<=

REVISTA
INTERDISCIPLINAR DE
PESQUISA EM
ENGENHARIA

CILAMCE
2016

XXXVII IBERIAN LATIN AMERICAN CONGRESS
ON COMPUTATIONAL METHODS IN ENGINEERING

BRASILIA - DF - BRAZIL

Development and Implementation of a Well-conditioning Approach Toward
Generalized/Extended Finite Element Method into an Object-oriented
Platform

Mohammad Malekan
Felicio B. Barros
Ramon P. Silva
malekan @dees.ufmg.br
felicio@dees.ufmg.br
ramon @ufmg.br

Graduate Program in Structural Engineering (PROPEEs), School of Engineering, Federal University
of Minas Gerais (UFMG), Av. Antonio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, MG,
Brazil

Abstract. This paper shows and discusses a generic implementation of the well-conditioning ap-
proach toward generalized/extended finite element method. This implementation, performed into
an academic computational platform, follows the object-oriented approach presented before for the
standard version of GFEM in which the shape functions of finite elements are hierarchically en-
riched by analytical functions, according to the problem behavior. The stable version of GFEM is
employed here to avoid the bad effects of blending elements on the approximate solution conver-
gence rate. Beside this, a sparse matrix data structure is used to accelerate the solution procedure.
This approach uses the advantage of sparse matrix to solve the matrix system of equations. The
implementations are explained in detail and different aspects of this approach are discussed through
numerical examples.

Keywords: Generalized/eXtended FEM, Object-oriented programming, Two-scale Analysis, Stable
GFEM, Matrix sparsity

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
Suzana Moreira Avila (Editor), ABMEC, Brasilia, DF, Brazil, November 6-9, 2016

Develop. and Implementation of a Well-conditioning Approach for GFEM

1 INTRODUCTION

During the last three decades, finite element method (FEM) became a powerful and robust
method to solve various engineering and applied science problems. However, there are phenomena
which the conventional form of the FEM cannot satisfactorily describe. Problems subject to large de-
formation and crack propagation, which require several level of remeshing are among those that lead
to arise the new approaches. One of the method that can easily deal with the discontinuity problem is
generalized/extended finite element method (G/XFEM). In G/XFEM (Melenk and Babuska, 1996;
Oden et al., 1998; Belytschko and Black, 1999), similar to FEM, the approximation is built over
a mesh of elements using interpolation functions. However, the approximation is associated with
nodal points. Special functions multiply the original FEM functions and smooth and non-smooth
solutions can be modeled independently of the mesh.

In addition, the local enrichments of the G/XFEM approximations lead to arising the blending
elements (an element containing both enriched and non-enriched nodes) into the problem domain
(Chessa et al., 2003; Gracie et al., 2008; Tarancon et al., 2009; Shibanuma and Utsunomiya, 2009).
The presence of these elements results in an arbitrarily ill-conditioned matrix and penalizes the con-
vergence rate of the approximate solution. To address those problems, Menk and Bordas (2011)
proposed a method based on pre-conditioners, Laborde et al. (2005); Béchet et al. (2005) used en-
richment functions at a fixed region around the problem domain, called geometrical enrichment,
which lead to optimal convergence rates in the G/XFEM.

Recently, Babuska and Banerjee (2011, 2012) presented a new approach for one-dimensional
domains, so-called Stable GFEM (SG/XFEM here, considering the equivalence between GFEM
and XFEM) which involves simple modification of the enrichment functions in order to create an
enrichment space that is near-orthogonal to the finite element approximation space, while preserving
all the attractive features of the G/’ XFEM. The SG/XFEM is aiming to improve the conditioning
property of the G/’XFEM. Another advantage is that the SG/XFEM does not use ramp-functions
in the transitory elements between regions of different kinds of enriched functions as proposed by
Fries (2008). Babuska and Banerjee (2011, 2012) show that the SG/XFEM is optimally convergent
and it has no issues with the blending elements. Gupta et al. (Gupta et al., 2013, 2015) extended
one-dimensional SG/XFEM to two- and three-dimensional fracture mechanics.

In Alves et al. (2013), the available FEM programming environment is expanded to enclose the
standard version of G/XFEM. This environment, so called INSANE (Interactive Structural Analysis
Environment) is an open source software available at http://www.insane.dees.ufmg.br and written in
Java language. More after, the G/’XFEM method is extended to have numerically-built enrichment
function within the so-called method global-local G/XFEM (G/XFEM#) in (Malekan et al., 2016a,b;
Malekan and Barros, 2016).

To minimize memory consumption and at the same time speed up the solution of linear equa-
tions, one can use existing numerical linear algebra libraries such as SuiteSparse (Davis, 2004). It is
highly-efficient in terms of memory usage and speed. These libraries are written in C language and a
Java application is performed through the Java Native Interface (JNI), which provides mechanisms
for performing data transfer to/from the Java and provides rules for adapting name and signature of
native methods called from the Java application.

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
Suzana Moreira Avila (Editor), ABMEC, Brasilia, DF, Brazil, November 6-9, 2016

http://www.insane.dees.ufmg.br

M. Malekan, F.B. Barros, Ramon P. Silva

In the present paper, a new expansion that includes the Stable GFEM is presented. The im-
plementation, conducted through the development of comprehensive object-oriented design, allows
generalization of the approach in such way that any types of partition of unity methods, analysis
model and enrichment strategy can be combined. Also, the SuiteSparse library is used through the
JNI in Andrade and Silva (2015) to accelerate the solution procedure.

