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R. Marquês de São Vincente - 225 Gávea, 22451-900, RJ, Rio de Janeiro, Brazil

Abstract. The Boundary Element Method is employed to simulate the flow of a planar emulsion
drop through a converging channel. The physical flow parameters allow to describe it using
Stokes equations. A verification on the method accuracy and convergence is done related to
the mesh and time increment refinement. The pump pressure answer, during the drop flow to
keep the flow rate, is studied in relation to the capillary number, the viscosity ratio and the drop
initial diameter.
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1 INTRODUCTION

The use of oil-water emulsions as a mobility control agent in enhanced oil recovery pro-
cesses in order to achieve a more efficient sweep of the petroleum reservoir is a widespread
theme in the current literature (Alvarado & Manrique, 2010). The macroscopic behavior of
these methods is intrinsically related to the pore-scale flow. Since the drop diameter has the
same order of magnitude of the pore throats dimensions, the emulsion cannot be treated as a
singe phase non-Newtonian fluid. Otherwise, this complex liquid must be modeled as a biphasic
mixture of two immiscible viscous Newtonian fluids. Several experimental results and theoret-
ical analysis have shown that for the emulsion flow, the pressure drop at a fixed flow rate is
raised by two distinct mechanisms: a viscous effect related to the presence of the high viscosity
oil phase and a capillary effect related to the deformation of the droplet interface as it flows
through the porous throat (Roca & Carvalho, 2013). Within this context, the present work aims
to perform a numerical investigation of the flow of an emulsion drop though a porous media
using the Boundary Element Method (BEM).

The model considers the flow of a single planar oil droplet through a converging chan-
nel representing the porous throat, and can provide important qualitative results in this type of
study. The flow is free from inertial effects and thereby it is governed by the Stokes’ incom-
pressible equations. In this sense, a boundary integral formulation based on line integrals over
the drop surface and the channel boundaries relating both velocity and stress fields can be ob-
tained. Several numerical aspects of the method are discussed in details, including the use of
quadratic continuous boundary elements, the interpolation of the unknown fields using second-
order shape function and, the discretization and numerical solution of the integral equations.
The results show the effects of physical and geometric parameters, such as the fluids viscosity
ratio, capillary number and droplet initial diameter on the flow rate-pressure drop relation and
on the droplet shape in the flow.

2 MATHEMATICAL MODELING

A scheme of the problem is represented in Fig. 1. Both phases are composed by incom-
pressible Newtonian liquids with the same density ρ. The drop is initially spherical with diam-
eter a and viscosity λµ, and it is immersed in other fluid with the viscosity equal to µ. Here, H
and h are the height of the entrance and exit (throat) of the channel, and P0 and PL are the inlet
and outlet pressure, respectively. Each fluid occupies a region Ω limited by a contour Γ, and the
subscripts i and o are used to correspond to the inner and outer fluids, respectively.

Due the physical parameters associated to the inner and outer flows, the inertial forces are
neglectable comparing to viscous ones (Re� 1).

2.1 Stokes flow integral representation

According to Kim & Karrila (1991), the flow of a Newtonian incompressible fluid free
from inertial effects is governed by the Stokes’ equations shown in Eq. (1) and Eq. (2), where
σ is the stress tensor field and u is the velocity field, respectively.

∇ · u = 0. (1)
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Figure 1: Scheme of the planar drop dispersed in other immiscible fluid flowing through a converging
channel. The drop is composed by the i fluid while the continuous one is compose by the o fluid. Each fluid
occupies a region Ω limited by a contour Γ.

∇ · σ = 0. (2)

The stress tensor, σ, is given by,

σ(x) = −p(x)I + 2µD, (3)

where I is the unit tensor, p(x) is the mechanical pressure andD = 1
2
(∇u+∇uT ).

