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Abstract. The study of the acoustic behavior of a cavity depends on factors such as acoustic 

wavelength, cavity dimensions, the effect of flexible interface structures, making it relatively 

complex problem. Due to the complexity of the problem it’s sought simplified methods for the 

purpose techniques analysis applied with greater ease. Pretlove and Craggs (1969) presented 

a two-dimensional analysis of a cavity coupled to a plate using the normal mode as an 

approximation for explaining experimental results and then compared with results obtained 

by other authors. Recently Rojas (2015) presented an analytical solution to a rigid acoustic 

cavity coupled to a flexible plate in free vibration using an approximation by weighted 

residuals (Galerkin Ritz). The present study performed an analysis adding another modal 

forms to the Pretlove and Craggs’ works (1969) in order to evaluate the method’s efficiency. 

The comparisons with the Pretlove’s (1965) semi-analytical results and with the Rojas’ 

(2015) analytical results are the validation of this present study, checking a good 

approximation with the results. 
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1  INTRODUCTION 

The development of analytical methods aiming the acoustic behavior analysis of cavities 

was the goal of a several studies. Reference texts can be founded in the works from the 

authors Rayleigh (1945), Dowell and Voss (1963), Lyon (1963), Pretlove (1965), Gerges e 

Fahy (1976), Morse and Ingard (1986), Junger and Feit (1993), Howe (1998), Fahy (2007) 

among others. Between them it can be mentioned some authors who motivated the present 

study. 

Pretlove and Craggs (1969) present a simple approach using just two in vacuo vibration 

modes in order to define the natural frequencies and the modal forms in an acoustic cavity 

coupled on a flexible plate. 

Ribeiro (2010) proposed two alternatives to the solution of frequencies and coupled 

system modes. The first one is a methodology named Pseudo-Coupled method, which 

depends on an imposition of certain deformed modal for the construction of the frequency 

equation in an associated way. The second one is an exact approach, with the solution of the 

differential involved equation (beam equation), resulting in frequencies and coupled modes.  

Ferreira (2012) developed a methodology for the comparison between analytical and 

numerical solutions for acoustic and vibro-acoustic cavities using the pseudo-coupled 

technique for both the development of approximated analytical solutions and to compare the 

numerical model. Then, it was applied some techniques for the fluid-structure coupling, 

modal analysis, harmonic and in response to the frequency analyzing and comparing the result 

of these techniques through charts and modal forms and in frequency answer.  

Rojas (2015) presented an analytical study of the vibro-acoustic problem of an rigid 

acoustic cavity coupled on a flexible plate, which the goal was to understand the behavior of 

an coupled system that permits experimental numerical comparisons, and to study more 

complex problems. The present study adopted the method used by Pretlove and Crags (1969) 

adding modal forms in order to evaluate the convergence of the method in comparison to the 

results achieved from other authors.  

2  APPROACH TO COUPLED PANEL+CAVITY 

The picture 1 represents the vibroacoustic system, flexible plate coupled on an acoustic 

cavity. It will be considered a cavity of dimensions 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧. The flexible plate is 

coupled to the system on the cavity’s superior parto on the XY plan and the walls are taken as 

rigids. The differential equation governing the transverse plate subject to distributed loads is 

described in Eq. (1).The interior fluid of the cavity is the air.  

D(
∂4w(x,y)

 ∂x4 + 2 ∙
∂4w(x,y)

 ∂x2 ∂y2 +
∂4w(x,y)

 ∂y4 ) = pz(x, y) (1) 

Or using biharmonic, it has been: 

D ∙ ∇4w(x, y) = pz(x, y) (2) 
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Figure 1. Rectangular box with one flexible plate 

To the analysis of the coupled system it was performed a study about the free or natural 

vibration of the system in order to determinate a relation between the coupling among the 

structural and acoustic models. The equation of the acoustic wave used to describe the 

pressure p on the inside of the system is described on Eq. (3).  

