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Abstract. This work presents the numerical simulations of problems of solid and fluid 

mechanics aiming a future fluid structure interaction, considering an immersed flexible beam. 

In recent years, a number of applications dedicated to flow-induced vibrations have been 

proposed in order to satisfy the increasing demand for high performance and safe operation 

of mechanical systems. The vibration response of aircraft wings, bridges, buildings, and 

engine blades, are frequently obtained by using fluid-structure interaction approaches. 

Therefore, the flow-induced vibrations are determined from the mathematical models of both 

the fluid and the submerged structure. A cantilever beam is used to demonstrate the efficiency 
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of the proposed methods for the integrated solution of these domains. A finite element model 

based on the Euler-Bernoulli theory is used to obtain the dynamic responses of the beam. The 

fluid domain is simulated by using the equations of Navier-Stokes associated with the local 

ghost-cell immersed boundary method. The results show the method efficiency in dealing with 

corners and sharp geometries, as beams and airfoils, for fluid-structure problems considering 

immersed boundaries. Further research efforts will be dedicated to numerical tests for 

evaluate coupling algorithms, given the methodologies applied. 

Keywords: Fluid-structure interaction, Finite element model, Ghost-cell immersed boundary 

method, Flexible beams. 

1  INTRODUCTION 

The fluid-structure interaction (FSI) commonly refers to the interaction between a fluid 

and a solid body, where the yield motions of the fluid and the solid are dependent on each 

other. Physically, this phenomenon can be interpreted as action and reaction efforts between 

the structure and the surrounding fluid flow. Therefore, the mathematical models used to 

solve this problem should take into account equations devoted to the motion of the fluid and 

the deformation of the structure.  

Typically, this phenomenon involves a coupled interface that should be solved 

simultaneously. However, the requirement of the computational time is high, making the 

analysis for complex problems impractical. The solution of the coupled system may be 

accomplished by solving the two systems separately with the interaction effects determined 

by a coupled solution (Mitra et al., 2008). 

In this context, this contribution is devoted to evaluate different methodologies for the 

solution of both structural and fluid domain, considering a submerged cantilever beam. The 

dynamic response of beam is given by a finite element model formulated from the classic 

Euler-Bernoulli beam theory.   

The methodologies for fluid domain commonly involves a body-fitted grids. Despite the 

known advantages of this method, a high computational effort is required for motion bodies. 

In FSI problems, where the time deformation of flexible structures as airplane wings, risers, 

and bridges are substantial, the analysis can be impractical. An alternative approach for the 

conventional body-fitted grids, is the use of cartesian meshes applying the immersed 

boundary method. Complex geometries and moving bodies can be simulated by using this 

methodology, once the mesh of the fluid and the body are treated separately. Although these 

advantages, a common problem in the immersed boundary methods is the difficult in leading 

with flows over corners and sharp geometries, as beams and airfoils (Andrade, 2015). 

In the present work, a variation of the immersed boundary methods is used. The local 

ghost-cell immersed boundary (Berthelsen and Faltinsen, 2008) is a robust method which 

allows solving the problem of thin geometries, without loss of accuracy in the solution. The 

central difference scheme (CDS) is applied to express both the diffusive and advection 

contributions of the transport equations on a staggered grid. The results show the efficiency of 

this methodology to simulate immersed bodies and problems involving fluid-structure 

interaction. 
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2  MATHEMATICAL AND NUMERICAL MODELING 

2.1 Structural domain 

In this case, the finite element method is used to obtain the dynamic responses of a 

cantilever beam. The beam element is formulated from the classic Euler-Bernoulli theory. The 

main interest is the bending motion of the system, considering a homogeneous, elastic, and 

isotropic beam. Using the elementary beam theory, the 2-D beam or flexure element is 

developed. It consists of two nodal points and the nodal variables are the transverse 

displacements and the rotations. 

