where
Fw = 15 (2F v - | BF (P y (16a)
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Bw=tv "t -Pv (16b)

and vectowv stands for the traction or displacement vectocpeting to the configuration in
focus.

5 NUMERICAL EXAMPLES

To exemplify the application of the described pohoe, two numerical examples are
presented, illustrating the performance and paétiéis of the discussed techniques. In the
first example, a half-space model is analysedhis ¢ase, the Drucker-Prager yield criterion
is considered and adaptive and fixed BEM-FEM diszations are carried out. In the second
example, a cantilever beam is studied, followingtbn Mises yield criterion. Here, adaptive
BEM-FEM coupled results are compared to those pexviby an adaptive and fixed FEM
approach.

In the first example, an infinite domain modelfecused. In this case, the so-called
configuration 2 is considered, and prescribed itvast are applied at the BEM common
interface, whereas prescribed displacements aleedmi the FEM common interface. In the
second application, a finite domain model is anedyand configuration 1 is followed,
considering prescribed displacement and tractig@iead to the BEM and FEM common
interfaces, respectively. For this second appbeatiinear boundary elements are considered,
whereas, for the first application, constant boupdalements are employed. For all the
analyses that follow, linear triangular finite ekembs are adopted, since discretizations
considering this type of finite element are eatieadaptively refine. The adaptive procedure
implemented here is based on the package provig€thbn and Zhang (2006) and the FEM
discretization is adapted just at the first itematstep of each incremental step. A Newton-
Raphson initial stress configuration is considefed the nonlinear analysis, and a tight
relative error tolerance (displacement and forceidtml) of 10° is adopted for the
convergence of the iterative process.

5.1 Examplel

In this first example, a half-space is analyzedhwhe region closer to the loaded area
being discretized by the FEM, and the remaining @onbeing discretized by the BEM. A
schematic representation of the model is depiateBig.1. The geometry of the problem is
defined byL = 64m andH =4.0m.

The physical properties of the model &el0°N/nf and v =03. A perfectly plastic
material obeying the Drucker-Prager vield criterisnassumed, where=1.7-16N/nf and
¢=10. Two different BEM-FEM discretizations are consi® here. In the first

discretization, a fixed FEM mesh is employed, whigltomposed of 5120 elements. In the
second discretization, an adaptive FEM mesh isidered, being its initial configuration
depicted in Fig.1 (64 elements). For the first BEEM discretization, 20 boundary elements
of length 0.20 m are employed to discretize eaattica common interface, whereas 16
boundary elements of length 0.25 m are considesedhie second discretization. For both
discretizations, boundary elements of length 0.2&8nma 0.20 m are applied to discretize the
half-space (which is sufficiently extended up to r@5at each side of the model) and the
horizontal common interface, respectively. In tbése, 12 incremental steps are considered.
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FEM

BEM

& »
< .|

Figure 1. Sketch of the half-space model and initial FEM discretization for the adaptive analysis.

In Fig.2, the vertical displacements computed @ltre symmetrical vertical axis of the
half-space model are depicted, considering thetoglsstic analyses. In this case, results
obtained from a multiple iterative analysis areoalepicted in the figure, for comparison. As
one can observe, good agreement is observed armmemgdults. In Fig.3, the evolution of the
equivalent plastic strains, at the last three imemetal steps, is described, considering the
fixed and the adaptive BEM-FEM discretizations. ®mgain, good agreement is observed
among the results. The evolution of the FEM diszagibn, taking into account the adaptive
analysis, is also illustrated in Fig.3, considerthg last three incremental steps. As one can
observe, refinement is properly introduced into #malysis, being the region under the
applied load progressively refined.

-1.75x10° — T T T T T T T T T T T

-2.00x10° —N"gu“ ,
-2.25x10° i 8“‘» —
-2.50x10° i e .
-2.75x10° i %, ]

-3.00x10° | . —

Vertical displacement
*

-3.25x10° - . .
F © Adaptive (single iterative) - :
-3.50x10° |- e Fixed (single iterative) o] .
3 + Fixed (multiple iterative) %¢
-3.75x10° - ]

400108 b——
0.0 05 1.0 15 2.0 2.5 3.0 35 40

Vertical coordinate

Figure 2. Vertical displacementsalong the symmetrical vertical axis of the half-space model considering
BEM-FEM elastoplastic analyses.

In Tab.1l, the number of iterations per incremersilp for the half-space model is
presented. As one can observe, the number ofidesatioes not significantly increase by
considering several iterative procedures at a unigerative loop, illustrating the good
performance of the adopted technique.
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Figure 3. Evolution of the equivalent plastic strains at the last threeincremental steps: (a) fixed FEM
discretization; (b) adaptive FEM discretization.
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Table 1. Number of iterations per incremental step for the half-space model

Incremental Step
1 2 3 4 5 6 7 8 9 10 11 12

Fixed 18 17 20 18 18 18 18 18 18 21 18 18
Elastic Adaptive 23 27 26 20 21 20 21 20 25 16 21 21
Fixed 18 17 20 18 18 18 18 18 18 23 40 65

Elastoplastic  adaptve 23 27 26 20 21 20 21 20 25 23 37 65

For the present nonlinear model, the CPU time abthifor the single iterative adaptive
BEM-FEM coupled analysis is approximately 19% aof tBPU time obtained for the single
iterative fixed BEM-FEM coupled analysis. In additj the CPU time obtained for the single
iterative fixed BEM-FEM coupled analysis is approgiely 14% of the CPU time obtained
for the multiple iterative fixed BEM-FEM coupled agsis. Thus, the proposed technique
exhibits a considerably superior performance.