∇2p(x, y, z, t) =
1

c2 ∙
δ2p(x,y,z,t)

δt2
 (3) 

Where: 

p is the pressure on the coupled system 

c is the speed of the sound 

The equation must satisfies the following contour conditions: 

x = 0, Lx : 
δp(x,y,z,t)

δx
= 0 (4a) 

y = 0, Ly : 
δp(x,y,z,t)

δy
= 0 (4b) 

z = 0, Lz : 
δp(x,y,z,t)

δz
= 0 (4c) 

z = Lz, Lz : 
δp(x,y,z,t)

δx
= −ρar ∙

δ2w(x,y,t)

δt2
 (4a) 

Where: 

𝑤(𝑥, 𝑦, 𝑡) is the transversal vibration of the flexible plate.  

𝜌𝑎𝑟 is the environment  density of fluid (air). 
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To the solution of the coupled system, Pretlove and Craggs (1969) assumed the deformed 

coupled as equal as the vacuum coupled in order to simplify the solution, resulting in practical 

analytical solutions to the coupled frequencies for a certain way of vibration.  

The solution presented by Pretlove and Craggs (1969) and by the present study are 

showed in the following sections. 

2.1 Approximation toward two modes (PRETLOVE and CRAGS, 1969) 

The aim of this section is to present a theorical analysis developed by Pretlove and Crags 

(1969). It was performed a simple approach to analyzing the vibrations of a system coupled 

on a plate-cavity. The presented theory predicts a few spots for maximum tensions and it was 

performed an tridimensional analysis of two vacuum’s vibration modes only. The first one is 

the fundamental mode and the second one has three half waves in the longest direction of the 

board.  

The assumed notation to the study is presented in Figure 1, wherein the depth of the 

board is represented in the z direction. Thus it is described the deformation of the board by the 

Eq. (5) using the Galerkin’s method. 

W = ∑ Ci ∙ φi
𝟐
i=1 = C1 ∙ φ1(x, y) + C2 ∙ φ2(x, y) (5) 

Where Ciis the plate mode coordinates as a function of time defined by: 

C1 = q11 e C2 = q31  (6) 

And the displacement functions for the two methods adopted for a simply supported plate 

are: 

φ1(x, y) = sen
1∙π∙x

Lx
∙ sen

1∙π∙y

Ly
 (7) 

φ2(x, y) = sen
3∙π∙x

Lx
∙ sen

1∙π∙y

Ly
 (8) 

The displacement volume due to deflection is given by: 

δV = ∫ ∫ sen
1∙π∙x

a
∙ sen

1∙π∙y

b
dxdy ∙ q11

b

0

a

0
+ ∫ ∫ sen

3∙π∙x

a
∙ sen

1∙π∙y

b
dxdy ∙ q31

b

0

a

0
 (9) 

Or after the resolution: 

δV =
4∙a∙b

π2 ∙ q11 +
4∙a∙b

3∙π2 ∙ q31 =
4∙a∙b

π2 ∙ (q11 +
q31

3
) (10) 

Disregarding the dynamic pressures and assuming the compressible adiabatic state has to 

equation represented by: 

δp = p0 ∙ γ ∙
δV

V
   com ρ ∙ c2 = p0 ∙ V (11) 

Substituting (11) into (12) gives: 

δp = ρ ∙ c2 ∙
4

π2∙h
∙ (q11 +

q31

3
) (12) 

For each mode assuming the acoustic generalized forces are given by: 

F11 = −∫ ∫ δp ∙ sen (
π∙x

a
) ∙ sen (

π∙y

b
)dxdy

b

0

a

0
= −δp ∙

4∙a∙b

π2  (13) 

F31 = −∫ ∫ δp ∙ sen (
3∙π∙x

a
) ∙ sen (

π∙y

b
) dxdy = −δp ∙

4∙a∙b

3∙π2

b

0

a

0
 (14) 
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Adopting: 

KA =
16∙ρ∙a∙b∙c2

π4∙h
 (15) 

And substituting (15) into the equations (13) and (14): 

F11 = −(KA ∙ q11 +
KA

3
∙ q31) (16) 

F31 = −(KA ∙
q11

3
+

KA

9
∙ q31) (17) 

The equations of motion of the two modes are: 

{
M11 ∙ q11̈ +  K11 ∙ q11 = F11

M31 ∙ q31̈ +  K31 ∙ q31 = F31
 (18) 

The dynamic equation of the plate is given by: 

D ∙ ∇4w(x, y) − m ∙ ẅ(x, y) = 0 (19) 

Where M and K are the mechanical values of generalized mass and generalized stiffness. 

