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Abstract. Structural damage detection using dynamic measurements has led to the 

development of several techniques in the last decades. Most of these methods associate modal 

variations of the structure to damage like methods based on strain energy deviation, methods 

based on changes in curvature mode shapes, flexibility matrix analysis, etc. Although these 

techniques aforementioned are mostly efficient to identify structural alterations in numerical 

models, they have difficulties in practical applications with experimental data. Thus, hybrid 

methods to detect the presence of damage directly from raw dynamic measurements in 
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addition to structural modal characteristics can be a promising field of research, involving 

strategies based on artificial intelligence and higher-order statistics. This work aims to 

present the preliminary results of a hybrid method to detect structural damage. Using modal 

data and also higher-order statistics of structural time histories as inputs of artificial 

intelligence algorithms, the viability of the proposed methodology is initially evaluated. Two 

applications are analyzed: a simply supported numerical beam and an experimental tested 

prototype concrete slab. The good results achieved motivate the continuous development of 

the proposed hybrid method.  

Keywords: Structural Dynamics, Damage Identification, Computational Intelligence.  

1  INTRODUCTION 

Damage in structures can be caused by design flaws, constructive problems, structural 

overload or natural events. Structural Health Monitoring (SHM) enables damage prevention 

and structural maintenance to ensure safe conditions for users (Cachot et al., 2015). The 

interest in structural damage identification is a topic of important engineering researches and 

has gained increasing attention over the years. In this context, some techniques to detect and 

evaluate structural changes using vibration data have been discussed, as it can be seen in 

Alves et al (2015) and Alvandi & Cremona (2002). 

SHM has as principal aim the development of reliable and robust techniques able to 

detect, locate and quantify the affected regions of the structure. Due to the fact that structural 

deterioration process mainly reduces structural stiffness and changes vibrational 

characteristics, damage identification methods are usually based on modal parameters or on 

structural dynamic measurements directly. With this approach, several methods were 

developed: The Modal Assurance Criterion (MAC), employed as a correlation indicator 

between damaged and undamaged mode shapes; The Strain Energy Method (SEM); Indicator 

based on mode shapes curvature with and without damage; Analysis of flexibility matrix; 

Methods based on modal properties changes, etc. 

Although these techniques mentioned above are mostly efficient in identifying structural 

alterations in numerical models, they have difficulties in practical applications with 

experimental data. For this reason, hybrid methods to detect the presence of damage from 

experimental data directly using time domain data in addition to structural modal 

characteristics can be considered a good alternative for this problem. Some new strategies 

have been proposed using Higher-Order Statistics (HOS) and artificial intelligence, as 

Artificial Neural Networks (ANN) and Support Vector Machines (SVM). The HOS allows 

distinguishing apparently similar databases by inferring new statistic properties from higher-

order statistic cumulants, whereas the artificial intelligence methods can recognize similar 

observations in a database and separate them into groups which share the same characteristics.  

The focus of this study is to evaluate the viability of a hybrid method to detect structural 

damage and to present some preliminary results. Thus, modal data and also higher-order 

statistics of structural time domain series are used as inputs of artificial intelligence 

algorithms. The results given by ANN and SVM algorithms are analyzed and compared in 

two applications: a simply supported numerical beam and an experimental tested prototype 

concrete slab. 



R. Finotti, F. Barbosa, A. Cury, R. Pimentel, G. Ferreira, L. Melo  

CILAMCE 2016 

Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering 

Suzana Moreira Ávila (Editor), ABMEC, Brasília, DF, Brazil, November 6-9, 2016 

2  DAMAGE IDENTIFICATION METHODS BASED ON MODAL 

CHARACTERISTICS 

The fundamental idea of structural damage assessment using modal characteristics is that 

damage changes the physical properties of the structure, such as mass, stiffness or flexibility, 

affecting natural frequencies, mode shapes and modal damping. Considering this, methods 

based on the variation of structural vibration characteristics and on indicators built from these 

modal parameters have been developed, as shortly described in the following paragraphs.  