2 PROBLEM STATEMENT

The problem considered here consists of a linear elastic cracked domain {2 bounded by the
boundary 0f) such that:
00 = 09, U 092, U 092, (1)
where 0€); is the part of the boundary where surface tractions ¢ are applied as Neumann conditions,
0%, is the part of the boundary where displacements u are imposed (as Dirichlet boundary condi-

tions), and OS2, is the crack surface. The strong form of the equilibrium equations and boundary
conditions can be written as:

V-o+b=0 1in((2)
o-n=1t ondS) : external traction 3)
o-1n =0 onodf),: traction free crack 4)
u =u on), : prescribed displacement (5)

2Q,

Figure 1: Boundary condition definition on the cracked domain
where o is the Cauchy stress tensor, u is the displacement field vector, 72 is the unit outward normal
and b and t are the body force and external traction vector. For small strains and displacements,
strain-displacement relation can be written as:
e=¢e(u)=Vsu inQ (6)
In the above equation V4 is the symmetric part of the gradient operator and € is the linear strain
tensor. The constitutive relation for linear elastic material is given by Hook’s law:
oc=Dc¢ (7)

where D is the Hook’s tensor. The variational form of the equilibrium equation can be written as:

/a(u): a(v)dQ:/l_)~de+/ t-vdl (8)
Q Q Iy

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
Suzana Moreira Avila (Editor), ABMEC, Brasilia, DF, Brazil, November 6-9, 2016

Develop. and Implementation of a Well-conditioning Approach for GFEM

3 GENERALIZED and STABLE GENERALIZED FEM

The GFEM was developed for modeling structural problems with discontinuities (Melenk and
Babuska, 1996; Duarte et al., 2000). Furthermore, it can be considered an instance of the Partition
of Unity Method, PUM (Babuska and Melenk, 1997), in the sense that it employs a set of Partition
of Unity, PU, functions to guarantee interelement continuity. Such strategy creates conforming
approximations which are improved by a nodal enrichment scheme. This basic idea shares the same
characteristics from XFEM proposed by Belytschko and Black (1999).

A conventional finite elements mesh can be considered for which {IC.}Y5 is a set of NF el-
ements, defined by N nodes, {x; };VZI A generic patch of elements or cloud w; € is obtained
by the union of finite elements sharing the vertex node ;. The assemblage of the interpolation
functions, built at each element K, C w; and associated with node x;, composes the function N;(x)
defined over the support cloud w;. As Zjvzl Nj(x) = 1 at every point x in the domain (2, the set
of functions {N(x) ;VZI constitutes a partition of unity (PU). The generalized finite element shape
functions are determined by the enrichment of the PU functions, which is obtained by the product of
such functions by each one of the components of the set Z; at the generic cloud w;:

{pji}ic, = Nj(x) x {Lji(z) }i,)

The enrichment scheme is obtained by multiplying a PU function of C° type with compact
support w; by the function L;;(x), named as a local approximation (also called enrichment func-
tion). The resulting shape function ¢;;(x) inherits characteristics of both functions, i.e., the compact
support and continuity of the PU and the approximate character of the local function.

As a consequence, the generalized global approximation, denoted by @ (), can be described as
a linear combination of the shape functions associated with each node:

ﬁ@ﬁ::Z:Aﬂ¢){uf+§:L%@ﬁ@r+§:L%ﬁwqm} (10)

where u; is nodal parameters associated with standard FE shape function, ./\/'J(:l:) b;; and ¢, are
nodal parameters associated with GFEM shape functions, N;(x) - Lj;(x), respectively. L;(x) and
L, (x) are polynomial and singular enrichment functions, respectively. An example of the enrich-

ment function, L;’i, based on polynomials is:

_(r=z\" (y—y\’
Lgi(w)_(h;) X(h;) (tH

where (z;,y;) are the coordinates of node x;, m and p are degree of polynomials in x and y di-
rections, respectively, and h; is an scaling factor. Another example for the enrichment function by
considering the singularities can be defined as (Barros et al., 2013):

{"Ljo (@) fam1 = %T*l{[ﬁ — Q1(M + D]cosAit) — Aycos(A\ — 2)0} (12)
(Lu@) o = 2 {5+ Qa0+ Dsinhid + Masin(A, —2)6) (13
CILAMCE 2016

Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
Suzana Moreira Avila (Editor), ABMEC, Brasilia, DF, Brazil, November 6-9, 2016

M. Malekan, F.B. Barros, Ramon P. Silva

where A\,), and A; are some coefficients related to the crack and they are a function of relative
position of crack to global coordinate system. Also, x = 3 — 4v for plane stress analysis and
¢= 21+v)
The G/XFEM has many interesting features. However, the patch approximation spaces X4,
which give rise to the excellent approximation property of the G/XFEM, can also adversely affect its
performance. The conditioning of the stiffness matrix Kq,xrga of G/XFEM can be much worse
than that of the standard FEM (Gupta et al., 2013). Thus, the stable G/XFEM is considered here in
order to keep approximation capability of the G/XFEM and control the conditioning of the system
matrices. As already mentioned in the introduction, the SG/XFEM initially proposed in (Babuska
and Banerjee, 2011, 2012), and extended to 2D by Gupta et al. (2013) and 3D fracture mechanics by
Gupta et al. (2015), provides a robust and simple solution to the problem of ill-conditioning of the
G/XFEM. Following (Babuska and Banerjee, 2011, 2012; Gupta et al., 2013, 2015), the SG/XFEM
enrichment functions are constructed based on a local modification of the G/XFEM enrichments
functions, as following:

L3(x) = Lji(x) — L, (Ly;) (@) (14)
with:

Z Lji(2a)Na(§) (15)

€Z(7)
where IWJ(L]Z) is the piecewise bi-linear FE interpolant of the G/XFEM enrichment function L ;

and LJSZ. is the modified SG/XFEM enrichment function, vector x,, has the coordinates of node « of
element 7 and N, is the piecewise linear FE shape function for node «. Then, similar to G/XFEM
formulation (9), the shape function of SG/XFEM can be calculated as:

ji(x) = Nj(x) x L7 (x) (16)

