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Abstract. One of the biggest challenges of engineering is enable computational solutions that
reduce processing time and provide more accurate numerical solutions. Proposals with sev-
eral approaches that explore new ways of solving such problems or improve existing solutions
emerge. Some of the areas dedicated to propose such improvements is the parallel and high
performance computing. Techniques that improve the processing time, more efficient algorithms
and faster computers open up new horizons allowing to perform tasks that were previously un-
feasible or would take too long to complete. We can point out, among several areas of interest,
Fluid Dynamics and Fluid-Structure Interaction. In this work it was developed a parallel com-
puting architecture in order to solve numerical problems more efficiently, compared to sequen-
tial architecture (e.g. Fluid Dynamics and Fluid-Structure Interaction problems) and it is also
possible to extend this architecture to solve different problems (e.g. Structural problems). The
objective is to develop an efficient computational algorithm in scientific programming language
C ++, based on previous work carried out in Computational Mechanics Laboratory (CML) at
Polytechnic School at University of Sdo Paulo, and later with the developed architecture, exe-
cute and investigate Fluid Dynamics and Fluid-Structure Interaction problems with the aid of
CML computers. A sensitivity analysis is executed for different problems in order to assess the
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best combination of elements quantity and speedup, and then a perfomance comparison. Using
only one GPU, we could get a 10 times speedup compared to a sequential software, using Finite
Element with Immersed Boundary Method and a direct solver (PARDISO).

Keywords: Fluid-Structure Interaction, Finite Elements, High Performance Computing, GPU,
CUDA

1 INTRODUCTION

Nowadays the biggest challenges of engineering is to enable computational solutions that
reduce processing time and provide more accurate numerical solutions. Proposals that explore
new ways of solving such problems or improve existing solutions emerge. One of the biggest
areas that we can point out is the parallel and high performance computing. Techniques that im-
prove the processing time, more efficient algorithms and faster computers open up new horizons
allowing to perform tasks that were previously unfeasible or would take too long to complete.

Fluid-Structure Interaction (FSI) is a problem that involves fluid dynamics and structures,
and the solution of one problem depends on the solution of the other. Turning it into a coupled
system. If solving a Fluid Dynamics problem with different boundary conditions is a difficult
task, a FSI adds the challenge of solving a simultaneous solution of the coupled system where
the boundary conditions of the interface between the fluid and the structure are unknown a
priori, since they depends on the solution of the problem itself. Besides, some problems of
interest in engineering involves big displacements of the structure and fluid convection, so that
FSI is a strongly non-linear problem.

Some of the challenges that numerical modeling of FSI offers are, among others, the spatial
domain occupied by the fluid changes in time as the interface moves and the mathematical
model to handle that. Accurate representation of the flow field near the fluid-structure interface
requires that the mesh be updated to track the interface and this requires special attention in
three-dimensional problems with complex geometries (Tezduyar et al., 2005).

One difficult that we could mention is simulating problems of this nature due to high speed
fluid flow that normally would require complex turbulence models (Gamnitzer et al., 2010).
Add to that the fact that simulation time, in general, needs to be wide, so we could visualize the
physical phenomena, and short time steps, one demand of any numerical simulation of fluids.

This combination, naturally, demands high performance computing and a model reduction
order (Lieu et al., 2006), and parallel computing.

This work is divided into four main sections. The first section will cover the parallel com-
puting. The second section will cover the FSI with Immersed Boundary method theory. The
third section will handle the polygon integration using the theory described in (Sudhakar et al.,
2014). The last main section will present some numerical simulations (only Fluid Dynamics
with Immersed Boundary Methods) in order to test and validate the software implementation
and compare the results from a sequential and a parallel execution.

2 PARALLEL COMPUTING

2.1 Sequential computing

Sequential computing has been used for more that 60 years, since John Von Neumann cre-
ated digital computing in 50s. It is defined as a system that has a central processing unit (CPU)
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and a memory unit. The processing speed of any application depends, mainly, on the instruc-
tion execution rate, cycles per second (clock) and transfer rate (bandwidth) between memory
and CPU.

Gordon E. Moore.
Moore’s law was established by Gordon Earl Moore and says that the number of transistors

inside a microprocessor will double every two years.