The Stokes flow integral representation in a domain Ω limited by a contour Γ can be ob-
tained utilizing the fundamental solution of Stokes flow created by a force point in an infinite
fluid domain, presented by Ladyzheskaya (1969), and the Lorentz Reciprocity Theorem (Kim
& Karrila, 1991; Pozrikids, 1992). After all, the velocity on a point x0 can be obtained using,

x0 ∈ Ω, u(x0)

x0 ∈ Γ, c(x0)u(x0)

x0 6∈ Ω, 0


=

1

4πµ

∫
Γ
J (x− x0) · σ(x) · n̂ dΓ(x)

− 1

4π

∫
Γ
u(x) ·K(x− x0) · n̂ dΓ(x), (4)

where c(x0) is a constant resultant from the Dirac Delta function integration and depend on the
contour geometry, n̂ is the contour normal direction and, J and K are both Green functions,
given by

J (x− x0) = I log

(
1

|x− x0|

)
+

(x− x0)(x− x0)

|x− x0|2
, (5)

and

K(x− x0) = −4
(x− x0)(x− x0)(x− x0)

|x− x0|4
. (6)

2.2 Flow integral representation on the interface

The relation between the inner and outer flows are obtained using the boundary conditions
on the interface. Due the continuity in velocity, the two flows should have the same velocity
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over the shared points, such that

ui(x) = uo(x) , x ∈ Γi(t). (7)

There is no continuity in the stress tensor on the interface, but it is possible to calculate
the stress jump over the normal direction, ∆f(x, t) = [σo(x, t)− σi(x, t)] · n̂(x, t), using the
Young-Laplace equation,

∆f(x, t) = σκ(x, t)n̂(x, t) , x ∈ Γi(t), (8)

where, σ is the interfacial tension between the fluids and κ is the surface curvature.

Using the velocity and tension relations over the fluids interface, it is possible to calculate
the velocity over Γi and Γo by the dimensionless1 Eqs. (9) and (10), respectively.

x0 ∈ Γi(t), c(x0, t)(λ+ 1)ui(x0, t) =
1

4π

∫
Γo

J (x− x0) · to(x, t) dΓ

− 1

4π

∫
Γo

uo(x, t) ·K(x− x0) · n̂(x, t) dΓ

+
1

4π
Ca−1

∫
Γi(t)

J (x− x0) · κ(x, t)n̂(x, t) dΓ

− 1− λ
4π

(
a

H

) ∫
Γi(t)

ui(x, t) ·K(x− x0) · n̂(x, t) dΓ.

(9)

x0 ∈ Γo, c(x0, t)uo(x0, t) =
1

4π

∫
Γo

J (x− x0) · to(x, t) dΓ

− 1

4π

∫
Γo

uo(x, t) ·K(x− x0) · n̂(x, t) dΓ

+
1

4π
Ca−1

∫
Γi(t)

J (x− x0) · κ(x, t)n̂(x, t) dΓ

− 1− λ
4π

(
a

H

) ∫
Γi(t)

ui(x, t) ·K(x− x0) · n̂(x, t) dΓ.

(10)

The capillary number, Ca, present in Eqs. (9) and (10) is one of the most important param-
eters in emulsion rheology studies. It represents the relation between viscous forces and surface
forces associated to interfacial tension, and it is given by Ca = µU/σ. Still in these equations,
the normal vector over the channel contour points to the outside, while over the interface it
points to the inside.

3 NUMERICAL METHODOLOGY
The solution of the problem is given by a boundary integral over the contour of the channel

and over the drop interface. Therefore, we employed the BEM to numerically solve the problem.
1The dimensionless variables are defined as: x0 = x′0/H , x = x′/H , ui = u′i/U , uo = u′o/U , to =

Ht′o/µU , κ = aκ′, J = J ′, K = HK′, dΓ = dΓ′/H over Γo and dΓ = dΓ′/a over Γi(t), where ′ denotes the
dimensional variable.
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The contours were divided in No +Ni elements, being No for the outer contour (Γo) and Ni for
the inner one (Γi). It was chosen the continuous quadratic element. In this case, every element is
composed by three nodes, sharing the two nodes on the extremes with the neighboring elements.
The use of shape functions allows to interpolate any vector variable by its values on the nodes,

x =

 x1

x2

 =

 N1 0 N2 0 N3 0

0 N1 0 N2 0 N3





x
(1)
1

x
(1)
2

x
(2)
1

x
(2)
2

x
(3)
1

x
(3)
2



= N (ξ) · x(n), (11)

where x(n)
d is the variable value on the node n and direction d, ξ is the local spatial coordinate

of the element which goes form −1 to 1, and Ns is the value of the shape functions s for ξ,