By referring to Egs. (14) and (15), the main additional part for the SG/XFEM method is the
evaluation of the finite element interpolant, ij(Lji), which its computational evaluation is almost
straightforward. In other words, we only need to compute the FE shape functions values at inte-
gration points. Further details on the numerical aspects of SG/XFEM and its detailed explanations
can be found in (Gupta et al., 2013). So far, the SG/XFEM method has been applied to 2D and
3D dimensional fracture mechanics problems using singular and Heaviside enrichment functions in
(Gupta et al., 2013, 2015). Another concept that will be used here is the global-local or two-scale
strategy. The global-local G/’XFEM originally proposed by Duarte and BabuSka (2005), combines
the standard G/XFEM with the global-local strategy proposed by Noor (1986). G/’XFEME! is suitable
for problems with local phenomena, such as stress field next to the crack tip. The analysis is divided
in three steps: Initial global problem (step 1) that uses a coarse FEM mesh, Local problem (step 2)
which uses a refined mesh in a small part of the initial global problem, and the Final global problem
(step 3) that some of the nodes from initial global problem are enriched using numerical functions
calculated in step 2.

4 SuiteSparse MATRIX APPROACH

In order to optimize computational time, the sparse matrix can be held in some form of compact
data structure that avoids storing the numerically zero entries in the matrix. The two most common

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
Suzana Moreira Avila (Editor), ABMEC, Brasilia, DF, Brazil, November 6-9, 2016

Develop. and Implementation of a Well-conditioning Approach for GFEM

formats for sparse direct methods are the triplet matrix and the compressed-column matrix (or the
compressed-row matrix) (Davis, 2004). The simplest sparse matrix data structure is a list of the
non-zero entries in arbitrary order, also called the triplet form. However, in the compressed-column
format, which is used in INSANE computational framework, each column is represented as a list of
values and their corresponding row indices for each column. To create this data structure, the first
step counts the number of entries in each column of the matrix, and the column pointer array, as well
as its corresponding value, is constructed as the cumulative sum of the column counts. The entries
are placed in their appropriate columns in a second step.

Popular choice to solve static finite element problems (Ax = b) are direct methods that rely on
numerical factorizations. Among various direct methods, one can use the unsymmetric multifrontal
method in particular (Davis and Duff, 2004; Pais et al., 2012; Zheng and Luo, 2014; Davis et al.,
2016). The UMFPACK (Davis, 2009) code is written based on the multifrontal method. This code
is chosen to accelerate the processor part mainly because it is well-designed and its source codes
are easily available. It already has been used by different commercial and in-house codes, such as
ANSYS (2015); NASTRAN (2015); Hecht (2012).

A typical multifrontal algorithm consists of the symbolic and the numerical factorization. In
the symbolic factorization stage, an elimination tree is formed. The numerical factorization includes
pivoting, assembling, and updating is then performed on each of the frontal matrices. For a frontal
matrix, the following transformation is performed (Yu et al., 2011).

p L 0 Uy U
Q _ 1 1 2 (17)
R C Ly C—LUs| |0 1

where block P contains all of the pivots in the current supernode, blocks () and R contain the corre-
sponding nonzero rows and columns of the pivots, P = LUy, L, = RU; ', and U, = L;*Q. Figure
2 shows a schema of the matrices notations for the multifrontal method used in UMFPACK. Also,
algorithm 1 is a simplified version of the unsymmetric multifrontal method used by UMFPACK.

P Q LU Uz
will be
transformed to
R C > L2 C-L2U:2
Initial frontal matrix

Figure 2: Matrices notations for the multifrontal method

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
Suzana Moreira Avila (Editor), ABMEC, Brasilia, DF, Brazil, November 6-9, 2016

M. Malekan, F.B. Barros, Ramon P. Silva

Algorithm 1 General multifrontal numerical factorization approach used in UMFPACK (Davis,
2004; Yu et al., 2011)

: procedure NUMERICAL FACTORIZATION

—

2: Initialization
3: Symbolic factorization and form the elimination tree
4: for all frontal matrices do
5: while factorize the frontal do
6: Assemble using update matrices and original matrix elements
7: Perform row pivoting
8: Factor the pivot to get a part of L1 and Ul
9: Update part of L2
10: end while
11: Update U2 and C
12: end for

13: end procedure

S OOP ENVIRONMENT

The INSANE environment (Fonseca and Pitangueira, 2007; Alves et al., 2013; Malekan et al.,
2016a), is an open source software implemented in Java, an OOP language. The INSANE com-
putational environment is composed by three great applications: pre-processor, processor and post-
processor. The INSANE numerical core is composed by the interfaces Assembler, Model and Persis-

tence and the abstract class Solution. Figure 3 shows the unified modeling language (UML) diagram
of the INSANE numerical core.

<<interface>>
java.util.Observer

i

java.util.Observable <<interface>> java.util.Observable
Persistence

<<interface>> Solution
Model I

<<interface>>
Assembler

Figure 3: Organization of INSANE numerical core

Different parts of the INSANE numerical core are written and linked to each other to solve the
following generic representation of an initial value problem:

AX+BX+CX=D (18)

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
Suzana Moreira Avila (Editor), ABMEC, Brasilia, DF, Brazil, November 6-9, 2016

Develop. and Implementation of a Well-conditioning Approach for GFEM

where X is the solution vector; the single dot represent its first time derivative and the double dots
its second time derivative; A, B and C' are matrices with the properties of the problem and D is a
vector that represents the system excitation. Solution abstract class starts the solution process and
has the necessary resources for solving the matrix system.