 

Figure 1. Nodal displacements of the beam element 

 

The mass per unit length of the structure element is im A , where  and A are 

respectively the mass density and the cross sectional area of the beam element. The structural 

displacements of an element are approximated by using their nodal values given by: 

 

 ( , ) [ ( )] ( )v x t N x d t                                                                                                                (1) 

 

Where  ( )d t is the vector of time dependent nodal displacements and [ ( )]N x is the 

matrix of shape functions, which indicates that the displacement and rotation fields of the 

beam element are expressed as linear combinations of displacements and rotations of the 

nodes. The mass matrix for the beam element is given by:   

                                

( )

0

[ ( )] [ ( )]

L

T

e i
m m N x N x dx                         (2) 

 

Assuming a linear elastic material, from the potential energy, the stiffness matrix can be 

obtained by: 
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Therefore, the stiffness and elemental mass matrices (k(e) and m(e)) are given by: 
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The differential equations that describes the dynamic behavior of the beam can now be 

written as follows: 

 

     ( ) ( ) ( )g g g extM d C d K d F       
     

                                                                            (6) 

 

where ( )gM  and ( )gK are the global mass and stiffness matrices (finite element model), 

respectively. In this case, the boolean matrix [ ]
i

T  is used to determine the global model from 

the elementary finite element matrices as follow: 
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The matrix ( )gC  is the proportional damping matrix, given by: 

 

( ) ( ) ( )g g gC M K       
     

                                                                                                 (9) 

 

where   and   are the proportional damping coefficients. All externally applied forces in 

the beam are included in the term extF . 

2.2 Fluid domain 

The Navier-Stokes equations associated with the local ghost-cell immersed boundary 

method (LGC) is used to solve the fluid domain. The immersed boundary methods consist in 

represents an immersed body as a field of forces, inserted in the moving equations of fluid. 

The LGC method applied in this work consist in a special group of immersed boundary 

methods with direct boundary condition imposition.  
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A rectangular domain was used for the present simulations and it was discretized with a 

eulerian gridin a non-uniform cartesian frame. The governing equations for a viscous 

incompressible flow can be written as Eq. 10. 

 

( )( ) i j ji i

i

j i j j i

u u uu up
f

t x x x x x



     

       
         

                                                             (10) 

  

In the Eq. (10), p is the pressure,  is the density of fluid, iu  and ju  are the components  

i and j of the vector velocity. The term 
i

f  is the eulerian body force, and gives to the flow the 

presence of a solid body, respecting the conditions of contact fluid-solid. 

The LGC consists in the use of local ghost cells obtained by unidimensional extrapolation 

performed in the direction of discretization term. These extrapolations are use to the calculus 

of derivatives in the cells near immersed boundary, where there is not a complete group of 

neighboring cells used in the discretization of the terms of Navier-Stokes equation. 

To identify the immersed boundary influence, it is provided three kinds of grid cells 

which give rise to boundaries immersed inside the computational domain. The first step of the 

method is to establish the grid-interface relation with a given immersed boundary description, 

such as parametrized curve/surface or triangulation. In this step, based on Berthelsen and 

Faltinsen (2008), all Cartesian grid center nodes are split into the following categories: 

1. Solid-cells: as the name suggests, are cells whose nodes lie inside the solid body in 

solid phase. 

2. Neighboring-cells: grid points in the fluid phase with one or more, depending on 

discretization order method, neighboring points in the solid phase.  

3. Fluid-cells: cells whose nodes lie outside the body, in the fluid phase and far from the 

immersed boundary. 

4. Forcing-cells (for velocity points): grid velocity points in the fluid phase with one 

solid-cell pressure point as neighbor such that the pressure equation can not be applied. 

These points have its velocities values imposed by interpolation strategy and are not 

included on the velocity matrix system. 