N1 =
ξ

2
(ξ − 1), (12)

N2 = (1− ξ)(1 + ξ) (13)

and

N3 =
ξ

2
(ξ + 1). (14)

The discretization of the contours in elements and use of quadratic shape functions allow
to rewrite Eqs. (9) and (10), respectively, as

xm ∈ Γi(t), c
m(λ+ 1)um

i (t) =
1

4π

No∑
n=1

(∫
∆Γn

o

Jmn ·N (ξ) dΓ

)
· to(n)(t)

− 1

4π

No∑
n=1

(∫
∆Γn

o

Kmn · n̂n(ξ, t) ·N (ξ) dΓ

)
· uo(n)(t)

+
1

4π
Ca−1

No+Ni∑
n=No+1

(∫
∆Γn

i

Jmn · κn(ξ, t)n̂n(ξ, t) dΓ

)

− 1− λ
4π

(
a

H

) No+Ni∑
n=No+1

(∫
∆Γn

i

Kmn · n̂n(ξ, t) ·N (ξ) dΓ

)
· ui(n)(t),

(15)

and
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xm ∈ Γo, c
mum

o (t) =
1

4π

No∑
n=1

(∫
∆Γn

o

Jmn ·N (ξ) dΓ

)
· to(n)(t)

− 1

4π

No∑
n=1

(∫
∆Γn

o

Kmn · n̂n(ξ, t) ·N (ξ) dΓ

)
· uo(n)(t)

+
1

4π
Ca−1

No+Ni∑
n=No+1

(∫
∆Γn

i

Jmn · κn(ξ, t)n̂n(ξ, t) dΓ

)

− 1− λ
4π

(
a

H

) No+Ni∑
n=No+1

(∫
∆Γn

i

Kmn · n̂n(ξ, t) ·N (ξ) dΓ

)
· ui(n)(t).

(16)

The subscripts m and n determine that the functions are evaluated on the points xm and
xn, respectively. Khayat et al. (1997) showed that it is possible to compact these two equations
in a linear system likeH ·U = G ·T +B, whereH andG are matrices containing the system
coefficients (purely geometrical), U and T are vectors containing the nodes values of velocity
and tension, respectively, and B is an independent vector associated to the stress jump on the
interface. The linear system can be expressed as

No+Ni∑
n=1

Hmn(t) · u(n)(t) =
No+Ni∑
n=1

Gmn · t(n)(t) +
No+Ni∑
n=1

Bmn(t). (17)

Finally, the coefficientsH ,G andB of the linear system are given by:

Hmn(t) =



cmδmn +
1

4π

∫
∆Γn

o

Kmn · n̂n(ξ, t) ·N (ξ) dΓ, n ∈ [1, No];

cm(λ+ 1)δmn +
1− λ

4π

(
a

H

) ∫
∆Γn

i

Kmn · n̂n(ξ, t) ·N (ξ) dΓ,

n ∈ [No + 1, No +Ni];

(18)

Gmn =



1

4π

∫
∆Γn

o

Jmn ·N (ξ) dΓ, n ∈ [1, No];

0, n ∈ [No + 1, Ni +No];

(19)

and

Bmn(t) =



0, n ∈ [1, No];

1

4π
Ca−1

∫
∆Γn

i

Jmn · κn(ξ, t)n̂n(ξ, t) dΓ,

n ∈ [No + 1, Ni +No].