The EnrichmentType class is a part of the Model interface which provides required informa-
tion for the enrichment strategy of the G/’ XFEM method. The GlobalLocalEnrichment, Polyno-
mailEnrichment, and CrackEnrichment (singularity enrichment) extend EnrichmentType class to
have G/XFEM enrichment functions for various problems.

pkg enrichmentType)

EnrichmentType

/

\ GlobalLocalEnrichment

CrackEnrichment StableGlobalLocalEnrichment

PolynomialEnrichment

StablePolynomialEnrichment

StableCrackEnrichment

Figure 4: UML diagram of the EnrichmentType package

The class PolynomailEnrichment holds some arrays to represent the monomial functions used
in Eq. (9). On the other hand, the class CrackEnrichment holds some necessary parameters to
simulate functions with high singularity. EnrichmentType class has some generic methods which are
responsible to calculate enrichment functions and their derivatives in a point. Each node, instance of
an object Node, can have a list of the objects of class EnrichmentType. This relationship allows the
existence of multiple types of enrichment functions for the mesh as a whole and also for each node.

pkg enrichmentType)

EnrichmentType

StablePoly Sl ot

+ label : String

- enrichmentParameterX : ArrayList<Integer>
- enrichmentParameterY : ArrayList<Integer>
- enrichmentParameterZ : ArrayList<Integer>
+ originalShape: Shape

+ getEnrichmentParameterX(): ArrayList<Integer>

+ getEnrichmentParameterY(): ArrayList<Integer>

+ getEnrichmentParameterZ(): ArrayList<Integer>

+ getEnrichmentMultipliers(natCoordsInGlobalCoords: IVector, currentNode: ElementNode, integPoint: double, currentElement: Element): ArrayList<ArrayList<Double>>

+ getLabel(): String

+ getNumberOfParameters(): int

+ getOriginalShape(): Shape

+ getXDerivedEnrichmentMultipliers(natCoordsInGlobalCoords: IVector, currentNode: ElementNode, integPoint: double, currentElement: Element): ArrayList<ArrayList<Double>>
+ getYDerivedEnrichr ipli 1atCoordsInGlobalCoords: IVector, currentNode: ElementNode, integPoint: double, currentElement: Element): ArrayList<ArrayList<Double>>
+ getZDerivedEnrichmentMultipliers(natCoordsInGlobalCoords: [Vector, currentNode: ElementNode, integPoint: double, currentElement: Element): ArrayList<ArrayList<Double>>
+ setEnrichmentParameterX(ArrayList<Integer> ParX): ArrayList<Integer>

+ setEnrichmentParameterY(ArrayList<Integer> ParY): ArrayList<Integer>

+ setEnrichmentParameterZ(ArrayList<Iinteger> ParZ): ArrayList<Integer>

+ setLabel(String label): String

+ setNumberOfParameters(int numParam): int

+ setOriginalShape(Shape origShape): Shape

Figure 5: UML diagram of the StablePolynomialEnrichment class

Furthermore, to implement the SG/XFEM approach, the StableGlobalLocalEnrichment, Sta-

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
Suzana Moreira Avila (Editor), ABMEC, Brasilia, DF, Brazil, November 6-9, 2016

M. Malekan, F.B. Barros, Ramon P. Silva

blePolynomailEnrichment, and StableCrackEnrichment are added under EnrichmentType class. The
StableGlobalLocalEnrichment provides specific methods to build the SGFEM enriched functions
from the solution of the local problem and applied in the third step of the global-local problem.
Figure 4 shows the EnrichmentType class UML diagram. EnrichmentType is an abstract class and
its methods are abstract. Thus, both G/XFEM and SG/XFEM related enrichment classes contain the
same method, as the EnrichmentType class. Figures 5, 6, and 7 show the UML diagrams of these
new classes. In all UML diagrams, white, cream, and green colors represent unchanged, modified,
and new classes, respectively.

pkg enrichmentType)

EnrichmentType

StableCrackEnrichmentModel

+ label : String

- initialPoint: ArrayList<Double>
- lambda: double

+ originalShape: Shape

- q: double

- theta0: double

- geometricProperties(IVector coords): ArrayList<Double>

+ getEnrichmentMultipliers(natCoordsInGlobalCoords: IVector, currentNode: ElementNode, integPoint: double, currentElement: Element): ArrayList<ArrayList<Double>>

- getinitialPoint(); ArrayList<Double>

+ getLable(): String

- getLambda(): double

+ getOriginalShape(): Shape

- getQ(): double

- getTheta0(): double

+ getXDerivedEnrichmentMultipliers(natCoordsInGlobalCoords: IVector, currentNode: ElementNode, integPoint: double, currentElement: Element): ArrayList<ArrayList<Double>>
+ getYDerivedEnrichmentMultipliers(natCoordsInGlobalCoords: IVector, currentNode: ElementNode, integPoint: double, currentElement: Element): ArrayList<ArrayList<Double>>
- setlnitialPoint(ArrayList<Double> initialPoint); ArrayList<Double>

+ setlLable(String lable): void

- setLambda(double lambda): void

+ setOriginalShape(Shape origShape): void

- setQ(double q): void

- setThetaO(double theta0): void

Figure 6: UML diagram of the StableCrackEnrichment class

pkg enrichmentType)

EnrichmentType

StableGlobalLocalEnrichment

+ label : String
- model: GFemModel
+ originalShape: Shape

+ getEnrichmentMultipliers(natCoordsInGlobalCoords: IVector, currentNode: ElementNode, integPoint: double, currentElement: Element): ArrayList<ArrayList<Double>>

+ getlLabel(): String

- getModel(): GFemModel

- getNode(): Node

+ getOriginalShape(): Shape

+ getXDerivedEnrichmentMultipliers(natCoordsInGlobalCoords: IVector, currentNode: ElementNode, integPoint: double, currentElement: Element): ArrayList<ArrayList<Double>>
+ getYDerivedEnrichmentMultipliers(natCoordsInGlobalCoords: IVector, currentNode: ElementNode, integPoint: double, currentElement: Element): ArrayList<ArrayList<Double>>
+ setLabel(String label): String

- setModel(GFemodel model): GFemModel

+ setNode(Node node): Node

+ setOriginalShape(Shape origShape): Shape

Figure 7: UML diagram of the StableGloblLocalEnrichment class

Figure 8 shows the structure of the SparseMatrix class that extends the IMatrix class (Andrade
and Silva, 2015). The main implementation for conducting and utilizing the UMFPACK capabilities