 

          

Figure 2. Classification of fluid cells, reprinted from Berthensen and Faltinsen (2008). Active points of 

pressure (●); inactive points of pressure (◌), active points of velocity (■) and inactive points of velocity (□).  
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The Navier-Stokes equations are solved only for active cells. The inactive points of 

velocity out of boundary are imposed by unidimensional interpolation function, considering 

neighbor active points. By this way, the velocity of a boundary point 
1/ 2,i j

x


 is given by a third 

degree interpolation function: 

 

1/ 2 1/ 2
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where u
  is the velocity in the solid wall of position x , and 1/ 2 3 / 2 5 / 2

, ,{ }
i i i

u u u
    are 

subsequent values of velocity of neighbor points 1/ 2 3 / 2 5 / 2
, ,{ }

i i i
x x x

   . The subindex j is 

omitted for simplification. If a point can be interpolated over a direction, the velocity of this 

point can be obtained by a pondered function of each direction, given by: 
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x y

i j x i j y i j
u uu  

  
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Where 
x

  and 
y

  are the pondered coefficients: 
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and a x  and b y  are the distances between immersed boundary and boundary point in 

directions x and y respectively. 

The discretization of derivative terms is obtained by scheme of centered differences, 

using a group of active velocity points. In case of insufficient active points for the calculus of 

derivative term, as example points inside the immersed boundary, showed in  

Fig. 3, a numerical approach is performed to obtain the derivatives terms.  
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Figure 3. Irregular points inside the immersed boundary, in direction x. Reprinted from Berthensen and 

Faltinsen (2008). 

                        

In Fig. 3, a group of neighbor faces is used to calculate the derivatives in directions x and 

y, given by: 

 

 1/ 2 , 1/ 2 , 3/ 2 , 1/ 2 , 1 1/ 2 , 1 , 1/ 2 1, 1/ 2 , 1/ 2 1, 1/ 2
, , , , , , , ,

g g g

xy i j i j i j i j i j i j i j i j i j
u u u u u v v v v

            
                          (15) 

 

where 
3/ 2,
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i j
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
, 

1/ 2, 1

g

i j
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 
, and 

, 1/ 2

g

i j
v


are the ghost velocities points. For these points, a linear 

interpolation using ghost cells is performed to obtain the velocitie values according  

Eq. (12), necessary for discretization of derivatives terms by centered differences. 

For example, to calculate the second order derivative term  
1/ 2,

( )
xx i j

u


 in face 
1/ 2

( , )
i j

x y


, 

by centered difference scheme, given by: 
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The term 
1/ 2, 1

g

i j
u

 
 is obtained by an interpolation function presented in Eq. (11), 

simplified by ( ), in function of neighbor faces. 

 

1/ 2, 1 1/ 2, 1/ 2, 1 1/ 2, 2
( , , , )

g

i j i j i j i j
u u u u u
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In order to advance the solution to the time 1n
t

 , is necessary solve the Poisson equation 

for pressure correction, respecting the condition of incompressible flow, given by discretized 

equations: 

 
1 1 1 1
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0

n n n n

i j i j i j i j
u u v v

x x
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                                                                                        (18) 
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                     (19) 

 

where 1
´

n n
p p p


  . For an arrangement with displaced mesh, is applicate the method of 

fractional steps (Kim and Moin, 1985), where each step, predictor and corrector, is performed 

only once.  

The Eq. (19) describes the method equation applied in cells away of immersed boundary. 

Special treatments should be performed in irregular cells. In this case, the pressure equation 

must have the same treatment of discretization for the velocity. The inactive points will be 

replaced for ghost values is given by an interpolation or extrapolation function.  

The choice of the interpolation function depends on the position of immersed boundary. 

If the inactive point of velocity it is outside boundary, can be considered a frontier point, and 

this velocity is treated with an interpolation function, as the Eq. (12). In the case of irregular 

cells with center nodes lie inside the body, the ghost value is obtained extending the solution 

beyond of frontier, using a quadratic Lagrange polynomial, as example described by operator 

( ) in Eq. (20) for the velocities and in Eq. (21) for the pressures, in direction x. 
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Where a x is the distance between the point 
1/ 2,i j

x


 and the immersed boundary. The 

others variables keep the same as submitted before. 