“The complexity for minimum component costs has increased at a rate of roughly
a factor of two per year. Certainly over the short term this rate can be expected to
continue.”

Microprocessors based on a single CPU (i.e. Intel Pentium family and AMD) obtained an
exponential growing in processing speed and cost reduction in the last decades. CPUs got to
GFLOPs (Giga Floating-point Operations per Second) in usual desktops to hundreds GFLOPs
in clusters.

2.2 Parallel computing

Developers believed that improvements in hardware would increase the processing speed
and software execution. However this growing has shrunk since 2003 due to high energy con-
sumption and heat dissipation problems inside processors, limiting the clock frequency and the
efficiency on each clock period in a single CPU.

This way, microprocessors suppliers and producers changed CPU internal technology so
that they could use multiple processing unit (Multi-core processors). This change in hardware
had a major impact in developers software community.

Latency vs. Throughput.
The following concepts are important and contradictories and are usually used to decide

which approach could be applied to a specific hardware or software.

* Latency or execution time is the time needed to a task to be concluded. It is measured in
time units or clock periods.

* Throughput or bandwidth is the number of tasks that must be executed in a specific time.
It is measured in units of something that is been produced (I/O, iterations, transfered
memory) per unit of time.

Some examples:
* Clock frequency: 100 MHz
 Throughput of a device: 640 Mbits/second

Speedup.

Speedup is a performance metric to determine how much the performance of a system is
inferior or superior to other system.

Example:
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» System A executes a specific task in 200 cycles;
» System B executes a specific task in 350 cycles;
* 350/200 = 1.75, system B € 1.75 times faster than system A.

In Molyneaux et al. (2009) an extensive analysis of a series of performance metrics is dis-
cussed that could be used whether in hardware or in software, as well as in computer networks
among other applications.

Gene M. Amdahl.

In Amdahl et al. (1967), Gene M. Amdahl says:

“... For over a decade, single computer has reached its limits and truly significant
advances can be made only by interconnection of a multiplicity of computers in
such a manner as to permit cooperative solution. Demonstration of the single pro-
cessor approach and the weaknesses of the multiple processor approach in terms of
application to real problems ...”

This quote is known as “Amdahl’s Law”, and is frequently used in parallel computing
to predict the maximum theoretical speedup obtained when multiple processors are used in a
system. This law shows that, unless the software (or part of the software) is 100% efficient when
multiple processors are used, the system will benefit less even when adding more processors to
this system.

The following equation shows the global speedup of the system when “Amdahl’s Law” is
applied to a system:

1

where:
* S(n) is the theoretical speedup;
* P is the fraction of an algorithm that can be parallelized;
* n is the number of processors or threads used in the process.

Fig. 1 shows the theoretical speedup of a parallelized system related to the number of
processors or threads used in this system. It can be seen that even with the increment of the
number of processors or threads that will be directed, in theory, to the system, the theoretical
speedup does not increase, limiting the system.

23 GPU

In this section is presented the different type of memories available in GPU. Section 2.3
describes the assembly of global matrices used in the software developed in this work. In
Farber (2011) can be found a complete description of all available memories in GPU, the best
way to use them, how to get the best performance in GPGPU applications and some examples
with CUDA programming language.
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Figure 1:  Graphic with theoretical speedup with the number of processors or threads

used in a system related to the fraction of a code that could be effectively parallelized
(http://www.rtcmagazine.com/articles/view/103209).

GPU Memory.

GPGPU applications has available memories inside graphic card microprocessor and the
card itself. The fastest and more scalable ones are shared memories. The only limitation are the
available size for storage of information (some KB) and only some threads inside a block can
access it.

The global memory is a system of shared memories that can be accessed by all threads of
the GPU. The available size for storing information, usually, is measured in GB, turning them
into the biggest memory of the GPU, more used, but the slowest one.

Table 1 shows the bandwidth of different memories available in the GPU.

Table 1: Bandwidth of different memories available in GPU (Farber et al., 2011).