Applying weighted residuals in Equation (19): 

∫ (D ∙ ∇4w(x, y) − m ∙ ẅ(x, y)) ∙ φdΩ
Ω

= 0 (20) 

Solving Equation (20) obtain: 

M11 = ρm∙t ∙
a∙b

4
 (21) 

M31 = ρm∙t ∙
a∙b

4
 (22) 

K11 = D ∙
a∙b

4
∙ [(

π

a
)

2

+ (
π

b
)

2

] (23) 

K31 = D ∙
a∙b

4
∙ [(

3∙π

a
)

2

+ (
π

b
)

2

] (24) 

Then the coupled system is given by: 

{
−w2 ∙ M11 ∙ q11 + K11 ∙ q11 + KA ∙ q11 +

KA

3
∙ q31 = 0

−w2 ∙ M31 ∙ q31 + K31 ∙ q31 +
KA

3
∙ q11 +

KA

9
∙ q31 = 0

 (25) 

Dividing the two equations by K11: 

{
−w2 ∙

M11

K11
∙ q11 +

K11

K11
∙ q11 +

KA

K11
∙ q11 +

KA

3∙K11
∙ q31 = 0

−w2 ∙
M31

K11
∙ q31 +

K31

K11
∙ q31 +

KA

3∙K11
∙ q11 +

KA

9∙K11
∙ q31 = 0

 (26) 

α =
a

b
 (27) 

Ω =
w

w0
 (27) 

w0 = √
K11

M11
 (28) 

η =
KA

K11
 (29) 
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β =
K31

K11
=

D∙
a∙b

4
∙[(

3∙π

a
)
2
+(

π

b
)
2
]

D∙
a∙b

4
∙[(

π

a
)
2
+(

π

b
)
2
]

= (
9+α2

1+α2)
2

 (30) 

Where: 

α the aspect ratio of the panel 

Ω it is the ratio between the natural frequency and the natural frequency in the 

fundamental mode 

η it is the ratio between acoustic generalized stiffness in the first in vacuo mode and 

mechanical generalized stiffness in the first in vacuo mode 

β it is the ratio between mechanical generalized stiffness in third mode and the first 

mode. 

Writing in matrix form we have: 

[
1 + η − Ω2 η

3
η

3
β +

η

9
− Ω2

] ∙ [
q11

q31
] = [

0
0
] (31) 

To satisfy the equation of motion is necessary that: 

|
1 + η − Ω2 η

3
η

3
β +

η

9
− Ω2

| = 0 (32) 

Solving equation (32) is the characteristic polynomial given by: 

Ω4 − (1 + β +
10∙η

9
) ∙ Ω2 + (β + η ∙ β +

η

9
) = 0 (33) 

Whose following solution presented are the eigenvalues of the equation used to determine 

the natural frequency of the modes adopted. 

Ω1
2 =

(1+β+
10∙η

9
)+√(1+β+

10∙η

9
)
2
−4∙1∙(β+η∙β+

η

9
)

2
 (34) 

Ω2
2 =

(1+β+
10∙η

9
)−√(1+β+

10∙η

9
)
2
−4∙1∙(β+η∙β+

η

9
)

2
 (35) 

2.2 Approximation toward “n” modes 

In order to evaluate the efficiency of the proposed method by Pretlove and Craggs (1969) 

and also in a seeking for a method’s convergence, will be presented a method’s generalization 

to several vibration modes. The assumed notation to the study is represented in Figure 1 and 

the board deformation, for which is using the Garlekin’s method, can be described as in the 

form of a finite series given by: 

W = W𝐫𝐬 = ∑ ∑ qrs ∙ φrs
s=s̅
s=1

r=r̅
r=1  (36) 

Or expandable form: 

W = q11 ∙ φ11(x, y) + C12 ∙ φ12(x, y) + C13 ∙ φ3(x, y) + ⋯+ Cr̅s̅ ∙ φr̅s̅(x, y) (37) 
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Where in the symbol  qij represents the movements’ coordinates generalized for each 

mode due the time. The values of  φij represent the displacement functions to the “n” modes 

assumed for a board wich is just leaning, as described next.  