In general, most studies show that natural frequencies decrease with damage increase. It 

seems intuitive, since damage reduces the structural stiffness. Cawley & Adams (1979) are 

one of the pioneers in assessing the integrity of structures using the variation of natural 

frequencies as a damage indicator. Since then, many techniques and improvements have been 

proposed over the years. Messina et al. (1998) developed a correlation coefficient to detect 

and quantify damage called Multiple Damage Location Assurance Criterion (MDLAC). This 

coefficient is based on the sensitivity of the frequency to damage and on a statistical 

correlation between the predictions of the frequency changes and the measured frequency. In 

the work of Fox (1992), experimental and numerical results for a beam with a crack-like 

defect showed that natural frequencies are sensitive indicators of damage for that case. 

Pimentel et al. (2015) evaluated concrete precast slabs and observed a distinct pattern 

variation of the natural frequencies for cracked and uncracked slabs. 

Other works are concerned with the development of techniques based on mode shapes 

changes. An example is the Modal Assurance Criterion (MAC), proposed by Allemang & 

Brown (1982), a correlation indicator that can be employed between damaged and undamaged 

mode shapes. The MAC coefficient varies between 0 and 1, where 0 means no correlation and 

1 represents a perfect correlation. A variation of MAC index was presented by Lieven & 

Ewins (1988), the Coordinate Modal Assurance Criterion (COMAC), that measures the 

correlation of several mode shapes for each degree-of-freedom. A large deviation from 1 in 

the COMAC index indicates the structural damage presence. If COMAC is equal 1, it has a 

perfect correlation for the coordinate displacement. Regarding the damping ratio to identify 

damage, there are not many studies being done in this subject, but the results of the works 

done by Ndambi et al. (2000) and Kawiecki (2001) suggested the modal damping 

measurement as a useful parameter.  

Another researches have been focused on detecting structural flaws using characteristics 

that come from modal parameters. Pandey et al. (1991) introduced an indicator based on 

damaged and undamaged mode shape curvatures, which associates the change in flexural 

stiffness to the change in curvature. A few years later, Kim & Stubbs (1993) proposed the 

Strain Energy Method (SEM), which detects and locates the structural affected region based 

on the strain energy deviation before and after the damage occurrence. Most recently, Cury et 

al. (2011) presented a hybrid approach using the SEM method and natural frequencies to 

locate and quantify damage. The analysis of flexibility is another method concerned with 

identifying and locating the affected area of the structure, where the presence of damage is 

associated to the structural stiffness reduction and, therefore, to the increase in flexibility 

(Pandey & Biswas, 1994). 
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3  DAMAGE IDENTIFICATION METHODS BASED ON TIME 

DOMAIN SERIES 

Most damage identification techniques mentioned in the previous section have shown to 

be efficient in numerical models. However, they present some difficulties in practical 

application with experimental data. Furthermore, the method used to extract the modal 

parameters from dynamic signatures can considerably affect the results of the damage 

detection techniques, introducing additional uncertainties (Alvandi & Cremona, 2006). In an 

effort to give alternatives to these issues, new techniques interpreting the time domain signal 

directly using statistical analysis and artificial intelligence for pattern recognition have been 

suggested, such as in Iwasaki et al. (2004), Haritos & Owen (2004) and Wen et al. (2007). 

Optimization algorithms such as Artificial Neural Networks (ANN), Support Vector 

Machines (SVM) and other artificial intelligence technologies are also considered useful tools 

for solving structural damage assessment problems. These algorithms work as a classifier, 

which try to identify damage levels using feature input data extracted from dynamic response 

measurements. Some concepts of Neural Network and Support Vector Machine are presented 

in this section. At last, the Higher-Order Statistic to characterize the structural vibration data 

is approached.  

Despite the good results in several cases, time domain measurements are not widely used 

due to the difficulties in managing a large amount of raw data and the lack of tools to deal 

with them. 

3.1 Artificial Neural Network 

Neural networks are adaptive learning machines built from many different processing 

elements (PE), called neurons. In pattern classification problem, the decision surface is 

divided into regions representing the classes. The boundary decisions are estimated in a 

learning process and constructed through the statistic variability among classes. The most 

common ANN is the Multilayer Perceptron (MLP), a feedforward network composed of 

interconnected processing elements trained with nonlinear functions. Each PE connection has 

two associated adjustable parameters, weight and bias, scaled by backpropagation algorithms 

(learning rules) in order to minimize the error between the predicted and measured output. As 

explained in Principe et al. (1999), the PEs sum all these contributions and produce an output 

that is a nonlinear function of the result. The training stage is an iterative process that only 

finishes when a criterion for the error between ANN and data is satisfied. At the end, the 

perceptron is able to generalize other inputs that belong to the same class but were not used 

for training. 