 

 

3  RESULTS 

3.1 Structural domain  

The structural code developed to obtained dynamic behavior of the beam is validated in 

this section. The modal, harmonic, and transient analyzes were carried out in a cantilever 

beam. The time responses were obtained by using a Newmark-beta method to solve the 

associated differential equations. The obtained responses were compared with the ones 

determined from the software ANSYS® for validation purposes. In the simulations, a 

cantilever beam with 0.5x0.025x0.0025 (meters) is used. The Young’s modulus, density, and 

Poisson coefficient are 70 Gpa, 2700 kg/m3, and 0.33, respectively. The finite element model 

considered in the simulations and the used conditions are presented in Tab. 1. Table 2 shows 

the comparison of five first natural frequencies of the beam obtained from the implemented 

code and the software ANSYS®. 
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Table 1. Simulation conditions 

Data Values/Comments 

Number of elements 30 

Excitation nodes (FRF) 31 (free extremity) 

Analyzed nodes (FRF) 31,16 (middle) 

Proportional damping  = 0  ;  = 5x10-6 

Frequency band 0 – 500 Hz (steps 1 Hz) 

Boundary conditions Fixed-free 

 
Table 2. Comparison of natural frequencies in [Hz] 

Code ANSYS® Difference (%) 

8,226 Hz 8,225 Hz 0,0122 

51,546 Hz 51,545 Hz 0,0019 

144,33 Hz 144,32 Hz 0,0069 

282,83 Hz 282,79 Hz 0,0141 

467,55 Hz 467,45 Hz 0,0214 

 

The frequency response functions (FRFs) were obtained from Eq. (18). Figure 4 show the 

FRFs obtained from the implemented code and the software ANSYS®. 

 

 
2

( ) ( ) ( )

1

[ ] [C ] [ ]
g g g

FRF
K i M 


 

                                                                                     (18) 

 

 

      
                                          (a)                                                                                            (b) 

Figure 4. (a) FRF with entrance in node 31, and analyzed node 31. (b) FRF with entrance in node 31, and 

analyzed node 16 
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Figure 5 shows the comparison between the dynamic responses of the cantilever beam 

obtained from the implemented code and the software ANSYS®. The transient responses of 

the beam were given by the integration of the equations of motion using a sinusoidal load 

sin(2 )F A f t  applied on the extremity node of beam with 0.5N of amplitude and 5 Hz of 

frequency (steps of 0.001 seconds).  

 

 

Figure 5. Transient response due to harmonic load. 

 The results obtained shows the good agreement between the developed code with 

commercial software of finite elements. The great accordance of results carried out in beam, 

demonstrate the efficiency of methodology proposed to solve structural domain. 

3.2 Fluid domain   

Two different geometries are investigated and both are calculated at same Reynolds 

number (Re = 40), they are: flow past a circular cylinder and a two-dimensional normal beam. 

The circular cylinder results are compared to literature (Countanceau et al., 1977; Russel et 

al., 2003; Calhoun, 2002; Xu et al., 2006) in order to validate the method. The drag 

coefficient was defined as 2

0
2 / ( )

D D
C F U d , where 

D
F  is the drag force, and d  is the 

nominal diameter of cylinder. Dirichlet boundary conditions are used at the inflow 

( / 1; 0)u u v

   and at the cylinder surface ( 0 ; 0)u v  . A Neumann-type boundary 

conditions is adopted at the outflow and farfield boundaries. 

 

Flow past a 2D stationary circular cylinder 

Laminar flows past a two-dimensional circular cylinder is a classic benchmark problem. 