φ11(x, y) = sen
1∙π∙x

Lx
∙ sen

1∙π∙y

Ly
 (38a) 

φ12(x, y) = sen
1∙π∙x

Lx
∙ sen

2∙π∙y

Ly
 (38b) 

φ13(x, y) = sen
1∙π∙x

Lx
∙ sen

3∙π∙y

Ly
 (38c) 

                               ⋮ 

φr̅s̅(x, y) = sen
r̅∙π∙x

Lx
∙ sen

s̅∙π∙y

Ly
 (38d) 

The displacement volume due to deflection is given by: 

δV = ∫ WdA =
A

∫ ∫ ∑ ∑ Wrs
s=s̅
s=1 dxdyr=r̅

r=1
Ly

0

Lx

0
 (39) 

After the resolution of the equation we have: 

δV =
4∙a∙b

π2 ∙ ∑ ∑
qrs

r∙s

s=s̅
s=1

r=r̅
r=1  (34) 

Disregarding the dynamic pressures and assuming the compressible adiabatic state has to 

equation represented by: 

δp = p0 ∙ γ ∙
δV

V
   com ρ ∙ c2 = p0 ∙ V (40) 

Substituting (40) and (41) we have: 

 δp = ρ ∙ c2 ∙
4

π2∙h
∙ ∑ ∑

qrs

r∙s

s=s̅
s=1

r=r̅
r=1  (41) 

For each mode assuming the acoustic generalized forces are given by: 

Fm̅n̅ = −∫ ∫ δp ∙ sen (
m̅∙π∙x

a
) ∙ sen (

n̅∙π∙y

b
)dxdy

Ly

0

Lx

0
= −δp ∙

4∙Lx∙Ly

π2∙m∙n
 (42) 

With: 

  m = 1,2,⋯ , r       e        n = 1,2⋯ , s. 

Solving equation (42): 

Fm̅n̅ = −
16∙ρ∙Lx∙Ly∙c2

π4∙h∙m∙n
∙ ∑ ∑

qrs

r∙s

s=s̅
s=1

r=r̅
r=1  (43) 

Adopting KA as acoustic generalized stiffness in the first in vacuo mode given by: 

KA =
16∙ρ∙a∙b∙c2

π4∙h
 (44) 

Substituting (44) in (43) we have: 

Fm̅n̅ = −
KA

m∙n
∙ ∑ ∑

qrs

r∙s

s=s̅
s=1

r=r̅
r=1  (45) 

The dynamic equilibrium equations for the assumed modes are represented by: 
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{

M11 ∙ q11̈ +  K11 ∙ q11 = F11

M31 ∙ q31̈ +  K31 ∙ q31 = F31

⋮
Mr̅s̅ ∙ qr̅s̅̈ +  Kr̅s̅ ∙ qr̅s̅ = Fr̅s̅

 (46) 

The dynamic equation of the plate is given by: 

D ∙ ∇4w(x, y) − m ∙ ẅ(x, y) = 0 (47) 

Where D and M are respectively the flexural stiffness and mass of the plate. 

D =
E∙t3

12∙(1−ν2)
 (48) 

Applying weighted residuals in Equation (47): 

∫ (D ∙ ∇4w(x, y) − m ∙ ẅ(x, y)) ∙ φdΩ
Ω

= 0 (49) 

Integrating by parts we have: 

∫ D ∙ ∇w2 ∙ ∇2φdΩ − ∫ m ∙ ẅ
ΩΩ

∙ φdΩ = 0 (50) 

First analyze and calculate the mass of the array elements, by: 

Mij
kl = ∫ mijΩ

∙ ẅij ∙ φijdΩ = ∫ ∫ ρm∙ ∙ t ∙ qij ∙̈ φij ∙ φkl
Ly

0
dxdy

Lx

0
 (51) 

Replacing the scroll function in Equation (51) we have: 

Mij
kl = ρm∙ ∙ t ∙ qij ∙ ∫ ∫ (sen (

i∙π∙x

Lx
) ∙ sen (

j∙π∙y

Ly
)) ∙ (sen (

k∙π∙x

Lx
) ∙ sen (

l∙π∙y

Ly
))

Ly

0
dxdy

Lx

0
 (52) 