Register Memory = 8000 GB/s

Shared Memory = 1600 GB/s

Global Memory 170 GB/s

Mapped Memory = 8 GB/s (unidirectional)

It can be seen that the global memory must be well used in order to obtain the maximum
performance in GPGPU application. The same way, informations that are stored in shared
memory must be well dimensioned so that it could fit in the few KB available.

Memory types.

Table 2 shows the different types of memories available in GPU e their characteristics

Fig. 2 illustrates a schematic diagram of different types of memories and how transfer
between them occurs.
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Table 2: Memory types available in GPU and their characteristics (Farber et al., 2011).

Type Location Access Scope

Register ~ On-chip (Inside graphic card microprocessor) Read/Write One thread

Local On-chip Read/Write  One thread
Shared On-chip Read/Write  All threads in a block
Global Off-chip (Graphic card) Read/Write  All threads + host
Constant  Off-chip Read All threads + host
Texture  Off-chip Read/Write  All threads + host

Device (Grid)

Block (0, 0) Block (0, 1)

Shared Memory Shared Memory
Registers Registers Registers Registers
Thread (0,0) | Thread (0, 1) Thread (0,0) | Thread (0, 1)

! ! I }

Host _ l\Glllgr?'l?)lry

Constant
Memory

Figure 2: Schematic diagram of internal memories of GPU and data transfer between them.

Registers.

Register memories are the fastest of the GPU and the only ones that has the bandwidth and
latency capable of suppling the maximum performance for GPGPU applications. Each kernel
can access only 63 register memories, limiting the utilization by GPGPU applications. This
value can vary between 63 and 21 depending on the number of threads executed in parallel.

Local.

Local memory is used when the information that ones need to store does not fit inside a
register memory.

Shared.

Shared memory can store 16 KB or 48 KB per block of threads and are organized in groups
of 32 each one with 32 bits. Ideally, 32 threads can access a shared memory in parallel without
losing performance. But unfortunately can occur conflict of access when multiple requests are
made by different threads of the same block. This requests can be even to the same address
or multiple addresses of the same group. When this happen, the hardware serialize memory
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operations, that is, if threads access at the same time the same address of memory, then the
requests are executed sequentially, turning the process n times slower.

The biggest challenge in memory utilization of shared types are in its access. It is necessary
that the requests are dimensioned so that each thread access its block of information without
causing conflict of access and in a single transaction.

Fig. 3 illustrates the access to this memory from CPU.

Shared Memory Shared Memory

A >

Thread (0, 0) | §Thread (0, 1) Thread (0, 0) | §Thread (0, 1)

J

Figure 3: Shared Memory utilizations to increase speedup execution in parallel.

This work used this type of memory. In order to avoid any conflict of access, as described
earlier, it was necessary to define which information would be used by assembly of global
matrices and how each thread would access this informations. Fig. 4 shows nodal data for a
three-dimensional problem, where:

* z,y and z: The coordinates of each node of the finite elements;
* (4, L: The global and local degrees of freedom of each node of the finite elements;
* u, v, w: The velocities of each node of the finite elements in x, y and z directions;

* p: The pressure of each node of the finite elements.

DOF u DOF v DOF w DOF p
— — — —

‘Xi|yi| zi|Gi| Li| ui|Gi| Li|vi|Gi| Li|wi|Gi| Lil

Global Local

Figure 4: Nodal data for a three-dimensional problem.

Nodal data information are sent to shared memory in contiguous way, so that, only on
transaction is necessary for the 21 threads access the informations of the shared memory. This
is called memory coalescing. The only access that will be used in a single transaction is the
sequential and aligned, thus, is the access that gives the maximum performance.
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Fig. 5 illustrates how nodal data are sent to shared memory and then for contiguous access
and Fig. 6 presents a schematic diagram (adapted from Cecka et al. (2011)) of how assembly is
executed in GPU and then in CPU.