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
Suzana Moreira Avila (Editor), ABMEC, Brasilia, DF, Brazil, November 6-9, 2016

Develop. and Implementation of a Well-conditioning Approach for GFEM

is written in this class. After filling the required parts of this class, the corresponding libraries related
to the UMFPACK will be called in order to solve the system of equations.

kg linearAlgebra
M IMatrix

SparseMatrix

+ ai: int[]

+ ap: int[]

+ ax: doublef]

+ control: double[]
+ iCache: int

+ info: double[]

+ iCache: int

+ kCache: int
+n:int

+ nnz: int

+ babuskaSparseSolver(double[] rhsVector, double[] solutionVector): double[]
+ getAi(): int[]

+ getAp(): int[]

+ getAx(): double[]

+ getConditionNumber(): double

+ getElement(int row, int col): double

+ getNumberOfNonZeros(): int

+ getSysOrder(): int

+ setAi(int[] rowPointerOfColumn): void

+ setAp(int[] colPointer): void

+ setAx(double[] valsOfSparseMatrix): void

+ setElement(int row, int col, double value): void

+ setNumberOfNonZeros(int numOfNonZeros): void

+ setSysOrder(): void

+ SparseMatrix(): void

+ SparseMatrix(IMatrix matrix): void

+ SparseMatrix(int[] ap, int[] ai, double[] ax): void

+ SparseMatrix(int[] ap, int[] ai): void

+ SparseMatrix(SparseMatrix spMatrix): void

+ SparseSolver(double[] rhsVector double[] solVector): double[]

+ SparseSolver2(double[] rhsVector double[] solVector): double[]

+ suiteSparseSolver(int[] ap, int[] ai, double[] rhsVector double[] solVector): double[]
+ suiteSparseSolver2(int[] ap, int[] ai, double[] ax, double[] rhsVector double[] solVector, double[] infoVector, double[] contVector): double[]
+vecMul(doublel]): double[]

Figure 8: UML diagram of the SparseMatrix class

6 NUMERICAL EXAMPLE

This section presents two linear-elastic problems in R2.Section 6.1 presents a double-edge
cracked plate and section 6.2 presents a plate with an edge crack. The geometry and boundary
conditions are very simple and the goal of choosing them is to demonstrate the capabilities of the
SG/XFEM method as well as the SG/XFEM#' method. Both problems are analyzed under plane
stress state, have the following parameters (in consistent units): modulus of elasticity £ = 1.0,
Poisson ratio v = 0.3, and the shear stress 7 = 1.0. The integration order for double-edge and edge
cracked (initial and final global problems and local problem) plates are considered equal to 8 X 8
and 6 x 6, respectively.

6.1 Double-edge cracked plate

This example considers a double-edge cracked plate submitted to a shear stress, as shown in Fig. 9.
The cracked zone produces singular stress field near the crack tips. The objective of this example is

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
Suzana Moreira Avila (Editor), ABMEC, Brasilia, DF, Brazil, November 6-9, 2016

M. Malekan, F.B. Barros, Ramon P. Silva

to illustrate the use of SGFEM with singular enrichment (shown in Eqs. (12) and (13)) for fracture
mechanic problems.

20.0
20.0

2
T

i X —-4 I

AT i & -
-7 i

1{ 10.0 l
Figure 9: Geometry and loading of the double-edge cracked plate

(a) Three meshes (t;) Geometric mesh with reduction rate of
Figure 10: Double-edge cracked problem meshing strategy.

The reference solution of this problem is obtained using a mesh of 13944 quadrilateral elements
(CPS4, a 4-node bilinear plane stress quadrilateral element) in ABAQU S ®,

Using INSANE, there are three different average element sizes (h) in this study, 7 = 2.0, 1.0,
and 0.5. The total number of elements are 98, 248, and 832 elements with a combination of regular
and geometrical mesh distribution considering these three element sizes, as shown in Fig. 10(a). As
it can be seen from this figure, only four elements from the cloud associated with the crack tip is
discretized with the geometric mesh. The geometric refining approach in this study is based on four
refinement level (L4) with f = 10% reduction rate, as shown in Fig. 10(b), according to Szab6 and

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
Suzana Moreira Avila (Editor), ABMEC, Brasilia, DF, Brazil, November 6-9, 2016

Develop. and Implementation of a Well-conditioning Approach for GFEM

Babuska (1991). Only nodes inside the red area (38 nodes) will be enriched with the polynomial and
singular enrichment functions. This is because having an equivalent enrichment zone for all three
meshed. Of course, there is no need to geometric mesh when the problem is enriching with singular
enrichment, because this enrichment function is able to capture the singularity around the crack tip.
But, we decided to have the same mesh for all enrichment cases. The P2 (quadratic) enrichment
function is considered here to enrich the problem with the polynomial enrichment. The formulation
of this function for x direction is as follows:

N (19)
0 (152) wita)
h;

Similar expression goes for y direction. Although the analytical solution is quadratic, but the en-
richment function is cubic and the is no linear polynomials. The reason behind using only quadratic
polynomials is that the linear polynomials in the case of SG/XFEM returns zero for enrichment
functions. The polynomial enrichment of order one provides null enrichment in Eq. (14), because
the FE interpolant [, , used in the stable strategy is also linear. It was highlighted that the FE inter-
polant is not considered in the SG/XFEM for the linear terms of the polynomial enrichment, so the
interpolation is performed only for the polynomials of second degree.

Figure 11 shows the convergence rate results against the inverse of the element size for having
different enrichment types. As it can be seen from this figure, both error values and rate of conver-
gences for SG/XFEM shown an improvement over the G/’XFEM and FEM approaches. Specially,
for having both polynomial and singular enrichment together (poly_crackMixed), the difference be-
tween the convergence rate is meaningful, 0.3 — 0.4 for both FEM and G/XFEM, while 0.4 — 0.9 for
SG/XFEM.