(20)

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
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To each node should be applied one boundary condition for each direction, velocity or
tension. On the channel entrance section is applied the parabolic profile of velocity for a pre-
determined mean velocity; On the walls of the channel, there is a no-slip condition, sou(x, t) =
0; For the channel exit section is defined a pressure equal to zero, so t(x, t) = 0; Over the fluids
interface it is used the Young-Laplace equation, which defines the vectorB.

Solving the system, it will be obtained the tension and velocity over all nodes. The drop
surface is evolved using an Euler first-order equation at each node on the interface, so ∆x0 =
u(x0, t) ∆t, for a pre-determined time step ∆t.

4 RESULTS

This section brings all results obtained in this work, including discussions about it. All
results were obtained using a MATLAB R© code, considering the same channel geometry, pre-
sented in Fig. 2. The channel dimensions are function of the entrance height, H , and it is
composed by eight straight segments (1 to 8). The initial drop center is always at the same
point, xc = (0.4H, 0.5H). The drop surface, initially round, is defined by two arcs segments (9
and 10), and the channel convergence ratio is 2:1.

1
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8 910

(0, 0)

(0, H)

(0.8H, 0)

(0.8H,H)

(1.2H, 0.25H)

(1.2H, 0.75H)

(2.5H, 0.25H)

(2.5H, 0.75H)(0.4H, 0.5H +R)

(0.4H, 0.5H −R)

Figure 2: Channel geometry, showing the 10 segments defining the channel and drop contours.

4.1 Mesh convergence

The contour discretization was done using the parameter Ne. Following Fig. 2, the seg-
ments 2, 4 and 6 are divided in Ne elements, the segments 1, 7 and 8 are divided in 2Ne
elements, and the segments 3, 5, 9 and 10 are divided in 3Ne elements. The method accuracy,
in relation toNe, was studied for: the absolute error for the outlet flow rate, |Qout(t)−Qin|/Qin,
being Qin the flow rate imposed at the channel entrance; the drop area error, |A(t) − A0|/A0,
being A0 the initial drop area; and the convergence for the pump pressure curve to keep the flow
rate constant. This study used the parameters: Ca = 0.25, λ = 10, a = 0.55 and ∆t = 0.01.
All results are presented in Figs. 3 to 5. The parameter x* is given by the coordinate x1 of the
extreme right node of the drop (xr1) divided by the channel length, x*= xr1/2.5H .

The plot in Fig. 3 shows that the absolute error associated to the outlet flow rate decreases
considerably with the mesh refinement, and it stays more stable over x*. For Ne = 3, this
error is around 7.0%, decreasing to 1.0% for Ne = 9. Analyzing Fig. 4, the error associated
to the area is basically invariant to mesh refinement. The drop area error is associated to the
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Figure 3: Absolute error obtained for the outlet flow rate in function of Ne.
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Figure 4: Absolute error obtained for the drop area in function of Ne.

instantaneous shape, which depends essentially to the time step, justifying this fact. But, all
errors are low and hit the maximum value around 0.4% at the relative position of x*= 0.7 (after
the drop enters the throat). Finally, the pressure curves in Fig. 5 show that the pressure depends
on the mesh discretization, and they collapse for Ne bigger than 7.

After all these analysis, and considering the balance between accuracy and computational
time, Ne = 7 was chosen for the other simulations in this work.

4.2 Method stability related to the time step

The time step, ∆t, study was done using the following parameters: Ca = 0.25, λ = 10,
a = 0.55 and Ne = 7. The results are shown in Figs. 6 to 8.

Figure 6 shows that the flow rate error is unresponsive to the temporal refinement employed
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Figure 5: Pump pressure curve obtained in function of Ne.
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Figure 6: Absolute error obtained for the outlet flow rate in function of ∆t.

to the Euler method. In fact this error only depends on the mesh discretization. Anyway, the
numeric error remained low and between 1.4% and 1.6%. The curves tend to collapse when
the ∆t is reduced. In contrast, the area error is affected a lot by the time step refinement, as it
is shown in Fig. 7. For ∆t = 0.1 the maximum error is around 4.75%, reducing to 0.25% for
∆t = 0.005. Finally, the pressure curve tends to collapse when ∆t is decreased. In fact, the
curves for ∆t = 0.01 and ∆t = 0.005 are considerably close, as shown in Fig. 8. Due these
analysis, it was chosen ∆t = 0.01 for the next simulations.