Elemento 1| Elemento 2 Elemento N

N6 1 | Xor | Y |G| Ly | Usg |Gy | Liy | Vs |G [ Lg
Né 2 X12 y12 G12 L12 u12 G12 I-12 V12 G12 L12
Né 3 X13 y13 G13 L13 u13 G13 L13 V13 G13 L13
N6 4 | Xi| Vie[Gra| Lig| Usa| Gra | Lia | Vig |Gia| Lia
Né 5 X15 y15 G15 L15 u15 G15 L15 V15 G15 L15
NéG X16 y16 G16 L16 l'l16 G16 L16 V16 G16 L16

- —_—

DOF u DOF v DOF p

|X11|y11 |G11| L11| u11|G11|L11| V11|G11| L11| |XN6

N -
—
Elemento1/N6 1

Guf LU,

yN6

Figure 5: Contiguous access to nodal data.

Shared Nodal Data: | |, |, |, |
Scatter:
Local Nodal Data:  --- '| | | = ||| TT T T J----Thread sync
Element subroutine: /\ /\ /\
Element Data: __.|4| | 4 ]
Reduction: - ‘ |

System of Equations: l I4 l I‘ l r l |

Figure 6: Assembly of global matrices in GPU and then in CPU (adapted from Cecka et al. (2011) to be used
in this work).

The schematic diagram shown in Fig. 6 is executed as Table 3.

In order to use shared memory it is necessary to fit the nodal data in 16 or 48 KB. Each and
every finite element has a certain number of nodes and therefore a certain quantity of bytes. By
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Table 3: Algorithm of assembly of global matrices.

Algorithm Assembly of global matrices

1:  Shared Nodal Data, Scatter and Local Nodal Data: First the kernel scatter the information
from shared memory in a local array so that each thread access data in contiguous way;

2: Thread Sync: Execute a synchronization operation that guarantees that each thread access
shared information in an aligned and sequential way, keeping all in one transaction;

3: Element subroutine: Execute finite element subroutines as described in Section 3;

4: Element Data, Reduction and System of Equations: Update data in shared memory (i.e.
velocities in directions x, y e z and pressure) so that it can be sent to global memory and then
to CPU to conclude assembly of global matrices.

using double precision it is necessary 336, 504, 720 e 1944 B for elements of type P2P1, Q2Q1,
tetrahedral with 10 nodes and hexahedral with 27 nodes, respectively, as shown in Fig. 7a and
7b.

x|y [e]L]ule|L]|v]G]L] x6nss=3368
——~—""—~—"gg~>—"gg——>—"
168 8B 8B 8B

— —
oY

56 B

P2P1 (Taylor Hood)

(a) Number of bytes for a Taylor-Hood P2P1 finite element.

el [CTC T E W] s s - s
16 B 8B 8B 8B

~— —
———

56 B

Q2Q1 (Taylor Hood)

(b) Number of bytes for Taylor-Hood Q2Q1 finite element.

As an example, the maximum number of finite elements of type P2P1 that could be stored
in shared memory for fluid dynamics or fluid-structure problems using Immersed Boundary
Method are: 49 152 B/336 B = 146 elements. Since each transaction are executed in groups of
32, the ideal situation is to store 128 elements.

Constant.

Constant memory is excellent to store information that are read only and then be sent to all
threads that are being executed in GPU. Its limitation is 64 KB.

Global.

The biggest limitation of global memory is its bandwidth. It is really important to have
in mind this limitation so that one could develop GPGPU applications that use global memory
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only when it is strictly necessary, avoiding transfer of information between CPU and GPU.
Certainly there is no way of avoiding access to this memory, but is essential to have in mind its
limitations.

Some rules of global memory:

1. Send information and keep it in memory, avoiding sending again to GPU, as long as
possible;

2. Execute all kernels;
3. Try to reuse the information stored avoiding bandwidth limitations.

In Farber et al. (2011), author presents a series of interesting ways to avoid the bandwidth
limitation and other techniques to raise the performance of GPGPU applications.

3 FLUID-STRUCTURE INTERACTION

3.1 Navier Stokes equations

Let €2; in R" be the spatial domain with boundary I'; at time ¢ € (0,7"). The subscript ¢
indicates the time-dependence of the domain. The Navier-Stokes equations of incompressible
flows are written on €2 and V¢ € (0,7T) as

p<aa—1;+u-Vu) V- T + pb, )
V-u = 0, 3)

where p, u and b are the density, velocity and the external force vector, respectively. For a
Newtonian fluid the stress T" and the strain rate tensors € (u) are defined as

T = —pI+2pe(u) @
e(u) — %[Vqu(Vu)T] 5)

Here p is the pressure, I is the identity tensor, p is the viscosity.