The condition numbers for three methods are illustrated in Fig. 12. Rate of growth in condition
numbers for all three methods are almost similar. This is because we only enrich a small part of the
problem and with limited number of nodes, so the total system of equations between three method
cannot change heavily.

As mentioned earlier, using the SuiteSparse library is a powerful tool to accelerate solving
procedure of matrix system of equations. Table 1 clearly shows the advantage of using the LU
factorization algorithm provided by the SuiteSparse library over a so-called conventional approaches
(Babuska iterative approach). In INSANE this last one also corresponds to the LU factorization, but
it is totally written in Java and the stiffness matrix is fully stored. Only corresponding data to the
enriching problem with the singular enrichment are brought in this Table.

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
Suzana Moreira Avila (Editor), ABMEC, Brasilia, DF, Brazil, November 6-9, 2016

M. Malekan, F.B. Barros, Ramon P. Silva

-0.7
-09
~
§ -1
=
%
S
~ ——FEM
1.3
—&— GFEM-poly
—4 - SGFEM-poly
—*— GFEM-crackMixed
-L5 o ——SGFEM-crackMixed
—&— GFEM-poly crackMixed
—e—SGFEM-poly_crackMixed
-1.7
-0.301 0.000 0.301
Log(1/h)

Figure 11: Relative error in strain energy against the inverse of average element size (1/4) for FEM, G/XFEM,
and SG/XFEM methods with different enrichment strategies. J refers to the convergence rate.

Table 1: Comparing CPU time between conventional and using the SuiteSparse library

G/XFEM SGFEM
h size 2 1 0.5 2 1 0.5
DOF 380 718 1940 | 389 718 1940

CPU time (msec)
Babuska iterative method

CPU time (msec)

145 722 6369 | 139 667 6081

8 25 48 8 23 44

SuiteSparse method

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
Suzana Moreira Avila (Editor), ABMEC, Brasilia, DF, Brazil, November 6-9, 2016

Develop. and Implementation of a Well-conditioning Approach for GFEM

=
N
=
g
=
=
=
S 4
=
"§ B =152 —e—FEM
Q\) —5—GFEM-poly
éo —4-SGFEM-poly
3 L —*— GFEM-crackMixed

—e— SGFEM-crackMixed
—— GFEM-poly crackMixed
——SGFEM-poly_crackMixed

-0.301 0.000 0.301
Log(1/h)

Figure 12: Condition number against the inverse of average element size (1/4) for FEM, GFEM, and SGFEM
methods with different enrichment strategies. [is the growth rate of the condition number.

6.2 Plate with an edge crack

This example is completely similar to 6.1, but having only one edge crack. The objective of this
problem is to illustrate the use of SG/XFEM as well as global-local Stable G/XFEM for fracture me-
chanic problems. The reference solution of this problem is obtained using a mesh of 89711 quadri-
lateral elements (CPS4, a 4-node bilinear plane stress quadrilateral element) in ABAQU S ® . This
problem will be solved for both SG/XFEM and G/XFEM approaches using global-local enrichment
function. The Dirichlet boundary condition (a limiting case of Cauchy boundary condition) will be
applied on the local problem boundaries. Numerical integration for the first and second steps of the
global-local analysis is done based on standard Gaussian quadrature procedure. In the third step, the
numerical integration for those global elements that contain local elements is done over the Gauss
points of local elements, as proposed by Kim et al. (2010). Consider that a global element contains
n’e local elements and the number of Gauss points for each local element is equal to GP. Thus,

the number of integration points for this global element is obtained by: Z?:l G P;. The penalty
parameter, 7, of Dirichlet boundary condition is chosen equal to 1 x 108.

There are three different average element sizes (h) in this study, # = 2.0, 1.0, and 0.5. The total
number of elements are 50, 200, and 800 elements with regular distribution considering these three
element sizes. The final answer for a problem solved using global-local strategy depends on the
size of the local domain as well as the local problem mesh, as shown by Duarte and Kim (2008).
Large local domains are preferable, since they give a better numerical solution to the global problem.
However, large local domains also increase the computational cost in solving problems. Figure 13
shows the global-local steps and also the local domain discretization for the case of h = 2.0.

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
Suzana Moreira Avila (Editor), ABMEC, Brasilia, DF, Brazil, November 6-9, 2016

M. Malekan, F.B. Barros, Ramon P. Silva

step 2

e

step 3

solve
problem

Figure 13: Global-local strategy sequences and local domains discretization for global element size of h = 2.0.
Black markers represent the nodes will be enriched with global-local enrichment function. Brown marker repre-
sents two overlapped nodes.

For the three discretizations, the local problem has exactly the same description with a combi-
nation of regular and geometric mesh, similar to the one of section 6.1. Only the four elements from
the cloud associated with the crack tip in local problem is discretized with geometric mesh. The
geometric refining approach in this example is based on four refinement levels (L4) with f = 10%
reduction rate.

Béchet et al. (2005); Laborde et al. (2005) showed that for a optimal convergence rate, the crack
tip enrichment must be fixed within a predefined geometry. This approach with a fixed enrichment
domain which is independent of the mesh size is called the geometrical enrichment. The geometrical
enrichment can be used to achieve the optimal convergence rate by enriching the elements located
in a predefined area. Figure 14 shows location of enriched nodes for different mesh sizes using
geometrical enrichment strategy. The number of enriched nodes for global element size of h = 2.0,
1.0, and 0.5 are equal to 10, 27, and 85, respectively.

Figure 14: Enriched nodes in the local region from global domain using geometrical enrichment strategy for
element size of: h = 2.0 (left picture), » = 1.0 (middle picture), and 2 = 0.5 (right picture). Again, the red
marker indicates that there are two overlapped nodes there.