4.3 Capillary number effect

Capillary number is one the main parameters in the study of mechanics and rheology of
emulsions, being defined as the viscous and inertial forces ratio, originated by the interfacial
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Figure 7: Absolute error obtained for the drop area in function of ∆t.
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Figure 8: Pump pressure curve obtained in function of ∆t.

tension between two fluids. Here, it is defined as Ca = µU/σ. The interfacial tension acts to
maintain the drop with a round geometry. The channel geometry forces the drop to deform due
to the flow extensional character. In other hand, the capillary forces try to restore your spherical
original geometry. As a result, the flow increase the pump pressure, forcing the drop to enter the
convergence and keep a constant flow rate. This pump pressure increase can recover trapped oil
in neighboring ganglia. Figures 9 and 10 show moments of the drop through the channel for:
Ca = 1.0 and Ca = 0.0625; λ = 30 and a = 0.55.

Analyzing Figs. 9 and 10, smaller Ca values results in rounder drops, smoother shapes.
The Young-Laplace equation shows that bigger σ and bigger curvatures cause higher tensions,
pushing the drop surface to its curvature center, tending to keep the drop rounder.

Figure 11 brings moments of the drop for Ca = 0.0625, λ = 10 and a = 0.55, and
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Figure 9: Moments of the drop flowing through the channel, for Ca = 1.

Figure 10: Moments of the drop flowing through the channel, for Ca = 0.0625.

Figure 11: Moment of the drop through the channel, for Ca = 0.0625, λ = 10 and a = 0.55.
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shows that the drop assumed an unexpected geometry, indicating a method instability in one or
more instants of the simulation. This instability can happen for three reasons (or a combination
of them): A high curvature somewhere on the drop surface created a high tension, resulting
in a fast evolution for which the time-step was not refined enough to capture the deformation
smoothly. Discontinuities on the surface, as it is shown in Fig. 12, results in wrong curvature
calculations. Curvatures centered outside the drop were not expected in the formulation, being
one of the instabilities causes. The first and the second mentioned causes can be corrected
refining even more the time-step and the mesh, respectively. The third cause requires a method
to recognize concave and convex surfaces. There are, in the literature, some techniques to
control the simulations avoiding instabilities. Yan et al. (2006) calculated the time-step in each
iteration using a maximum node displacement allowed. Another authors prefer to calculate
the time-step in function of the drop relaxation characteristic time (Oliveira, 2007). It was not
found in the literature a method to treat the discontinuities over the drop surface for continuous
quadratic elements.

1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Figure 12: Drop surface discontinuities after a high deformation, for Ca = 0.25 and λ = 10.

With the drop deformation, the nodes over the surface are no longer equally distributed,
they tend to be concentrated in the front and back part of the drop. This fact does not seem to be
a problem for the method stability and accuracy, because these two regions present the surface
higher curvatures, in other words, they need more careful treatment in the method. However,
Wrobel et al. (2009) showed a node relocation method, used in each iteration, to keep the nodes
equally spaced during the simulation.

Figure 13 shows the capillary number influence over the pump pressure2 curve. Smaller
capillary number represents higher pump pressure. It can be noticed that the greater pressure
increase happens between x*= 0.4 and x*= 0.6, when the drop is passing through the conver-
gence (higher deformations). After the drop enters in the channel, the pump pressure oscillates
around the value reached in the constriction region.

The relative point x*= 0.59 was adopted as reference to do a deeper analysis on capillary
number influence over the pressure behavior. For different viscosity ratio values, this relation is
shown in Fig. 14. This plot basically shows a linear relation between Ca−1 and ∆P/P ∗.

4.4 Viscosity ratio effects

The subject, now, will be the study of viscosity ratio, λ, effects over the drop flow through
the converging channel. Figure 15 shows the shape of 5 different drops at the same moment.
For all cases Ca = 0.25 and a = 0.55, but the viscosity ratios are different.

