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Abstract. The analysis of complex systems may be more effectively handled considering the 
combination of different numerical methods, in a way that each numerical technique can be 
applied to deal with the particularities of the model that better fit its positive features. In this 
sense, the adaptive iterative coupling of the Boundary Element Method (BEM) and of the 
Finite Element Method (FEM) is discussed here, taking into account static nonlinear models. 
Optimal relaxation parameters are employed to speed up the convergence of the iterative 
coupling, and non-matching discretizations at common interfaces, as well as adaptive 
refinement within the FEM subdomains, are allowed, enabling more versatile and accurate 
approaches. A single unified iterative loop is considered in order to deal with all the focused 
iterative solutions simultaneously (i.e., the nonlinear analysis, the adaptive analysis and the 
coupling analysis), rendering a very efficient methodology. In this context, multiple sequential 
iterative loops, which represent a rather computationally demanding approach, can be 
avoided without significantly increase the number of the iterative steps of the dominant 
iterative process, considerably improving the performance of the method. At the end of the 
paper, numerical results are presented, illustrating the potentialities and the effectiveness of 
the proposed techniques. 
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1  INTRODUCTION 

The analysis of complex systems may be more effectively handled considering the 
combination of different numerical methods. In this context, each numerical technique can be 
applied dealing with the particularities of the model that better fit its positive features. Taking 
into account combined formulations, a great amount of research works focuses on the 
coupling of the Boundary Element Method (BEM) and the Finite Element Method (FEM), 
which are very popular numerical techniques that contribute with complementary beneficial 
features. In fact, the BEM is quite suitable to handle infinite or semi-infinite media and high 
variations or discontinuous behaviour, while the FEM is very effectively applied to model 
complex configurations, in which heterogeneity, anisotropy, nonlinear behaviour etc. may 
occur.   

Researchers have tested combinations of the BEM and the FEM in order to profit from 
their respective advantages, trying to evade their disadvantages, and nowadays several works 
dealing with BEM-FEM coupling are available. Classical BEM/FEM coupling procedures can 
pose several problems regarding efficiency, accuracy and/or flexibility. Indeed, the coupled 
system of equations has a banded symmetric structure only in the FEM part, while in the 
BEM part it is non-symmetric and fully populated; as a consequence, the optimized solvers 
usually employed with the FEM can no longer be used, and more expensive calculations 
(namely in computer time) are required. Moreover, in many cases very different physical 
properties exist in each part of the model, and this can lead to badly conditioned matrices if 
direct coupling procedures are used; consequently, numerically unstable systems may be 
obtained and lead to inaccurate results. Additionally, it should be mentioned that standard 
coupling methods require matching discretizations along the common interfaces between 
subdomains, which reduce the flexibility of and generality of the techniques. Finally, if 
nonlinear models are considered, standard coupling implies large and complex systems of 
equations to be dealt with several times within a single analysis, leading to excessive 
computational costs. 

As an alternative, iterative coupling procedures have been developed by several authors. 
Initially, static problems were studied considering iterative coupling approaches, and linear 
and nonlinear behaviour have been simulated (Lin et al., 1996; Elleithy et al., 2001; Jahromi 
et al., 2009). Later on, dynamic problems were focused, and time (Soares et al., 2004; Soares, 
2008; 2012) and frequency domain (Bendali et al., 2007; Soares and Godinho, 2012; Coulier 
et al., 2014) iterative analyses have been implemented (in this case, an overview is presented 
by Soares and Godinho (2014)). Nowadays, advanced techniques regarding the iterative 
coupling of the BEM and the FEM to analyze static nonlinear models can be encountered in 
the work of Soares and Godinho (2015). 