In order to ensure the generalization ability of the ANN model, a cross-validation method 

is used on the training stage. The cross-validation consists in partitioning the training set in 

two subsets, training and validation, and testing the neural network model performance with 

the validation subset at each interval of iterations. The training phase is interrupted when the 

error in subset validation starts to increase, in other words, when the maximum point of 

generalization is found. 

There are several cross-validation methods, however, this article is concerned only in k-

fold cross-validation (Kohavi, 1995). In this technique, the original data set is randomly 

divided in k subsets with approximately the same amount of samples, containing examples of 

all classes. In each iteration, a distinct subset is used for testing and the other k-1 subsets are 
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used for training. The training and test process are repeated several times. The precision 

estimative is the number of the correct classifications divided by the sample number of the 

subset k. At the end, each sample from the original dataset was tested once, so there was no 

overlapping data. The final performance of the model is calculated through the mean of the 

correct predicts of all k-fold validations. 

3.2 Support Vector Machine 

Another popular artificial intelligence technology for pattern recognition problem is the 

Support Vector Machine (SVM). SVM is a statistical learning algorithm trained to determine 

the boundary between two classes of data in a space, where an optimal separating hyperplane 

is constructed in order to maximize the margin and minimize the misclassification (Vapnik, 

1995). The maximization of the margin is based on an optimization function to minimize the 

euclidian norm of the vector that defines the direction of the separating hyperplane. The 

training data points located at the maxim margins are called support vectors, as illustrated in 

Fig. 1. 

 

Figure 1. Linear SVM illustration. 

For non-linear binary classification, the input is mapped into a high-dimensional feature 

space through a kernel function. The kernel function used in this article is the Gaussian, also 

called Radial Basis Function (RBF). In this case, the SVM has two free parameters that need 

to be specified:  from the RBF kernel function; and C, a regularization parameter from the 

formulation of the margin maximizing, used to avoid the data overfitting. These parameters 

are estimated by training an SVM for multiple values of C and  . The pair which minimizes 

the generalization error is chosen. 

3.3 Higher-Order Statistics 

Most of dataset have Gaussian behavior and are completely characterized by the second-

order statistic, which the autocorrelation of two series in the time domain offer a primary 

characterization of the measured data. However, there are situations in which the product of 

two sequences of measurements doesn’t provide enough information, requiring another 

technique to distinguish the signal. Higher-Order Statistic (HOS) is a technique that uses 



Development of a hybrid method to detect structural damage 

CILAMCE 2016 

Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering 

Suzana Moreira Ávila (Editor), ABMEC, Brasília, DF, Brazil, November 6-9, 2016 

higher-order cumulants to infer new properties about the data, where the time domain 

estimators have been obtained after multiplied by more than two time-series (De la Rosa et 

al., 2013). For the case of structural dynamic data, the measurement signals are very similar 

in the presence or absence of damage. Therefore, the HOS can provide parameters to identify 

subtle differences among the time domain signals, enabling the detection of structural 

alterations. 

The ten different statistical indicators (first, second, third and fourth order) used to 

characterize the time domain data in this article are listed below: 

Peak: 

maxpeakx  x  (1) 

Mean: 

1

1 n

i

i

x x
n 

   (2) 

Mean Square: 

2

1

1
( )

n

sq i

i

x x
n 

   (3) 

Root Mean Square: 

2

1

1
( )

n

i

i

rms x
n 

   (4) 

Variance: 

2 2

1

1
( )

n

i

i

x x
n




   (5) 

Standard Deviation: 

2

1

1
( )

n

i

i

x x
n




   (6) 

Skewness: 

3

1

4

1
( )

n

i

i

x x
n

s









 (7) 

Kurtosis: 

4

1

4

1
( )

n

i

i

x x
n

k









 (8) 

Crest Factor: 

peakx
Cf

rms
  (9) 



R. Finotti, F. Barbosa, A. Cury, R. Pimentel, G. Ferreira, L. Melo  

CILAMCE 2016 

Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering 

Suzana Moreira Ávila (Editor), ABMEC, Brasília, DF, Brazil, November 6-9, 2016 

K-factor: 

peakKf x rms   (10) 

4  A HIBRID METHOD TO DETECT STRUCTURAL DAMAGE 

In view of the difficulties inherent to the aforementioned methods, the viability of a 

hybrid method to identify structural damage is evaluated in this work. The idea is to use 

changes on modal data and higher-order statistic parameters of structural time domain series 

together, as input of artificial intelligence algorithms. In order to study the viability of the 

proposed method, an ANN and SVM algorithms were constructed to work as a classifier for 

damage identification and their results were compared. A simply supported numerical beam 

and an experimental tested prototype concrete slab were analyzed.  