The divergence of the stress tensor is written as

V-T=-Vp+pVu+pV(V - u) (6)
Since it is assumed that the flow is incompressible, the last term is zero. Therefore

0

0—1;+u-Vu:—Vp+uV2u—|—b. (7

Note that all terms are divided by p in Eq. 7, originating the fluid kinematic viscosity v and
the kinematic pressure p.

3.2 Boundary and initial conditions

The essential and natural boundary conditions for Eq. (2) are represented as

wu=u on [, ®)
(vVu—pl)n=t on T}, 9)
u=uyg on 2 and t=0. (10)
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3.3 Weak form

Choosing arbitrary functions w € H} () and ¢ € £, () for the velocities and pressure
test functions respectively, we can write the system of partial differential equations described
by Eq. (7) in the equivalent integral form as

(w,u)o+ (w,u - Vu), = — (w,Vp)g+ (w,V - (2vViu)),— (¢, V- 1)+ (w,b), (11)

V (w, q). Now, integrating by parts the viscous and pressure terms, the weak form of the Navier-
Stokes equation for incompressible fluid flow problems can be defined as

(w,4)g+c(u;w,u), =—(p,V-w),—a(w,u),— (¢, V-u),— (w,f)rt+(w,b)9 (12)

V (w, ¢). Note that the boundary term over I" vanishes at I',, because of the test function. The
convective and viscous terms have been written in a compact notation defined by the following
bilinear and trilinear forms:

a(w,u), = /VS’UJZQI/VS’U,dQ (13)

Q
c(u;w,u), = /w “(u - Vu) dQ (14)
Q

3.4 Time integration

The time integration scheme adopted to solve the Navier-Stokes equations is the Newmark
method, where the velocity derivative with respect to time at time level n + 1 can be written as

1 n+l _ . n 1—
,uln-l—l — _('U, u ) . ( ’7)’(1,”, (15)
v At g

where v = 1/2 is adopted as the Newmark parameter in order to obtain second-order conver-
gence in time. Rewriting the weak form of the Navier-Stokes equation in Eq. (12),

{ (w7 u)Q + ’)/At [C (u’; w, U’)Q ta (w7 U’)Q - (V ’ va)Q + (q= V- u)Q - (wvz)rt a (16)
— (w,b) ]} = (w,u"), + (1 =) At (w, a"),, ¥ (w,q).

3.5 Finite Element discretization

This work adopts a mixed formulation so that the fluid finite elements have two unknowns
(velocity and pressure) as primitive variables and the Lagrange multipliers are additional un-
knowns that must be discretized along the interface. The approximation functions for the ve-
locities and pressure, defined locally inside a finite element domain 2., can be defined as

u' () | N,u, and p"(2)],_, =N,p, (17)

respectively. N,, and N, are the shape functions for the velocity and pressure, respectively and
u. and p, its nodal values. The test functions are defined in a similar way by

w" (x) ‘ = N,w, and ¢"(x) |mGQ =N,q, (18)

CBEQE -

EEQE
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®

e Velocity
O Pressure

® . ®

Figure 8: P2P1 Taylor Hood element.

In this work, in order to not violate the LLLB compatibility condition for mixed problems, it
was used a Taylor-Hood P2P1 element (quadratic interpolation in velocity and linear interpola-
tion in pressure) as illustrated in Fig. 8.

After some algebraic manipulations of the equations demonstrated in previous sections and
using the Finite Element discretization just presented we have

M M 11—y, .
———utty[C un+1 + K un+1 +G n+l fn+1 ) L Mu”

YAl (C (u™) + K] P yAt v (19)
GTu"™ =0

where the local matrices are defined as

M, = NZNudQe Mass matrix
Qe

K, = /Q BIyBudQe Viscous matrix

C. = /Q NZ [(N,u.) ® €] N,dQ, Convective matrix

G, =— /Q (V- Nu)T N, dS2, Gradient operator

GeT E Divergent operator

f. = / NZEdFts + . NZbdQe Field forces and boundary conditions

Ite e

3.6 Interface

The strategy adopted in this work is to use embedded interfaces in FSI simulations to com-
pute the fluid flow variables from a Eulerian fixed mesh. The fluid mesh is defined over the
fluid domain and extends totally into the structural domain or into some portion of it, as shown
in Fig. 9.