When iterative coupling approaches are used, each sub-domain of the global model is 
analyzed independently, as an uncoupled model. A sequential renewal of the variables at the 
common interfaces is then performed, until convergence is achieved. Several advantages can 
be identified for these iterative methodologies, when compared to standard coupling schemes: 
(i) the sub-domains can be analysed separately, leading to smaller and better-conditioned 
systems of equations (different solvers, suitable for each sub-domain, may be employed); (ii) 
the coupling procedure only requires interface routines, allowing the simple reuse of existing 
codes (thus, coupled systems may be solved by separate program modules, taking full 
advantage of specialized features and disciplinary expertise); (iii) non-matching nodes at 
common interfaces can be used, improving the flexibility and versatility of the coupled 
analyses, especially when different discretization methods are considered; (iv) more efficient 



D.Soares Jr. and L. Godinho 

CILAMCE 2016 
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering 

Suzana Moreira Ávila (Editor), ABMEC, Brasília, DF, Brazil, November 6-9, 2016 

analyses can be obtained, once the global model can be reduced to several sub-domains with 
reduced size matrices; etc.. 

Here, adaptive iterative BEM-FEM coupling procedures are discussed for the analysis of 
nonlinear static models, with focus in elastoplastic problems. An adaptive FEM approach is 
applied to the regions where the inelastic behavior is expected to occur, while the BEM is 
applied to the regions with an elastic material behavior. In the past, BEM-FEM iterative 
coupling has already been reported in the literature for elastoplasticity (as, for example, in 
Elleithy et al. (2004), Boumaiza and Aour (2014), etc.). It should be noted that, in most of 
these references, two iterative loops are considered, with the complete iterative loop of the 
nonlinear FEM analysis occurring within an iterative step of the BEM-FEM iterative 
coupling. This approach becomes very demanding from the computational point of view. As 
an alternative, here the authors use a single iterative loop in which three iterative analyses are 
carried out together, at a common iterative step: (i) the FEM nonlinear analysis; (ii) the FEM 
adaptive discretization; (iii) the BEM-FEM coupling. As described later in this work, this 
unified iterative approach does not lead to a significant increase in the number of iterations 
required by the dominant iterative analysis of the model (if considered separately). The 
technique is thus quite efficient.  

Differently from the model proposed by Elleithy et al. (2009; 2012), in which the FEM 
subdomains are expanded (and BEM subdomains are shrunk) as the plastic zones evolve, here 
the regions modelled by the BEM do not change along the analysis, allowing the matrices of 
the BEM subdomains to be computed only once. A coarse discretization is also initially 
adopted for the FEM subdomains, and then it is adaptively enriched using the information of 
the solution at each step. At the end of the process, a refined FEM discretization occurs at 
regions where the plastic zones occur, providing an optimal FEM simulation linked to a very 
efficient BEM analysis. As can be easily understood, this adaptive approach implies non-
matching nodes at BEM-FEM common interfaces to be allowed, otherwise the BEM 
discretizations would also have to adapt, increasing the computational cost of the analysis.     

In the present work, the authors discuss two different iterative coupling approaches. For 
each one, either displacements or tractions may be considered prescribed to the BEM 
common interface (and, complementarily, either tractions or displacements are prescribed to 
the FEM common interface). The use of each technique can be decided for each model to 
analyse in accordance to the characteristics of the model, avoiding, for instance, singular 
systems of equations to be obtained due to the lack of essential boundary conditions on a 
subdomain. In both cases, an optimal relaxation parameter is introduced to speed up and/or to 
ensure the convergence of the iterative coupling analysis. As previously referred in the 
literature, this is of great importance in order to guarantee the robustness and efficiency of the 
technique. 

In what follows, first, the governing equations of the elastoplastic model are briefly 
presented, and general aspects of the BEM and FEM are described; then, the iterative BEM-
FEM coupling algorithm is discussed, and some numerical examples are presented.  