Or 

Mij
kl = ρm∙ ∙ t ∙ qij ∙ ∫ (sen (

i∙π∙x

Lx
) ∙ sen (

k∙π∙x

Lx
))dx ∙

Lx

0
∫ (sen (

j∙π∙y

Ly
) ∙ sen (

l∙π∙y

Ly
))dy

Ly

0
 (53) 

Solving the integral present in Equation (53): 

∫ (sen (
i∙π∙x

Lx
) ∙ sen (

k∙π∙x

Lx
))dx =

Lx

0
{
Lx

2
      se i = k

0     se i ≠ k
   (54) 

∫ (sen (
j∙π∙y

Ly
) ∙ sen (

l∙π∙x

Ly
)) dy =

Lx

0
{

Ly

2
      se j = l

0     se j ≠ l
 (55) 

Substituting in Equation (53): 

Mij = {

ρm∙∙t∙qij∙Lx∙Ly

4
         se i = j

                 0                          se i ≠ j (56) 

With the analysis and calculation of elements of stiffness matrix we have: 

Krs
r̅∙s̅ = ∫ D ∙ ∇2wrs ∙ ∇2φr̅s̅dΩ

Ω
 (57) 

Replacing the scroll function in Equation (57) we have: 
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Krs
r̅∙s̅ = D ∙ ∫ ∫ [(

∂

∂x2 +
∂

∂y2) × (sen (
r̅∙π∙x

Lx
) ∙ sen (

s̅∙π∙y

Ly
) ∙ qrs)] ∙

Ly

0

Lx

0
[(

∂

∂x2 +
∂

∂y2) ×

(sen (
r∙π∙x

Lx
) ∙ sen (

s∙π∙y

Ly
))] dxdy (58) 

Or 

Krs
r̅∙s̅ = D ∙ qrs ∙ [(

π

Lx
)

2

+ (
π

Ly
)

2

]

2

∙ ∫ (sen (
r̅∙π∙x

Lx
) ∙ sen (

r∙π∙y

Ly
))

Lx

0
dx ∙ ∫ (sen (

s̅∙π∙x

Lx
) ∙

Lx

0

sen (
s∙π∙y

Ly
)) dy (59) 

Solving Equation (59) we have: 

Krs
r̅∙s̅ = D ∙ qrs ∙ [(

π

Lx
)

2

+ (
π

Ly
)

2

]

2

∙ {
Lx

2
 se r = r̅

0 se r ≠ r̅
} ∙ {

Ly

2
 se s = s̅

0 se s ≠ s̅
} (60) 

Or 

Krs
r̅∙s̅ = {

D∙qrs∙Lx∙Ly

4
∙ [(

π

Lx
)

2

+ (
π

Ly
)

2

]

2

0

  ser r = r̅ e s = s̅ (61) 

So, in the matrix form we have: 

[−w2 ∙ M + K − A] ∙ {q} = {0} (62) 

Where M is the modal mass matrix, K the modal stiffness matrix plate, A is the acoustic 

stiffness matrix and q is the column vector of the generalized coordinates. The matrix forms 

are as follows: 

M = [

M11

0
⋮
0

  

0
M22

⋮
0

  

…
…
⋱
…

  

0
0
0

Mnn

] (63) 

K = [

K11

0
⋮
0

  

0
K22

⋮
0

  

…
…
⋱
…

  

0
0
0

Knn

] (64) 

A = [

KA11

KA21

⋮
KAn1

  

KA12

KA22

⋮
KAn2

  

…
…
⋱
…

  

KA1n

KA2n

⋮
KAnn

] (65) 

Replacing the matrices in Equation (62): 

[

−w2M11 + K11 + KA11

KA21

⋮
KAn1

  

KA12

−w2M22 + K22 + KA22

⋮
KAn2

  

…
…
⋱
…

  

KA1n

KA2n

⋮
−w2Mnn + Knn + KAnn

] ∙ {

q11

q12

⋮
qrs

} = {

0
0
⋮
0

} (66) 
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Dividing the equation by modal stiffness  K11 in the first mode we have: 

[
 
 
 
 ϕ1 + η − Ω2

η

2

⋮
η

n

  

η

2

ϕ2 +
η

4
− Ω2

⋮
η

2∙n

  

…
…
⋱
…

  

η

n
η

2∙n

⋮

ϕn +
η

n∙n
− Ω2

]
 
 
 
 