For that reason, the structure’s wet surface, in general, does not match the fluid grid nodes,
hence the fluid velocities at the interface must be weakly enforced. We define a domain that
contains the fluid 2/ and the structural Q* (Fig. 10). I"? is the interface between the fluid and
the structure domains and n/ and n® their respective unit outward normal vectors.

Now, to ensure the fluid velocity compatibility at the interface, we must have, for a non-slip
interface type,

w=d°=u Vaxel (20)
T'n/ = -T°n* Vxel® 21)
CILAMCE 2016
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Figure 9: Typical fluid mesh for embedded interface approach (Gomes et al., 2013).

2N =

ol

N

Figure 10: Fluid and structural domains (Gomes et al., 2013).

where Eq. 20 is the kinematic interface condition, d is the structure velocity and Eq. 21 repre-
sents the dynamic condition. The superscripts on these equations distinguish the variables form
the different domains (fluid and structure).

The imposition of Eq. 20 in the fluid problem can be done using Lagrange multipliers.
Therefore, it is possible to define a functional given by

n=(Aw —d) (22)

where ) represents the Lagrange multiplier of condition Eq. 20 and constitutes an additional
variable field for the problem. The Lagrange multiplier can be identified as a traction acting
along I"*. The variational form of this function, considering the structure movement to be known
a priori at the time of solving the fluid problem, is

STI = (5)\, ul — dS) + (A 0uf) . (23)

T

These terms must be added to the weak form presented in Eq. 16. Thus we have
{ (w,u)g; +7At[c (u;w, w)gs +a(w, u)gr — (V-w,p)gr + (¢, V- u)g, —
— (w.8), — (A u—a"), — (w,A)p — (w,b)g ] | SR )
= (w,u")qr + (1 —7) At (w, ") g, V(0N w, q)

where the convective and viscous terms defined in Eq. 12 are restricted to I'™.

3.7 Discretization of the interface

The discretization of the interface can be done in several ways. The most intuitive and
adopted technique is to define nodes at the intersections between the interface and the fluid
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elements. These nodes are then used to define the Lagrange multipliers’ nodal values, and
some appropriate approximating functions are used to interpolate the values along the interface.
In our simulations, the adoption of low-order finite elements has shown a high sensibility to
numerical instabilities in the Lagrange multiplier results.

In order to address this problem, we propose an alternative technique to discretize the inter-
face independently of the fluid mesh (Gomes et al., 2015). Additionally, discontinuous piece-
wise constant shape functions were adopted to simplify the implementation. The schematic
discretization of the interface is shown in Fig. 11, where the structured mesh consists of quadri-
lateral fluid elements.

0’

A;-l Ql

Figure 11: Discretization of the interface between wet surface and the fluid (Gomes et al., 2013).

The approximating and test functions of the Lagrange multipliers can be defined as

N (@) |, = NoAe and 6" (z) |, = NadA (25)

zel’

N, is the shape function of the Lagrange multipliers.

4 POLYGON INTEGRATION

In this section it is presented the main topics of polygon integration theory applied in this
work. The complete theory one can find in (Sudhakar et al., 2014).

Consider the integration of polynomial function F in domain R C R" like:
I = / FiR (26)
R

Let R be the region in R™ delimited by closed surface S (in present work {2, and can be
seen in Fig. 10). Let n be the vector normal to external surface of R in S, so, the divergent
theorem defines that for any vector F' defined in R, like

/V-FdR—/F~ﬁd8 27)
R S

It can be defined the vector F' as being
F =G (x)i+0j+ 0k (28)

where ¢, 7 and k are the normal vectors in directions x, y and z, respectively.
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Table 4: Algorithm of polygon integration

Algorithm Integration in {polygon} [polyhedron]

1:  Identify and store {sides} [faces] of cut polygon;
Define {line} [plane] of reference;

Delete {sides} [faces] that are over {line} [plane] of reference;

Rl

Distribute main Gauss points over each {side} [face] of polygon that has normal component
different from zero;

5:  For each main Gauss point over {side} [face] project vector with coordinates X; at {line}
[plane] of reference

5.1: Distribute internal Gauss points between X; and «;

5.2: For each internal Gauss point x; calculate G (X;) = G (X;) + |J|F (x; ;) Wi,;» where |J] is
the Jacobian of projected line;

6: Calculate Ir = Ig + |J|G (X;) n, (X;) W;, where |J| is the Jacobian of polygon site with
normal component different from zero.