2  GOVERNING EQUATIONS 

The basic governing equations related to elastoplastic materials are given by: 

ijij γσ =,                           (1) 
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ij klijkld D dσ ε=                           (2) 

1
, ,2

( )ij i j j id du duε = +                           (3) 

where equation (1) is the equilibrium equation and equations (2) and (3) stand for incremental 
relations. The Cauchy stress, using the usual indicial notation for Cartesian axes, is 
represented by ijσ , and iu  and iγ  stand for displacement and body force distribution 

components, respectively (inferior commas indicate partial space derivatives). Equation (2) is 
the constitutive law, written incrementally. The incremental strain components ijdε  are 

defined in the usual way from the displacements, as described by equation (3). In equation 
(2), ep

ijklD  is a tangential tensor defined by suitable state variables and the direction of the 

increment. Within the context of associated isotropic work hardening theory (Chen, 1988; 
Khan and Huang, 1995), the tangent constitutive tensor is defined as: 

 opklopmnijmnijkl
ep
ijkl DaaDDD )/1( ψ−=                   (4) 

where 

 )()21/(2 jkiljlikklijijklD δδδδµδδνµν ++−=               (5a) 

 klkla σσ ∂∂= /                         (5b) 

 ij ijkl kla D a Hψ = +                        (5c) 

 0 / pH σ ε= ∂ ∂                              (5d) 

 In equations (5), σ  and pε  are the equivalent (or effective) stress and plastic strain, 

respectively; 0σ  is the uniaxial yield stress; H  is the plastic-hardening modulus (for the case 

of a perfectly plastic material 0H = ); µ  and ν  stand for the shear modulus and the Poisson 

ratio, respectively; and ikδ  is the Kronecker delta. In case of elastic analyses, the Cauchy 

stresses can be defined by klijklij D εσ = , where ijklD  (see equation (5a)) is the elastic 

constitutive tensor (this linear relation is a particular case of equation (2)). 

In addition to equations (1)-(5), boundary conditions are prescribed as follows, in order to 
completely define the problem: 

ii uu =   at uΓ                          (6a) 

ijiji n τστ ==   at τΓ                       (6b) 

where the prescribed values are indicated by overbars and iτ  stands for traction components 

along the boundary whose unit outward normal vector is represented by in . Following 

equations (6), the boundary of the model (Γ ) is divided into an essential (uΓ ) and a natural 

( τΓ ) boundary, where Γ=Γ∪Γ τu  and 0=Γ∩Γ τu . 

 In the next section, boundary and finite element techniques are briefly described. Here, 
elastoplastic regions are treated by the FEM, whereas elastic subdomains may be analyzed by 
the BEM or by the FEM.  
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3  SUBDOMAINS DISCRETIZATION 

 Assuming a boundary element discretization, elastostatic models may be analyzed by the 
following system of equations (Brebbia et al., 1984; Brebbia and Dominguez, 1998): 

 1
1

1
1

1
1)( +

+
+
+

+
+ +=+ n

k
n
k

n
k dGτuHC                      (7) 

where u  and τ  stand for displacement and traction vectors, respectively. The superscript n+1 
stands for the current incremental step of the analysis and the subscript k+1 stands for its 
iterative step (an iterative coupled nonlinear analysis is aimed in this work). C  stands for the 
location matrix and G  and H  are influence matrices. Vector d  accounts for domain terms, 
such as body force contributions. Matrices G  and H  can be computed taking into account 
each boundary element e of the model, and vector d  can be evaluated considering each 
domain integration cell c: 
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U NUG *                         (8b) 
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k
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1
1

*1
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In equations (8), *T  and *U  stand for traction and displacement fundamental matrices, 
respectively, and N represents the adopted BEM interpolation matrix.  

By re-arranging the system of equations (7), taking into account the boundary conditions of 
the problem, just known and unknown variables can be disposed at the right and at the left 
hand side of the system of equations, respectively, allowing its solution. Equations (7-8) only 
intend to summarily describe the boundary element formulation considered here; for further 
details on the topic, the books of Brebbia et al. (1984) and Brebbia and Dominguez (1998) are 
suggested.  