∙ {

q11

q12

⋮
qrs

} = {

0
0
⋮
0

} (67) 

Where: 

α =
a

b
 (68) 

Ω =
w

w0
 (69) 

w0 = √
K11

M11
 (70) 

η =
KA

K11
 (71) 

ϕi =
Krs

K11
= (

r2+s2∙α2

1+α2 ) (72) 

To satisfy the equation of motion is necessary that: 

|
|

ϕ1 + η − Ω2

η

2

⋮
η

n

  

η

2

ϕ2 +
η

4
− Ω2

⋮
η

2n

  

…
…
⋱
…

  

η

n
η

2n

⋮

ϕn +
η

n∙n
− Ω2

|
|
= 0 (73) 

The solution of Equation (67) determines the, values representing the eigenvalues of 

matrix used to determine the natural frequencies of each mode by the equation: 

f =
Ω∙w0

2∙π
 (74) 

By replacing the values of Ω represented in the matrix in Equation (73) determines that 

the eigenvectors are the generalized coordinates used to define the mode shapes. 

3  COMPUTATIONAL IMPLEMENTATION  

For the development of the equations presented in this work it was used the mathematical 

software MAPLE 2016. Initially, it was defined the entrance values described by the acoustic 

cavity’s dimensions in study and by the characteristics of the cavity and the board such as: 

Young module, flexible rigidity, specific mass. Then, it was accomplished the mass 

calculation and the acoustic rigidity. After the determination of the characteristics and of the 

constants presented in the section 2.2, it was created the matrix presented in the Equation (67) 

which satisfies the movement equation.  Finally, it was determined the eigenvalues and the 

eigenvectors for each modal form trough the commands “EigenVectors” and “EigenValues” 

of the MAPLE 2016.  With the determination of the eingenvalues and eigenvectors, the next 

step was to implement on the MATLAB 2015 a function in order to create charts which 

represent the modal forms. It is important to mention that the implemention was not 

accomplished only through the MATLAB 2015 due the packaging problems of the matrix 

founded by the author.  
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4  RESULTS 

The cavity studied in this work was proposed by Pretlove (1965) shown in Figure (1). 

Data from the cavity proposed by Pretlove (1965) are presented in the following Tables 1-3: 

Table 1. Data fluid 

Sound’s speed 337.33 m/s 

Specific mass’ air 1.2466 kg/m³ 

Temperature 10ºC 

Table 2. Characteristics of Cavity Acustic 

Dimensões 

(metros) 

𝐿𝑥 0.3048 

𝐿𝑦 0.1524 

ℎ 0.1524 

 

Table 3. Characteristics of Plate 

Analyzed plate 

Material Aluminum 

𝐿𝑥 0.3048 m 

𝐿𝑦 0.1524 m 

Thickness 0.0016256 m 

Specific Mass 2700 kg/m³ 

Elasticity Modulus 67 GPa 

Poisson’s Coefficient 0.33 

In this section it is presented the achieved results to the natural frequencies and the 

vibration modes, using the method presented by Pretlove and Craggs (1969) with a 

implementation of six modal forms 
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4.1 Natural Frequency 

Aiming a evaluation of the convergence of the results, calculations were done using 

implementation from each modal form. During the calculations it was noticed that as from 

seven modes can occur a problem involving a bad conditioning in the matrix, disturbing the 

achievements of the eigenvalues and eigenvectors. Therefore, for getting results it was used 

six modal forms, as it is demonstrated in Table 4.  

Tabela 4. Modal forms adopted by the study 

Vibration 

modes 

X Y X Y 

1 1 1 3 

3 1 3 3 

5 1 5 3 

To evaluate the efficiency of the method results obtained were compared with the results 

obtained by (PRETLOVE, 1965) and (ROJAS, 2015) described below. Table 6 only shows 

results of four modal forms in accordance with the results reported by these authors. 

Table 5. Natural frequencies of the plate in a vacuum and coupled (plate + cavity). 