Therefore
G (x) :/ Fdx (29)

where x is a reference point over integration line.

Substituting in Eq. 27 and 28 in 29, one gets

/FdRz/g(x) n,dS (30)
R s

where n, is the vector component n in direction x.

The integration of the cut polygon is, therefore, executed like Table 4.

S NUMERICAL SIMULATIONS

This section presents the results of numerical simulations. In this work it was developed a
computational code implementing the theory described in previous sections and the assembly
method executed in GPU as described in Section 2.3.

The numerical simulations was executed in two phases, one sequential and one parallelized
in GPU. This way we could test and validate the software even for computers without GPU and
with computers that has graphic board that could execute CUDA.

The setup used for the performance analysis and the comparison between the sequential and
parallel executions was composed of an NVIDIA GeForce GTX 750 processor (driver version:
364.72) installed in PCI Express 3.0 bus of a Intel Core 15 3.20 GHz with 16 GB of RAM and 64
bits architecture running Windows 10 Professional. The graphic board has 4 multiprocessors,
512 CUDA cores, 1024 MB of DDRS5 memory with 80.16 GB/s of bandwidth. CUDA version
is 5.0.
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For all simulations was first executed a sensitivity analysis with the total execution time
of assembly of global matrices, K, G, M, C and Cq, the solution of linear system and the
simulation with different number of finite elements. This way was possible to check the quantity
of finite elements that we could benefit from GPU utilization. The times presented for the
parallel code include kernels calls for assembly of global matrices, but do not include the time
spent at CPU-GPU data transfer.

It is necessary to find the best combination of blocks and threads that generates the least
computational cost and the best performance. Exhaustive experiments was executed in order to
find the relation and best configuration:

(N + #Threads — 1)

Blocks =
#Blocks #Threads

€1V

where
» #Blocks: Number of blocks executed in parallel;
* N: Number of finite elements in the problem;

» #Threads: Number of threads executed per block — This number is related to the number
of bytes that are stored in shared memory..

6 FLOW PAST CYLINDER

This is another classical example and used as validation case even for Fluid Dynamics or
Fluid-Structure Interaction codes. In order to verify and validate GPU code, the parameters
found in Schaffer et al. (1996) will be used once this reference presents the results of different
research groups.

In this section will be presented one example with a non-conforming mesh using Immersed
Boundary Method. The drag and lift coefficients were calculated so that we could get a quanti-
tative evaluation, software validation e result comparison (i.e. Gomes et al. (2013) and Schaffer
et al. (1996) — from all groups available, this work used the results from Binsch, E. et al.
from Univ. Freiburg, Inst. fiir Angewandte Mathematik since they solved the Fluid Dynamics
problem using Finite Element with an unstructured mesh and Taylor-Hood P2P1 elements..

Fig. 12 describes the geometry and boundary conditions of the following examples.

6.1 Non-conforming mesh

Sensitivity analysis

For the sensitivity analysis of this simulation it was used meshes with different number of
Taylor-Hood P2P1 finite elements (108, 518, 1040, 5104, 10816, 20856 e 41292 finite ele-
ments).

Fig. 13 shows the comparison between sequential and parallel execution of the total time of
assembly of global matrices and the reached speedup. Fig. 14 shows the comparison between
sequential and parallel execution of the total time of simulation and the reached speedup.
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Figure 13: Total time comparison for assembly of global matrices and reached speedup.
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Figure 14: Total simulation time comparison and reached speedup.