 Considering a finite element discretization, the basic equation describing a nonlinear model 
is given by: 

 1
1

1
1)( +

+
+
+ = n

k
n
kf fu                           (9) 

where )(uf  and f  stand for internal and external forces, respectively. Taking into account a 
linearized incremental approach, equation (9) can be rewritten as (Simo and Hughes, 1998; 
Belytschko et al., 2000): 

 )( 11
1

++
+ −= n

k
n
kkk f ufuK δ                       (10a) 

 1
11

1 +
++

+ += k
n
k

n
k uuu δ                         (10b) 

where kK  stands for the tangent nonlinear stiffness matrix, )( 11 ++ − n
k

n
k f uf  represents the 

nonlinear residual vector and 1+kuδ  is the variation of the incremental displacements, 

calculated at each iterative step.  

For elastoplastic models, the vectors and matrices represented in equation (10a) may be 
described as follows, considering each finite element e: 
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where B stands for the strain matrix and ep
kD  is the nonlinear constitutive matrix (as described 

by equation (4)). N stands for the adopted FEM interpolation matrix. The stress state in 
equation (11b) can be evaluated following equations (2) and (3); i.e., by considering 

1111 ++++ +=+=+= n
k

ep
k

nn
k

ep
k

nn
k

nn
k ddd uBDσεDσσσσ , where nn

k
n
kd uuu −= ++ 11 .  

Equations (9-11) briefly describe the finite element formulation considered here; for 
further details on the topic, the books of Simo and Hughes (1998) and Belytschko et al. 
(2000) are suggested. Once equations (7-11) are considered, subdomains modelled by the 
BEM or by the FEM can be analyzed. In the next section, the iterative coupling of these 
subdomains is discussed. 

4  COUPLED ANALYSIS 

To perform the coupled BEM-FEM analysis, continuity and equilibrium equations must 
hold at the common interfaces between subdomains, namelly: 

 i
B

i
F uu =                            (12a) 

 0=+ i
B

i
F ττ                          (12b) 

where the superscripts B and F indicate if a variable is related to the BEM or to the FEM 
subdomain, respectively. 

 Here, two different configurations can be considered, regarding the BEM-FEM interface: 
(i) in the first configuration (configuration 1), the common interface is considered as an 
essential boundary for the BEM, with prescribed displacements, and as a natural boundary for 
the FEM, with prescribed tractions; (ii) in the second configuration (configuration 2), the 
common interface is considered as a natural boundary for the BEM, with prescribed tractions, 
and as an essential boundary for the FEM, with prescribed displacements. For both cases, an 
iterative renewal of the variables at the common interface is carried out, taking into account 
equations (12). 

 For the BEM-FEM iterative coupling algorithm considered here, the analysis starts with 
the FEM subdomain, and the FEM displacements (11

+
+

n
k

F u ) or tractions ( 1
1

+
+

n
k

F
τ ) at the common 

interface are evaluated (in this case, tractions are computed as projections of the stress state, 
as indicated by equation (6b)). After this, the corresponding values are applied to the BEM as 
prescribed boundary conditions, following equations (12) and the configuration in focus (i.e., 
configuration 1 or 2) for the common interface.  

In this process a relaxation parameter, α , is considered, which is introduced here in order 
to ensure and/or to speed up convergence. Thus, the following variables may be computed: 

 11
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where I stands for spatial interpolation functions; equations (13a) and (13b) are related to 
configuration 1 and 2, respectively. 

 It is important to remark that non-matching BEM and FEM nodes can easily be considered 
(which is particularly important if adaptive discretizations are used). Thus, a routine to 
spatially link the FEM and BEM computed values must be taken into account. In equations 
(13), BF

uI  and BFIτ  link the displacements and tractions computed at the finite element nodes 

and faces, respectively, to their respective values at the boundary element functional nodes. 
These interpolation routines can be carried out based either on the interpolation functions of 
the elements, or considering enriched approaches.  