Modes 1º mode 2º mode 3º mode 4º mode 5º mode 6º mode 

(1,1) 217,5459 217,5331 217,5323 217,5309 217,5308 217,5308 

(3,1) - 544,4775 544,4775 544,4774 544,4774 544,4774 

(5,1) - - 1.213,8468 1.213,8467 1.213,8467 1.211,8467 

(1,3) - - - 1.548,7535 1.548,7535 1.578,4090 

(3,3) - - - - 1.883,4764 1.819,3769 

(5,3) - - - - - 2.613,0268 

 

The tables 6 and 7 present respectively the natural frequencies obtained for the plate-

cavity system coupled to six modes and the comparison of the achieved results by Pretlove 

and Craggs (1969) and Rojas (2015). It was choosed for presentation only the four first ones 

modal forms due the comparison among other authors.  
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Table 6. Natural Frequencies - comparison of results 

Modes 
Analytical 6 modes 

Uncoupled 

Analítico 6 modes 

Coupled 

Semi-Analytical 

Pretlove(1965) 

Analytical 

Rojas(2015) 

(1,1) 209,27 217,53 216,39 216,19 

(3,1) 544,11 544,48 541,60 544,22 

(5,1) 1213,79 1.211,85 1.212,40 1.214,17 

(1,3) 1548,63 1.578,41 1.543,82 1.549,23 

Table 7. Natural Frequencies - comparison of results 

Modes 
Comparison (%) 

Coupled/Uncoupled Coupled/Pretlove Coupled/Rojas 

(1,1) 3,800 0,524 0,616 

(3,1) 0,068 0,528 0,047 

(5,1) -0,160 -0,043 -0,189 

(1,3) 1,887 2,191 1,849 

4.2 Mode Shapes 

The pictures presented in this section represent the determined modal forms with 

implementation of six modal forms.   

Figure 3. Modal form (1.1) with natural frequency of 217.53 Hz 
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Figure 4. Modal form (3.1) with natural frequency of 544.48 Hz 

 

 

Figure 5. Modal form (5.1) with natural frequency 1211.85 Hz 

 

Figure 6. Modal Form 61.3) with natural frequency 1578.41 Hz 
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Figure 7. Modal form (3.3) with natural frequency 1819.78 Hz 

 

Figure 8. Modal form (5.3) with natural frequency 2613.03 Hz 

As figuras 9 a 11 apresentam as deformadas acopladas e desacopladas da estrutura para 

𝑥 =
𝐿𝑥

4
 

 

Figure 9. Deformed coupled and uncoupled (1,1) 
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Figure 10. Deformed coupled and uncoupled of mode structure (3,3) 

 

Figure 11. Deformed coupled and uncoupled of mode structure (5,3) 

 

5  CONCLUSION 

In this work it was studied the analytical solution for the problem of the acoustic vibro of 

the system, rigid acoustic cavity coupled on a flexible board presented by Pretlove (1969). 

The presented method is an simple approach which allowed a prediction of the system’s 

natural frequency and determination of the vibration modes. For the calculations it was done 

an implementation of several modal forms aiming an evaluation of the method’s convergence. 

It was noticed that the presented method is efficient for the implementation of six vibration 

modes.  As from the implementation of seven vibration modes an error of bad conditioning 

occurred, this was justified by the fast growing of the elements from the main diagonal 

inregard to the other elements. Comparing the achieved results using the coupled and the 

uncoupled mode it was noticed that the approximated results present a maximum difference 

of 3,8%. The achieved results were put in comparison to the results achieved by Pretlove 

(1965) and Rojas (2015), aiming an evaluation of the method’s efficiency. It was noticed that 

the achieved results demonstrated, for four modal forms, a maximum difference of 2.19% 
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when in comparison to Pretlove (1965) and of 1.849% when in comparison to Rojas (2015), 

such difference can be reduced with a implementation of more vibration modes. Comparing 

only the first three modal forms it is perceptible that the maximum error can reduce about 

0.6% in both cases, proving that this method is a simple and efficient method for the 

validation of the studied cavity. The pictures 9 and 11 indicate that the coupled and uncoupled 

settings are practically identical, which is a contribution to the adoption of a simplified 

analytical procedure, considering that in this cases it is adopted deformed coupled equal as the 

respective deformed in vacuum. It is important to emphasize that the assumption of a 

deformed coupled equal as a vacuum coupled it is not totally valid, although in the proposed 

problem it has demonstrated satisfied results. It is suggested the search for a method in order 

to solve the problem of the bad conditioning of the matrix aiming a implementation of more 

modal forms and also aiming a precise study for the method’s convergence 
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