The comparative results show a considerable reduction in total processing time, with an
speedup of approximately 9 for the assembly of global matrices for mesh with 5104 finite el-
ements. The speedup curve, shows a reduction in its inclination and a stabilization over 5000
elements. So that, above this value, increasing the number of elements does not obtain a signif-
icant speedup, as one can see for more coarser meshes.

The total solution time of this problem shows a speedup of approximately 4.5 for the mesh
with 5104 finite elements. This is due to the fact that the solution of linear equations is executed
in a sequential way, using PARDISO package (Kusmin et al., 2013), . Above 12000 elements,
there is a decrease in its speedup.

One can see that with a more coarser mesh there is little advantage in using parallel pro-
cessing instead of sequential. The reason for that is related to the time necessary to GPU starts
its parallelization process (i.e. initialization of blocks of threads, threads and other internal
processes).

Results

A mesh with 42176 Taylor-Hood P2P1 finite elements and 84973 nodes was used and is pre-
sented in Fig. 15.

Figure 15: Mesh with 42176 Taylor-Hood P2P1 finite elements and 84973 nodes.
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Analytical solution — Circumference.

There are two ways that can be used to generate the structure domain with circumference
sahpe. Whether with a finite element mesh or using an alnalytical equation. The way used in
this work is through and analytical equation.

Transient case.
The inflow velocity is given by
U(0,y,t) =4Uny (H —y) /H*, V =0

with U,, = 1,5m/s. Reynolds number, for this velocity and duct configuration is given by
Re = 100.

Fig. 16 and 17 show the results of velocity field in m /s and pressure in Pa for this config-
uration for different instants of time.

(b)

Figure 16: (a) Velocity field and (b) pressure for t = 2.5s.

The quantitative results are presented in Table 5.

Table 5: Maximum drag and lift coefficients comparison for transient case.

CLmaxz  CDmax

Present work with 180 Lagrange Multipliers 0.9103  3.2267
Gomes et al. (2013) with 170 Lagrange Multipliers 1.0369  3.2450
Bénsch, E. et al. (1996) 1.0060 3.2240

Performance analysis

Fig. 19 shows the comparison between sequential and parallel execution of total time for as-
sembly of global matrices and simuation and reached speedup.
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(b)
Figure 17: (a) Velocity field and (b) pressure for ¢t = 6.0s.
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Figure 18: Drag and lift coefficients over time.
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Figure 19: Total time comparison for assembly of global matrices and reached speedup.
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The comparative results show a considerable reduction in processing time with a speedup
of approximately 8 for assembly of global matrices and approximately 3 for the total simulation
time. These values agrees with sensitivity analysis, even with speedups lower than expected.
This is due to the fact that the mesh has refinements near the cylinder, increasing then, the total
processing time.

The coefficient drag and lift results corroborate with the results found in Binsch, E. et al.
(1996). The size and geometry of domain has huge impact on these coefficients and should be
carefully chosen in order to have the results as those shown in this paper.

7 CONCLUSION

This work has presented a computational implementation code for the solution of Navier-
Stokes equation for two-dimensional problems, whether stationary or transient, using Finite
Elements with Immersed Boundary Method. Taylor-Hood P2P1 finite elements stabilized for
LBB condition were used in all meshes. It was developed an algorithm in C++ language for
sequential and parallel execution in such way that it could solve Fluid Dynamics and Fluid-
Structure Interaction problems in computers with graphic boards that has the power of GPU
and CUDA and in computers without graphic parallelization potential. Some examples were
simulated in order to validate and assess their performance when comparing sequential and
parallel executions. Some conclusions can be pointed out:

* Developed computational code is robust for laminar flows and easily extensible for other
problems different from fluids (i.e. structural problems);

* There is a considerable speedup of approximately 10 in assembly of global matrices and
4 for total solution time in comparison with a sequential code, using only one graphic
card;

* The bottleneck (to not get greater speedups) is in time for the solution of linear equations,
depending exclusively on available RAM memory and CPU processing power (PAR-
DISO);

* A common bottleneck when using GPUs for solving scientific problems is in the data
transfer between CPU and GPU. In this work it was presented a novel and power way
of using shared memory so that access to GPU memory is made in a contiguous way
increasing speedups in assembly of global matrices.
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