Considering that damage occurrence induces changes on structural stiffness, the modal 

input for each damage level is characterized by the changes on natural frequencies. Ten 

statistics parameters are calculated to represent the structural time domain measurements: 

peak, mean, mean square, root mean square, variance, standard deviation, skewness, kurtosis, 

crest factor and K-factor, as discussed in section 3.3. 

The neural network implemented is a MLP with one hidden layer. The numbers of 

processing elements in the output layer correspond to the levels of damage. The MLP was 

trained performing the 10-fold cross-validation method. The data was partitioned as follows: 

1/10 for test, 1/10 for validation and 1-2/10 for training. Levenberg-Marquadt optimization 

method (Hagan & Menhaj, 1994) was chosen as training function, using the mean square to 

assess the error and a sigmoid hyperbolic tangent as activation function.  

Other artificial intelligence method used in the present work is the SVM. The algorithm 

was trained using Gaussian Radial Basis Function kernel, where the best parameters sigma 

and C were selected by training an SVM for different values of these parameters in a 10-fold 

cross-validation. The SVM multi-class classification problem was solved by using one-

against-all strategy (Bishop, 2006). This method consists on constructing one binary SVM 

model per class, training each model to distinguish the samples of one class from the 

remaining samples of the other classes, as illustrated in Fig. 2.  

 

Figure 2. One-against-all strategy. 

The ANN and SVM artificial intelligence algorithms, as well as the statistics indicators, 

were constructed with toolboxes and functions available in Matlab®. 
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5  SIMPLY SUPPORTED BEAM APPLICATION – NUMERICAL 

TESTS 

5.1 Description of the beam model 

The present section analyzes the damage identification algorithms based on a numerical 

application using a finite element model of a simply supported beam. Structural dynamic 

responses were obtained by a numerical model of a simply supported beam, made of steel, 

having I-shaped section and 6 m length (Alves, 2012). The mechanical properties of the beam 

are: 

Young’s Modulus (E) = 210 GPa ;  

Density = 7850 3kg.m ; 

Cross-Section Area = 3 22.81x10 m ; 

Moment of Inertia = 8 42.845x10 m .  

The finite element model consists of 200 elements of Bernoulli beam formed by two 

nodes with two degrees-of-freedom each (vertical translation and rotation). This beam was 

excited by a random force with different frequencies and amplitudes, applied at 0.69 m from 

the right support, as can be seen in Fig. 3. The dynamic responses were considered as vertical 

displacements measured in 10 equidistant points (channels) of the beam during 10 seconds, 

where the sampling rate was 1/100 s.    

 

Figure 3. Simply supported beam model. 

Three different levels of damage were simulated: Healthy beam (undamaged– Class 1); 

20% reduction of young’s modulus at the half length of the beam, represented by the gray part 

in Fig. 3 (damage level 1 – Class 2) and; 10% reduction of young’s modulus at the quarter 

length of the beam, the black part denoted in Fig. 3, in addition to 20% previous young’s 

modulus reduction (damage level 2 – Class 3). Furthermore, noise levels were added to 

measurements in each structural configuration mentioned above: Noiseless; 5% signal/noise 

(noise 1) and 10% signal/noise (noise 2). The corresponding noise levels were simulated by 

Eq. (11): 
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,noise . . (0,1) ,
ii i noisen V N  Xx x  (11) 

where 
,noiseix is the vector signal with noise, ix  is the noiseless vector signal, noisen is the noise 

level, 
i

X
is the standard deviation and (0,1)V N is the gaussian vector with zero mean and 

unit standard deviation. Ten different dynamic measurements were simulated for each damage 

and noise level, totalizing 90 signals.  