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
Suzana Moreira Avila (Editor), ABMEC, Brasilia, DF, Brazil, November 6-9, 2016

Develop. and Implementation of a Well-conditioning Approach for GFEM

According to (Babuska and Melenk, 1997), the optimal convergence rate for linear finite element
problems with non-smooth solution, like a problem with a crack, the convergence rate is around
O(h'?). As it can seen in Fig. 15, the convergence rates for FEM and G/XFEME! method are about
0.3 while for SG/XFEM#! is between 0.5 — 1.2. This shows the capability of the stable G/XFEM to
deliver a better convergence rate compared to classical G/’ XFEM.

-0.5

-09

B =052
e

Logl0 _(Error)

~—+FEM
-©-GFEM 1.22
-=SGFEM
1.7
-0.301 0 0.301

Logl0 _(1/h)

Figure 15: Strain energy error vs. the inverse of element size (1//) for global problem (third step) in the case of
geometrical enrichment. (5 refers to the convergence rate.

The condition numbers for global-local GFEM/SGFEM methods for geometrical enrichment are
illustrated in Fig. 16. When geometrical enrichment is used, condition number corresponding to the
G/XFEM¢# presents a growth rate of about 3.6, while for SG/XFEM?! is about 2.8. The SG/XFEM
result is closer to the FEM one, which is around 2.0.

Again, to show the superiority of the SuiteSparse approach over the conventional solver imple-
mented in INSANE, the CPU time of the solution part is brought for this example for both G/’XFEM
and SG/XFEM with global-local enrichment. Similar to the section 6.1, the SuiteSparse approach
delivers the solution very fast.

7 CONCLUSIONS

The aim of this work was to present the implementation of Stable G/XFEM for the INSANE
computational framework, a FEM object-oriented programming environment. The validation of
this implementation and some additional conclusions about the SG/XFEM for different enrichment
strategies was presented by numerical examples for solid Mechanics. The SG/XFEM method is
implemented and tested for both standard and global-local approaches. In all enrichment cases, the
SG/XFEM delivers better convergence rates in strain energy. The current global-local implemen-
tation is done only for single iteration. So, if it is modified to include several iterations, a more

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
Suzana Moreira Avila (Editor), ABMEC, Brasilia, DF, Brazil, November 6-9, 2016

M. Malekan, F.B. Barros, Ramon P. Silva

—o— FEM
—s— GFEM

6 L — 4 -SGFEM

Logl10_(Condition number)

-0.301 0 0.301
Logl0 (1/h)

Figure 16: Condition number against the inverse of element size (1/1) for global problem (third step) in the case
of geometrical enrichment. [is the growth rate of the condition number.

Table 2: Comparing CPU time between conventional and SuiteSparse method

G/XFEME#! SGFEM®!
h size 2 1 0.5 2 1 0.5
DOF 154 522 1900 | 154 522 1900

CPU time (msec)
Babuska iterative method
CPU time (msec)
SuiteSparse method

18 976 64587 | 11 549 43014

5 15 41 4 12 37

reliable results than G/XFEM method can be obtained. Also, a SuiteSparse library is used to show
the advantage of this approach over conventional methods of solving system of equations.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the important support of the Brazilian research agencies CNPq
(National Council for Scientific and Technological Developments - Grants 486959/2013-9 and 309005/2013-
2) and CAPES (Coordination for the Improvement of Higher Education Personnel).

References

Alves P.D., Barros F.B., and Pitangueira R.L.S. An object oriented approach to the generalized finite
element method. Advances in Engineering Software, 59:1-18, 2013.

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
Suzana Moreira Avila (Editor), ABMEC, Brasilia, DF, Brazil, November 6-9, 2016

Develop. and Implementation of a Well-conditioning Approach for GFEM

Andrade M.P. and Silva R.P. Implementation of numerical linear algebra libraries via native interface
in the insane platform (in Portuguese). In XXXVI Latin American Congress on Computational
Methods, CILAMCEZ2015. Rio de Janeiro, Brazil, 2015.

ANSYS. Ansys user’s manual, ansys inc. PA, USA. 2015.

Babuska I. and Banerjee U. Stable generalized finite element method (sgfem). Technical Report,
Technical Report ICES REPORT 11-07, The Institute for Computational Engineering and Sci-
ences, The University of Texas at Austin, Austin, Texas, USA, 2011.

Babuska I. and Banerjee U. Stable generalized finite element method (sgfem). Computer methods
in applied mechanics and engineering, 201-204:91-111, 2012.

Babuska 1. and Melenk J.M. The partition of unity method. International Journal for Numerical
Methods in Engineering, 40:727-758, 1997.

Barros F.B., de Barcellos C.S., Duarte C.A., and Torres D.F. Subdomain-based error techniques for
generalized finite element approximations of problems with singular stress fields. Computational
Mechanics, 52:1395-1415, 2013.

Béchet E., Minnebo H., Moés N., and Burgardt B. Improved implementation and robustness study
of the x-fem for stress analysis around cracks. International Journal for Numerical Methods in
Engineering, 64:1033-1056, 2005.

Belytschko T. and Black T. Elastic crack growth in finite elements with minimal remeshing. Inter-
national Journal for Numerical Methods in Engineering, 45:601-620, 1999.

Chessa J., Wang H., and Belytschko T. On the construction of blending elements for local partition
of unity enriched finite elements. International Journal for Numerical Methods in Engineering,
(57):1015-1038, 2003.

Davis T.A. A column pre-ordering strategy for the unsymmetric-pattern multifrontal method. ACM
Transations on Mathematical Software, 30(2):165-195, 2004.

Davis T.A. Umfpack version 5.4.3 user guide. 2009.

Davis T.A. and Duff I. Algorithm 832: UMFPACK V4.3-an unsymmetric-pattern multifrontal
method. ACM Transations on Mathematical Software, 30(2):196-199, 2004. doi:10.1145/992200.
992206.