Once the prescribed variables at the BEM common interface are computed, the BEM 
subdomains can be analyzed, allowing to compute displacements ( 1

1
+
+

n
k

Bu , configuration 2) or 

tractions ( 1
1

+
+

n
k

B
τ , configuration 1) at the common interface. These values are applied to the 

FEM as prescribed boundary conditions, following equations (12). Thus, in order to obtain the 
FEM prescribed values, the following variables may be computed: 
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where, once again, I stands for spatial interpolation functions and equations (14a) and (14b) 
are related to configuration 1 and 2, respectively. In equations (14), FB

uI  and FBIτ  link the 

displacements and tractions computed at the boundary element functional nodes, respectively, 
to their respective values at the finite element nodes.  

After computing the FEM prescribed boundary conditions, the iterative cycle is reinitiated, 
and all the above described procedures are repeated until achieving convergence. It is 
important to highlight that just one iterative loop is considered here to deal with several types 
of iterative approaches, namely: (i) FEM nonlinear analysis; (ii) FEM adaptive discretization; 
(iii) BEM-FEM coupling. As illustrated in the next section, this approach seems to be very 
appropriate, since the number of iterative steps required by the isolated dominant iterative 
procedure is not significantly increased by considering all the iterating procedures together, in 
the same iterative loop. The usual alternative to the single iterative approach is a multiple 
iterative algorithm. In this case, an entire iterative loop is carried out within each iterative step 
of the “host” iterative loop. Thus, the multiple iterative procedure may considerably increase 
the computational effort of the analysis, once too many iterative steps occur and/or iterative 
processes are considered.  

It is important to observe that the effectiveness of the present iterative coupling algorithm 
is intimately related to the relaxation parameter selection. An inappropriate selection for α  
can drastically increase the number of iterations in the analysis or, even worse, make 
convergence unfeasible. In this work, the following expression for an optimal relaxation 
parameter is considered: 

 2||||/),( wwwww FBFBB −−=α                    (15) 

where 
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and vector v stands for the traction or displacement vector, according to the configuration in 
focus. 

5  NUMERICAL EXAMPLES 

To exemplify the application of the described procedure, two numerical examples are 
presented, illustrating the performance and potentialities of the discussed techniques. In the 
first example, a half-space model is analysed. In this case, the Drucker-Prager yield criterion 
is considered and adaptive and fixed BEM-FEM discretizations are carried out. In the second 
example, a cantilever beam is studied, following the von Mises yield criterion. Here, adaptive 
BEM-FEM coupled results are compared to those provided by an adaptive and fixed FEM 
approach. 

 In the first example, an infinite domain model is focused. In this case, the so-called 
configuration 2 is considered, and prescribed tractions are applied at the BEM common 
interface, whereas prescribed displacements are applied at the FEM common interface. In the 
second application, a finite domain model is analyzed and configuration 1 is followed, 
considering prescribed displacement and tractions applied to the BEM and FEM common 
interfaces, respectively. For this second application, linear boundary elements are considered, 
whereas, for the first application, constant boundary elements are employed. For all the 
analyses that follow, linear triangular finite elements are adopted, since discretizations 
considering this type of finite element are easier to adaptively refine. The adaptive procedure 
implemented here is based on the package provided by Chen and Zhang (2006) and the FEM 
discretization is adapted just at the first iterative step of each incremental step. A Newton-
Raphson initial stress configuration is considered for the nonlinear analysis, and a tight 
relative error tolerance (displacement and force residual) of 10-5 is adopted for the 
convergence of the iterative process.  

5.1 Example 1 

 In this first example, a half-space is analyzed, with the region closer to the loaded area 
being discretized by the FEM, and the remaining domain being discretized by the BEM. A 
schematic representation of the model is depicted in Fig.1. The geometry of the problem is 
defined by mL 4.6=  and mH 0.4= .  