For both ANN algorithms, the output data classes are represented by a target matrix 

[90x3], where their lines indicate the sample category through the following binary encoding: 

(1 0 0) – No damage; (0 1 0) – Damage level 1 and, (0 0 1) – Damage level 2. However, for 

the SVM classifiers, the three damage classes of the input data are represented by a target 

vector encoded as: 1 – No damage; 2 – Damage 1 and, 3 – Damage 2.   

In the present application, the classification is made along the entire length of the beam, 

so the input dataset was arranged in a matrix [90x100] where the lines are the samples and 

columns are the statistic indicators (10 indicators x 10 channels = 100). Every ten columns 

group has an indicator type, in the order described in section 3. The Fig. 4 shows an example 

of the network architecture for the proposed ANN model.  

  

Figure 4. MLP network with 5 neurons in hidden layer. 

Only the changes observed on the first three natural frequencies of the dynamic response 

were considered as ANN and SVM modal input, arranged in a matrix [90x3]. The natural 

frequencies of the beam were provided by Alves (2012) and were identified through Sys-Ident 

developed in LCPC (Laboratoire Central des Ponts et Chaussées, Paris, France), which is 

based on the random decrement technique and Ibrahim method (Barbosa & Cremona, 2001).  
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6  PROTOTYPE CONCRETE SLAB APPLICATION – 

EXPERIMENTAL TESTS  

6.1 Description of the slab 

The dynamic behavior of the concrete slab is analyzed through experimental 

investigation.  For this purpose, a concrete slab prototype of 3.00 m length x 1.35 m width x 

0.08 thick was built, with steel reinforcement using steel bars with 5.0 mm diameter and 

yielding stress 60MPa (CA 60 in brazilian codes), equally spaced by 25 cm. The concrete was 

casted using Portland cement type V-25 equivalent to early age resistant type cements. The 

slab was designed for a 16kN ultimate load and was simply supported along two steel beams. 

Dynamic tests were performed at pre-established points of excitation and measurements, 

using a 5 kg B&K model 8210 instrumented sledge hammer and an Endevco model 752A13 

piezoelectric accelerometer with a sensitivity of 1 V/g. Damages were imposed on the slab by 

static loads, considering four load stages: 0 kN, 8 kN, 16 kN and 22 kN. The static load was 

applied by a hydraulic jack and distributed in two lines parallel to the supports, located at one 

third of the slab span. The dynamic responses were measured after the respective cycle of 

loading and unloading. The experimental setup is shown in Fig. 5.  

    
 

(a) Load distribution by a hydraulic jack. (b) Data acquisition. 

Figure 5. Experimental setup of the concrete slab test. 

Impulsive excitations (hammer blows) were applied in each point and the responses were 

measured by an accelerometer, that was fixed at a specific node in the slab. The location of 

the excitation and measurement points is represented in Fig. 6.  

Each excitation and response signals lasted 4.0 secs and had a total of 4,096 data points. 

The data was acquired and processed by the spectrum analyzer Dataphysics model Quattro, in 

order to obtain the time domain series and the frequency response functions (FRFs). The 

frequency resolution was 0.25 Hz (1/ 4.0 secs). To minimize the noise effects, the FRFs were 

the average of five excitations. With regard to the time domain history, only the last excitation 

of each point was recorded. The signals obtained from node 5 and 41 were discarded due to 

data acquisition problems and in order to facilitate the 10-fold cross-validation processing of 
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computational algorithms, respectively. At the end, 40 samples were obtained for each load 

stage, totalizing 160 dynamic measurements.  

 

 

Figure 6. Excitations points of the concrete slab test (dimensions in m). 

The targets for the slab were encoded as: No damage – Class 1 (0 kN) – (1 0 0 0) for 

ANN and 1 for SVM; Damage due the 8 kN static load – Class 2 – (0 1 0 0) for ANN and 2 

for SVM; Damage due the 16 kN static load – Class 3 (0 0 1 0) – for ANN and 3 for SVM; 

Damage due the 22 kN static load – (0 0 0 1) for ANN and 4 for SVM. 

As previously mentioned, the 10 statistic indices were calculated for each signal of the 

simulated vibrational data, giving as input a matrix [160x10]. The MLP network architecture 

designed for the slab is similar to the beam, except for the number of neurons in the input 

layer (only 10 statistical characteristics). 