2P ∗ is the pressure difference obtained for the flow in the channel without the drop presence, where P ∗ = 149.
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Figure 14: Pump pressure for x*= 0.59 in function of Ca−1 for different λ values.

From Fig. 15, higher viscosity ratios reduce the drop deformation. In fact, the higher is
the viscosity ratio, the higher is the droplet deformation resistance. Note that, while capillary
forces tend to make the drop round, the viscosity ratios act on your deformation resistance.

The Fig. 16 clearly shows the influence of viscosity ratio over ∆P/P ∗ curves. Higher val-
ues for λ imply higher values for pump pressure. All curves present a similar shape. Figure 17
presents the obtained values to ∆P/P ∗ for the relative drop position x*= 0.59 for different λ.
This plot shows that the relation between ∆P/P ∗ and λ is basically linear and positive.

4.5 Initial drop diameter effects

Finally, the initial drop diameter, a, effects in the flow was studied. Figures 18 to 20
show the drop form for different sizes through the channel. For all cases, λ = 10 and Ca =
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Figure 15: Drop shapes for the same instant. From the left to the right, λ = 10, 15, 20, 30 and 40, respectively.
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Figure 16: Pump pressure in function of λ, for Ca = 0.25.
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Figure 17: Pump pressure for x*= 0.59 in function of λ, for Ca = 0.25.
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0.25. Bigger drops need to deform more to pass through the channel throat, confirming the
high extensional flow character close to the constriction. Consequently, the pump pressure is
increased, as it is shown in Fig. 21. Figure 22 brings the maximum pressure obtained in the
flow in function of the drop initial diameter.

Figure 18: Drop shapes through the channel, for a = 0.70.

Figure 19: Drop shapes through the channel, for a = 0.50.

Figure 20: Drop shapes through the channel, for a = 0.30.

Figure 21 confirms the increase for the pump pressure as bigger the drop initial diameter
is. This phenomenon is consequence of the higher drop strain rate when it is crossing the
constriction, increased with the drop diameter. In Fig. 20, the last moment exposed for this
drop size showed an instability, which did not happen to the others two cases. Smaller radii
are associated to intense curvatures, and how it was said before, curvature is the parameter
which creates more problems for the method. Finally, Fig. 22 shows a relation, approximately
quadratic, between the maximum ∆P/P ∗ and a.
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Figure 21: Pump pressure in function of the drop initial diameter a, for Ca = 0.25 and λ = 10.

y = 1.0835x2 - 0.4276x + 1.1681
R² = 0.9988

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0.3 0.4 0.5 0.6 0.7

ΔP
/P

* 
m

ax

a

Figure 22: Maximum pump pressure in function of a, for Ca = 0.25 and λ = 10.

5 CONCLUSIONS

The Boundary Element Method was used to study the effect of physical and geometrical
parameters on the flow of an emulsion drop through a converging channel. First, the conver-
gence and accuracy of the method were studied in relation to the mesh and time step refinement.
The two parameters used for that error study were the numerical error for the outlet flow rate
and drop area, both considering the mass conservation and the fluids incompressibility. By these
results, the parameter for the number of elements chose was Ne = 7, which presents an error
around 1.5% for the outlet flow rate, and a time step ∆t = 0.01, presenting smaller errors than
0.5% for the drop area. After the determination of these two simulation parameters, the study of
the capillary number (Ca), viscosity ratio (λ) and drop initial diameter (a) effects were carried
out. In relation to the drop shapes, smaller Ca makes the drop rounder, while bigger λ makes
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the drop more resistant to deformations. As bigger it is a, more deformation is suffered by the
drop to enter the constriction. The pump pressure increases for smaller Ca, bigger λ and bigger
a. The relation between Ca−1 and ∆P/P ∗ is basically linear and positive. The same happens
between λ and ∆P/P ∗. While, between a and ∆P/P ∗ is still positive, but quadratic.
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