 The physical properties of the model are E=109N/m2 and 3.0=ν . A perfectly plastic 
material obeying the Drucker-Prager yield criterion is assumed, where c=1.7·102N/m2 and 
φ =100. Two different BEM-FEM discretizations are considered here. In the first 
discretization, a fixed FEM mesh is employed, which is composed of 5120 elements. In the 
second discretization, an adaptive FEM mesh is considered, being its initial configuration 
depicted in Fig.1 (64 elements). For the first BEM-FEM discretization, 20 boundary elements 
of length 0.20 m are employed to discretize each vertical common interface, whereas 16 
boundary elements of length 0.25 m are considered for the second discretization. For both 
discretizations, boundary elements of length 0.25 m and 0.20 m are applied to discretize the 
half-space (which is sufficiently extended up to 25 m at each side of the model) and the 
horizontal common interface, respectively. In this case, 12 incremental steps are considered. 
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Figure 1. Sketch of the half-space model and initial FEM discretization for the adaptive analysis. 
 

 In Fig.2, the vertical displacements computed along the symmetrical vertical axis of the 
half-space model are depicted, considering the elastoplastic analyses. In this case, results 
obtained from a multiple iterative analysis are also depicted in the figure, for comparison. As 
one can observe, good agreement is observed among the results. In Fig.3, the evolution of the 
equivalent plastic strains, at the last three incremental steps, is described, considering the 
fixed and the adaptive BEM-FEM discretizations. Once again, good agreement is observed 
among the results. The evolution of the FEM discretization, taking into account the adaptive 
analysis, is also illustrated in Fig.3, considering the last three incremental steps. As one can 
observe, refinement is properly introduced into the analysis, being the region under the 
applied load progressively refined.  
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Figure 2. Vertical displacements along the symmetrical vertical axis of the half-space model considering 

BEM-FEM elastoplastic analyses. 

 

 In Tab.1, the number of iterations per incremental step for the half-space model is 
presented. As one can observe, the number of iterations does not significantly increase by 
considering several iterative procedures at a unique iterative loop, illustrating the good 
performance of the adopted technique. 
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(a) (b) 

Figure 3. Evolution of the equivalent plastic strains at the last three incremental steps: (a) fixed FEM 
discretization; (b) adaptive FEM discretization. 
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Table 1. Number of iterations per incremental step for the half-space model 

 Incremental Step 

1 2 3 4 5 6 7 8 9 10 11 12 

 

Elastic 

Fixed 18 17 20 18 18 18 18 18 18 21 18 18 

Adaptive 23 27 26 20 21 20 21 20 25 16 21 21 

 

Elastoplastic 

Fixed 18 17 20 18 18 18 18 18 18 23 40 65 

Adaptive 23 27 26 20 21 20 21 20 25 23 37 65 

 

For the present nonlinear model, the CPU time obtained for the single iterative adaptive 
BEM-FEM coupled analysis is approximately 19% of the CPU time obtained for the single 
iterative fixed BEM-FEM coupled analysis. In addition, the CPU time obtained for the single 
iterative fixed BEM-FEM coupled analysis is approximately 14% of the CPU time obtained 
for the multiple iterative fixed BEM-FEM coupled analysis. Thus, the proposed technique 
exhibits a considerably superior performance. 

5.2 Example 2 

 In this second example, a cantilever beam is analyzed, in which the first half of the model 
is discretized by the FEM, whereas its second half is discretized by the BEM. A sketch of the 
model is depicted in Fig.13. The geometry of the problem is defined by mL 0.1=  and 

mH 5.0= . The physical properties of the model are E=2·1011N/m2 and 3.0=ν . A perfectly 
plastic material obeying the von Mises yield criterion is assumed, where the uniaxial yield 
stress is 1.5·104N/m2. For the adaptive BEM-FEM analysis, an initial FEM mesh with 400 
elements is considered (as depicted in Fig.4), as well as 60 boundary elements of equal length 
(i.e., 0.05 m) are employed (double nodes are also considered at the corners of the BEM 
subdomain). Results provided by this BEM-FEM coupled configuration are compared to 
those provided by an adaptive FEM solution, in which an initial mesh of 800 elements is 
considered to discretize the entire model, and by a fixed FEM solution, in which a mesh of 
5200 elements is employed. For all configurations, 6 incremental steps are considered. 

 

 

 

Figure 4. Sketch of the cantilever beam model and initial FEM discretization for the BEM-FEM adaptive 
analysis. 