The first natural frequency of the slab was identified through the FRFs, as well as 

damping ratio, arranged in an input matrix [160x2]. The damping ratio for the first mode was 

obtained from the FRF, employing the half power method.  

7  RESULTS 

Dynamic behavior analysis was performed for the numerical and experimental 

applications using artificial intelligence algorithms. The results are the percentages of the 

correct classifications for the respective damage situations of each case (number of correct 

classifications divided by the number of the samples). Both ANN and SVM algorithms were 
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executed 30 times and the classification rate is represented by the mean values of these 30 

repetitions. 

7.1 ANN algorithms 

The results of the ANN models for the two applications (numerical beam and prototype 

slab) are presented in Tab.1. The neural networks were implemented with 10 neurons in the 

hidden-layer.  

Table 1. Results of correct classifications done by ANN algorithms. 

 Simply supported 

numerical beam 

Experimental tested 

prototype concrete slab 

 HOS Input Modal Input HOS Input Modal Input 

Mean 96.70% 98.00% 53.31% 96,97% 

Standard 

Deviation 
3.64% 2.31% 4.00% 3.83% 

For modal input, the correct classification rates obtained on the ANN are greater than 

95%. These good results are achieved because the changes on natural frequencies are well 

defined for each damage level. However, the ANN failed in identifying damage for the 

prototype slab using HOS input. This probably happened due the fact that the impulsive load 

applied by the hammer at the slab produced a short dynamic response, making it hard to 

characterize the signals among the different levels of damage in the structure. Unlike what 

happened with the slab, the excitement of the beam is made by a periodic load, where the 

dynamic signals are longer than the observed for impulsive load. 

7.2 SVM algorithms 

The results of the SVM models are presented as correct classification rates for each 

binary classifier of the multi-class model, and are shown in the Tab. 2, Tab. 3 and Tab. 4. The 

correct classification rates obtained on the SVM for the two applications are higher than 97%, 

except for the slab application using HOS input, which the percentage is around 77%. Even 

so, SVM has better performance than ANN in all cases, highlighting the slab application 

using HOS input where the ANN algorithm didn’t achieve good classification rates.     

Table 2. Results of correct classifications done by SVM algorithm for the simply supported numerical 

beam. 

 HOS Input Modal Input 

 Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

Mean 99.11% 99.11% 97.85% 100% 99.93% 99.70% 

Standard 

Deviation 
1.44% 1.50% 1.77% 0% 0.28% 0.50% 
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Table 3. Results of correct classifications done by SVM algorithm for the experimental tested prototype 

slab using HOS indicators as input.  

 Class 1 Class 2 Class 3 Class 4 

Mean 79.48% 79.56% 76.21% 75.44% 

Standard Deviation 0.90% 1.72% 0.23% 1.71% 

 

Table 4. Results of correct classifications SVM algorithm for the experimental tested prototype slab using 

the first natural frequency and damping ratio as input. 

 Class 1 Class 2 Class 3 Class 4 

Mean 99.37% 98.67% 99.25% 99.93% 

Standard Deviation 0% 0.32% 0.38% 0.19% 

8  DISCUSSIONS AND CONCLUSIONS 

In this paper, preliminary studies focusing the development of a hybrid damage detection 

method were presented. The main idea of this proposed method is to apply HOS and modal 

data as inputs of artificial intelligence algorithms.  

Analyzing the performance of ANN with HOS and Modal Input, it was observed that 

Modal Input allows better results for short dynamic responses. For a relatively longer time 

history (simply supported beam), results for HOS or Modal Input have similar performances.  

Results for the second analyzed structure (the tested slab) shows that SVM has better 

performance than ANN. For the same set of HOS input, the correct identification of each 

class augmented from around 53% (ANN) to around 77% (SVM). Based on these previous 

observations, one can conclude that, for these preliminary studies, SVM is indicated for the 

future hybrid damage detection model. 

Once the artificial intelligence method is chosen, the definition of the kind of data for the 

proposed damage detection model demands more studies. For long-term experimental 

measurements with small differences in terms of modal data, it is expected that the inclusion 

of HOS data also as input to a SVM may increase the performance of the damage detection 

model. This hybrid strategy may include weights for each kind of data, focusing the best 

performance of the damage identification process. 
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