Davis T.A., Rajamanickam S., and Sid-Lakhdar W.M. A survey of direct methods for sparse linear
systems. Acta Numerica, 25:383-566, 2016.

Duarte C.A., Babuska 1., and Oden J.T. Generalized finite element methods for three-dimensional
structural mechanics problems. Computers & Structures, 77(2):215-232, 2000.

Duarte C.A. and Babuska .M. A global-local approach for the construction of enrich. func. for the
gfem and its application to propagating three-dimensional cracks. Technical Report, ECCOMAS
Thematic Conference on Meshless Methods, 2005.

Duarte C.A. and Kim D.J. Analysis and applications of a generalized finite element method with
global-local enrichment functions. Computer Methods in Applied Mechanics and Engineering,
197:487-504, 2008.

Fonseca F.T. and Pitangueira R.L.S. An object oriented class organization for dynamic geometri-
cally non-linear. In CMNE/CILAMCE (Congress on Numerical Methods in Engineering). Porto,
Portugal, 2007.

Fries T.P. A corrected xfem approximation without problems in blending elements. International
Journal for Numerical Methods in Engineering, 75(5):503-532, 2008.

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
Suzana Moreira Avila (Editor), ABMEC, Brasilia, DF, Brazil, November 6-9, 2016

M. Malekan, F.B. Barros, Ramon P. Silva

Gracie R., Wang H., and Belytschko T. Blending in the extended finite element method by discon-
tinuous galerkin and assumed strain methods. International Journal for Numerical Methods in
Engineering, 74:1645-1669, 2008.

Gupta V., Duarte C.A., Babuska I., and Banerjee U. A stable and optimally convergent generalized
fem (sgfem) for linear elastic fracture mechanics. Computer methods in applied mechanics and
engineering, 266:23-39, 2013.

Gupta V., Duarte C.A., BabuskaI., and Banerjee U. Stable gfem (sgfem): Improved conditioning and
accuracy of gfem/xfem for three-dimensional fracture mechanics. Computer methods in applied
mechanics and engineering, 289:355-386, 2015.

Hecht F. New development in freefem++. Journal of Numerical Mathematics, 20(3-4):251-265,
2012.

Kim D.J., Pereira J.P., and Duarte C.A. Analysis of three-dimensional fracture mechanics problems:
A two-scale approach using coarse-generalized fem meshes. International Journal for Numerical
Methods in Engineering, 81:335-365, 2010.

Laborde P., Renard J.P.Y., and Salaiin M. High-order extended finite element method for cracked
domains. International Journal for Numerical Methods in Engineering, 64:354-381, 2005.

Malekan M. and Barros FE.B. Well-conditioning global-local analysis using stable general-
ized/extended finite element method for linear elastic fracture mechanics. Computational Me-
chanics, pages 1-13, 2016.

Malekan M., Barros F.B., Pitangueira R.L.S., and Alves P.D. An object-oriented class organiza-
tion for global-local generalized finite element method. Latin American Journal of Solids and
Structures, 13(13):2529-2551, 2016a.

Malekan M., Barros F.B., Pitangueira R.L.S., Alves P.D., and Penna S.S. A computational frame-
work for a two-scale generalized/extended finite element method: generic imposition of boundary
conditions. Engineering Computations, pages 1-63, 2016b.

Melenk J.M. and Babuska I. The partition of unity finite element method: Basic theory and applica-
tions. Computer Methods in Applied Mechanics and Engineering, 39:289-314, 1996.

Menk A. and Bordas S.P.A. A robust preconditioning technique for the extended finite element
method. International Journal for Numerical Methods in Engineering, 85:1609-1632, 2011.

NASTRAN. Msc nastran reference manual, msc software inc, USA. 2015.

Noor A.K. Global-local methodologies and their application to nonlinear analysis. Finite Elements
in Analysis and Design, 2:333-346, 1986.

Oden J.T., Duarte C.A., and Zienkiewicz O.C. A new cloud-based hp finite element method. Com-
puter Methods in Applied Mechanics and Engineering, 153:117-126, 1998.

Pais M.J., Yeralan S.N., Davis T.A., and Kim N.H. An exact reanalysis algorithm using incremental
cholesky factorization and its application to crack growth modeling. International Journal for
Numerical Methods in Engineering, 91:1358-1364, 2012. doi:10.1002/nme.4333.

Shibanuma K. and Utsunomiya T. Reformulation of xfem based on pufem for solving problem
caused by blending elements. Finite Element in Analysis and Design, 45(11):806-816, 2009.

Szabd B. and Babuska 1. Finite Element Analysis. John Wiley & Sons, Inc., 1991.

Tarancén J.E., Vercher A., Giner E., and Fuenmayor F.J. Enhanced blending elements for xfem
applied to linear elastic fracture mechanics. [International Journal for Numerical Methods in
Engineering, 77:126—-148, 2009.

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
Suzana Moreira Avila (Editor), ABMEC, Brasilia, DF, Brazil, November 6-9, 2016

Develop. and Implementation of a Well-conditioning Approach for GFEM

Yu C.D., Wang W., and Pierce D. A CPU-GPU hybrid approach for the unsymmetric multifrontal
method. Parallel Computing, 37:759-770, 2011.

Zheng A.X. and Luo X.Q. Numerical study of quasi-static crack growth problems based on extended
finite element method. Journal of Shanghai Jiaotong University, 19(6):736-746, 2014. doi:
10.1007/s12204-014-1557-8.

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
Suzana Moreira Avila (Editor), ABMEC, Brasilia, DF, Brazil, November 6-9, 2016

	INTRODUCTION
	PROBLEM STATEMENT
	GENERALIZED and STABLE GENERALIZED FEM
	SuiteSparse MATRIX APPROACH
	OOP ENVIRONMENT
	NUMERICAL EXAMPLE
	Double-edge cracked plate
	Plate with an edge crack

	CONCLUSIONS