 

 In Fig.5, vertical displacements calculated along the anti-symmetrical horizontal axis of the 
beam are depicted, considering elastoplastic analyses. As one can observe, good agreement is 
observed among the results. Here, it is important to mention that the considered fixed FEM 
mesh provides a poorer discretization in the regions were the nonlinear behaviour occurs, and 
thus is probably less accurate in describing the inelastic behaviour of the region. Fig.6 
illustrates the equivalent plastic strains at the last incremental step of the analyses, when the 
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adaptive FEM and BEM-FEM discretizations are considered. Once again, good agreement 
among the results is observed.  
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Figure 5. Vertical displacements along the anti-symmetrical horizontal axis of the cantilever beam model 

considering elastoplastic analyses. 

 

  
(a) (b) 

Figure 6. Equivalent plastic strains along the FEM deformed meshes (scale factor of 105) for the cantilever 
beam model: (a) adaptive FEM; (b) adaptive BEM-FEM. 

 

 The computed displacements and tractions along the BEM discretization, at the last 
incremental step of the elastoplastic analysis, are illustrated in Fig.7. Since the so-called 
configuration 1 is considered here, at the common interface, the displacements plotted in 
Fig.7 are based on the FEM response, whereas the tractions depicted in the figure are 
calculated from the solution of the BEM system of equations. Tab.2 presents the number of 
iterations per incremental step for the beam model. It can be seen that, for this application, 
convergence is obtained very quickly for the elastic model. Additionally, as it is described in 
the table, there is basically no additional iterative cost introduced into the analysis by the 
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adopted BEM-FEM coupling approach (i.e., basically the same number of iterations are 
required by the FEM adaptive analysis and by the BEM-FEM adaptive analysis), once again 
highlighting the good performance of the adopted single iterative loop. 

 

 
Figure 7. Displacements (left) and tractions (right) along the BEM mesh at the last incremental step of the 

adaptive elastoplastic analysis. 

 

Table 2. Number of iterations per incremental step for the cantilever beam model 

 Incremental Step 

1 2 3 4 5 6 

 

Elastic 

FEM 4 4 4 4 4 4 

BEM-FEM 4 4 5 4 5 5 

 

Elastoplastic 

FEM 4 4 5 22 86 271 

BEM-FEM 4 4 5 4 24 247 

 

 In this second nonlinear application example, the CPU time for the adaptive BEM-FEM 
coupled analysis is around 55% of the CPU time obtained for the adaptive FEM analysis. 

6  CONCLUSIONS 

The present work addresses two iterative BEM-FEM coupling approaches, in which 
different prescribed boundary conditions at the BEM-FEM common interface may be used. 
Both coupling procedures allow adaptive nonlinear analyses in the FEM subdomains and 
independent discretizations at the common BEM-FEM interfaces. A quite powerful, versatile 
and generic numerical methodology is thus defined, which can be very useful in the solution 
of a wide range of engineering applications. Both techniques prove to be very efficient.  

Optimal relaxation parameters are also used, which allows speeding up the convergence of 
the iterative coupling. A single iterative loop has been considered, enabling all iterative 
solutions to be carried out at once. The computational cost of the proposed analysis scheme is 
significantly reduced, and the proposed approach becomes very competitive. As it is 
illustrated in the previous section, the number of iterative steps related to the adopted unified 
iterative solution is not significantly higher than that of the dominant iterative approach acting 
isolated. Standard multiple iterative solutions can thus be avoided, eliminating overly 
excessive computational costs.  
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 The two numerical examples presented here illustrated the versatility and effectiveness of 
the proposed techniques. In section 5, coupling configurations 1 and 2 are referred, finite and 
infinite models are analyzed, adaptive and fixed spatial discretizations are considered, 
constant and linear boundary element formulations are employed, linear and nonlinear 
solutions are carried out, different elastoplastic criteria are followed, etc. In fact, as previously 
stated, the present work enables a wide range of analyses, providing effective numerical tools 
to more properly deal with several complex problems. 
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