The results are compared to literature to verify the method presented in this work. For the 

simulations at Re = 40, a non-uniform grid of 28,000 cells is used. Figure 6 shows the sketch 

of a computational domain and the grid used on simulations.  
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                                         (a)                                                                 (b) 

Figure 6. (a) Schematics of the domain flow around a circular cylinder. (b) Computational non-uniform 

cartesian mesh was used on simulation. 

 

The comparison of the drag coefficient obtained in the present work with other numerical 

and experimental results are presented in Tab. 4. The nomenclature is presented in Fig. 7. It 

can be observed that good agreement was obtained.  

 
Table 3. Comparison of characteristics in flow past a cylinder (Re = 40)  

 
L/D a/D b/D   D

C  

Coutanceau e Bouard (1977) 2,13 0,76 0,59 53,5 1,53 

Calhoun (2002) 2,18 - - 54,2 1,52 

Russel e Wang (2003) 2,29 - - 53,1 1,51 

Xu e Wang (2006) 2,21 - - 53,5 1,54 

Present Study 2,28 0,77 0,60 55,0 1,546 

 

Figure 7. Characteristics in flow past a circular cylinder at Re=40 (ANDRADE, 2015) 

 

Figure 8 shows, respectively, the streamlines, iso-vorticity contours and the iso-pressure 

contours for a stationary circular cylinder. 
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(a) 

 
(b) 

 
(c) 

Figure 8. Flow past a cylinder: (a) streamlines, (b) iso-vorticity contours and (c) iso-pressure contours at 

Re=40. 

 

The results show the good accordance with studied literature and demonstrate the 

efficient of proposed method to simulate flows even on blunt bodies as a cylinder. 

 

Flow past a 2D normal beam  

Finally, the problem of a cantilever beam proposed for study of fluid-structure problem is 

investigated. The sharp structure presented in section 3.1 is tested by the LGC method in a 

flow channel. For the simulations at Re = 40, a uniform grid of 40,000 cells is used. Figure 9 

shows the sketch of a computational domain used on simulations.  

 

 

         Figure 9. Schematics of the confined flow around a sharp beam 
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The simulation was performed such that the thickness of geometry is smaller than one 

cell grid. Thus, the method of local ghost cells to solve incompressible flows over thin bodies 

is fully tested.  

 

 

 

 

 

 

 

 

 

Figure 10. Detail of discrete points of beam inside a fluid cell 

 

Figure 11 presents, respectively, the velocity and pressure fields, and iso-vorticity 

contours for the simulation over the beam. It can be observed that the dynamic pressure is 

higher upstream the beam, which would lead to a displacement of the geometry when 

considered a structural coupling.  

 

 
(a) 

 
(b) 

 
 (c) 

Figure 11. Confined flow over a beam: (a) velocity field; (b) pressure field; (c) iso-vorticity contour  

 

Details of the simulated flow are presented in Fig. 11. It can be noticed that for the 

parameters employed, there is almost no noticeable difference between the vortices 

downstream the cylinder. For the highly irregular geometry presented, the local feature of the 

present method allows be treated accurately. Further efforts will be dedicated to implement 

moving bodies in the fluid code for coupling with the structural code presented earlier. 
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      (a)                                                                (b) 

       
                                    (c)                                                                (d) 

Figure 11. Details of confined flow over a beam. (a) Streamlines at Re=40; (b) Iso-vorticity contours;  

(c) Pressure field; (d) Velocity field 

 

4  FINAL REMARKS 

Immersed boundary methods (IBM) have emerged as a powerful numerical approach for 

simulating fluid structure problems in engineering. The hallmark of these methods is their 

inherent ability to handle complex deformable bodies without the need to construct grids that 

conform and deform with solid boundaries. A limitation of immersed boundary methods is 

their inability in deal with corners and sharp geometries, as beams and airfoils.  

The present work investigates a branch of IBM and your efficiency in solve the problem 

proposed in this work. Both the structural and fluid codes developed show good results to 

problem presented. Future work should focus on a coupling algorithm, take into account the 

implement of moving boundaries and transfer loads to the finite element code. 
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