5.2 Example2

In this second example, a cantilever beam is aedlyin which the first half of the model
is discretized by the FEM, whereas its second ikalfscretized by the BEM. A sketch of the
model is depicted in Fig.13. The geometry of thebfgm is defined byL =1.0m and
H = 05m. The physical properties of the model &=2- 10*'N/n? and v = 0.3. A perfectly
plastic material obeying the von Mises yield crdaris assumed, where the uniaxial yield
stress is 1.5-I8l/nf. For the adaptive BEM-FEM analysis, an initial FEMesh with 400
elements is considered (as depicted in Fig.4),elsas 60 boundary elements of equal length
(i.e., 0.05 m) are employed (double nodes are edswidered at the corners of the BEM
subdomain). Results provided by this BEM-FEM codpt®nfiguration are compared to
those provided by an adaptive FEM solution, in Whaén initial mesh of 800 elements is
considered to discretize the entire model, and fiyed FEM solution, in which a mesh of
5200 elements is employed. For all configuratignsicremental steps are considered.

H FEM BEM

Figure 4. Sketch of the cantilever beam model and initial FEM discretization for the BEM-FEM adaptive
analysis.

In Fig.5, vertical displacements calculated altmganti-symmetrical horizontal axis of the
beam are depicted, considering elastoplastic a@slyss one can observe, good agreement is
observed among the results. Here, it is importannhéntion that the considered fixed FEM
mesh provides a poorer discretization in the regiware the nonlinear behaviour occurs, and
thus is probably less accurate in describing thedastic behaviour of the region. Fig.6
illustrates the equivalent plastic strains at @& incremental step of the analyses, when the
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adaptive FEM and BEM-FEM discretizations are coaed. Once again, good agreement
among the results is observed.
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Figureb5. Vertical displacementsalong the anti-symmetrical horizontal axis of the cantilever beam model
considering elastoplastic analyses.
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Figure 6. Equivalent plastic strainsalong the FEM deformed meshes (scale factor of 10°) for the cantilever

beam model: (a) adaptive FEM;

(b) adaptive BEM -FEM.

The computed displacements and tractions alongBiEM discretization, at the last

incremental step of the elastoplastic analysis, illustrated in Fig.7. Since the so-called
configuration 1 is considered here, at the comnraarface, the displacements plotted in
Fig.7 are based on the FEM response, whereas dlotiotrs depicted in the figure are
calculated from the solution of the BEM system qéi&ions. Tab.2 presents the number of
iterations per incremental step for the beam maddelan be seen that, for this application,
convergence is obtained very quickly for the etastbdel. Additionally, as it is described in
the table, there is basically no additional itematcost introduced into the analysis by the
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adopted BEM-FEM coupling approach (i.e., basicalg same number of iterations are
required by the FEM adaptive analysis and by th&BHEM adaptive analysis), once again
highlighting the good performance of the adopteglsi iterative loop.
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Figure 7. Displacements (left) and tractions (right) along the BEM mesh at the last incremental step of the
adaptive elastoplastic analysis.

Table 2. Number of iterations per incremental step for the cantilever beam model

Incremental Step

1 2 3 4 5 6
FEM 4 4 4 4 4 4
Elastic BEM-FEM 4 4 5 4 5
FEM 4 4 5 22 86 271
Elastoplastic BEM-FEM 4 4 5 4 24 247

In this second nonlinear application example, @J time for the adaptive BEM-FEM
coupled analysis is around 55% of the CPU timeinbthfor the adaptive FEM analysis.

6 CONCLUSIONS

The present work addresses two iterative BEM-FEMipting approaches, in which
different prescribed boundary conditions at the BEEM common interface may be used.
Both coupling procedures allow adaptive nonlineaalgses in the FEM subdomains and
independent discretizations at the common BEM-FBMrfaces. A quite powerful, versatile
and generic numerical methodology is thus defingd¢ch can be very useful in the solution
of a wide range of engineering applications. Betthhiques prove to be very efficient.

Optimal relaxation parameters are also used, wdtickws speeding up the convergence of
the iterative coupling. A single iterative loop hbasen considered, enabling all iterative
solutions to be carried out at once. The computatioost of the proposed analysis scheme is
significantly reduced, and the proposed approacborbes very competitive. As it is
illustrated in the previous section, the numbeitefative steps related to the adopted unified
iterative solution is not significantly higher thdrat of the dominant iterative approach acting
isolated. Standard multiple iterative solutions diwmis be avoided, eliminating overly
excessive computational costs.
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The two numerical examples presented here illiestréhe versatility and effectiveness of
the proposed techniques. In section 5, couplindigorations 1 and 2 are referred, finite and
infinite models are analyzed, adaptive and fixe@tigp discretizations are considered,
constant and linear boundary element formulatiores employed, linear and nonlinear
solutions are carried out, different elastoplastiteria are followed, etc. In fact, as previously
stated, the present work enables a wide rangealysas, providing effective numerical tools
to more properly deal with several complex problems
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