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Abstract. This investigation proposes the use of continuous strong–form residuum fields, ob-
tained through smooth Generalized Finite Element Method (GFEM) , for error estimation in
terms of the energy norm. Aspects on the construction of Ck–GFEM–based approximation
functions (Duarte, Kim & Quaresma, 2006), using domain triangulation, are addressed. It is
shown how the smoothness may be exploited in implicit residual algorithms for error estima-
tion since the approximated Ck–GFEM stress field can be directly continuously differentiated,
to verify the equilibrium equations in strong form, locally, and then leading to a continuous
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residuum field. The subdomain strategy (Barros et al., 2013; Parés, Dı́ez & Huerta, 2006) for
implicit error estimation is employed, in such a way the local error problems are defined on
the clouds, the patch of elements around the node, through the weighting provided by the Par-
tition of Unity (PoU) functions. Its implementation fits very well into GFEM routines because
such strategy is naturally tailored to the nodal enrichment procedure of the method (Barros,
Barcellos & Duarte, 2007), producing nodal error indicators. Two types of weighting for the
variational residuum functional (Prudhomme et al., 2004; Strouboulis et al., 2006) are tested
in order to verify the performance for the effectivity of the nodal indicators and the global es-
timators. Numerical examples show that both the indicator and the estimator may be effective
for two-dimensional linear elastic problems even in the presence of singularities.

Keywords: subdomain error estimators, implicit residual methods, Ck–GFEM, smoothness,
strong-form residuum field

1 INTRODUCTION

Even though element–based implicit residual methods with Neumann boundary conditions
lead to good estimatives of the error in energy norm they are generally expensive since such
methods take into account the lack of smoothness of the approximate solution in the measure of
the error. Because of this, the post–processing of numerical fluxes to minimize their jumps over
the edges and the use of equilibration processes for building boundary data for Neumann local
problems compatible with the interior residuals are demanded. In addition, such equilibration
is generally carried out variationally using standard methods. The idea remounts to Ladevèze
& Leguillon (1983) where the fluxes are built from dual solutions in local problems. Some
equilibrating conditions with the derivation of their local systems of linear equations for ap-
proximated solutions are presented in Ainsworth & Oden (2000), whilst in Anuvriev, Korneev
& Kostylev (2007) the use of exact equilibrated fields from the differential governing equations
for the purpose of error estimation is advocated.

Differently, cloud–based implicit residual error estimators, also referred to as subdomain–
based error estimators (Morin, Nochetto & Siebert, 2003), employ the concept of Partition of
Unity (PoU) for weighting the residual functional or the bilinear form in terms of the error,
or both, in the variational representation of the error. Some approaches were proposed by
Prudhomme et al. (2004), Pares, Diez, & Huerta (2006) and Strouboulis et al. (2006). In this
way, the local error problems are defined on the clouds, the patch of elements around the node.
The weighting using such PoU, which naturally vanishes on the cloud boundaries, leads to null
Neumann boundary datas since the presence of the PoU in the residuum expression nullifies any
integration along the boundary of inner clouds. Moreover, the traction jumps across element
faces inside the cloud are implicitly taken into account and the error is searched in the so–called
broken spaces. Its implementation fits very well into GFEM routines (Strouboulis, Babuška
& Copps, 2000; Strouboulis, Copps & Babuška, 2001; Strouboulis, Zhang & Babuška, 2003;
Strouboulis et al., 2006) because such strategy is naturally tailored to the nodal enrichment
procedure of GFEM (Barros, Barcellos & Duarte, 2007; Barros et al., 2013), then producing
nodal error indicators.

In this scenario, from the observation that the flux of the exact solution is, in general, con-
tinuous even though finite elements are not able to provide this, interesting advantages may be
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reached employing ansatz spaces with some regularity. The arbitrarily continuous approxima-
tion functions that can be built through the so–called Ck–GFEM framework (Duarte, Kim &
Quaresma, 2006) from smooth weighting functions associated to free-form polygonal clouds
are convenient for looking forward alternative approaches. Cloud edge functions with the de-
sired continuity are combined to generate the weighting functions and these are used to define
the PoU. The resulting PoU can be extrinsically enriched to build approximation spaces for
solving variational Boundary Value Problems (BVP), and such approach may be considered a
special instance of the hp–clouds method (Duarte & Oden ,1996; Oden, Duarte & Zienkiewicz,
1998).

The purpose of this work is to investigate the advantages of smooth PoU for error estimation
in energy norm. Aspects as the construction of Ck–GFEM based approximation functions using
domain triangulation are addressed and it is shown how the continuity may be exploited in
implicit residual algorithms (Ainsworth & Oden, 2000) for error estimation since there are no
stress jumps at element boundaries and, in addition, the approximated stress field can be directly
differentiated in order to compute the equilibrium equations in strong–form and, thus, obtaining
a continuous residuum fields. As a consequence, such residuum fields may be projected over a
set of higher order functions, in other words, a conveniently defined reference space for error
estimate purposes, resulting in the loading term for the variational error problem posed on the
clouds. Two types of weighting the local problems are tested to verify the performance for the
effectivity index provided by the nodal indicators and by the global estimator.

2 MODEL PROBLEM

Let’s consider the static linear elasticity problem for a elastic body Ω ∈ R2, viewed as a
planar-bounded Lipschitz domain with polygonal boundary ∂Ω. The strong form of a BVP,
using matrix notation, states: seek a displacement field u(x) = {ux,uy}T ∈ H1 (Ω;R2) (the
superscript T indicates transpose) that satisfy the equilibrium equations

LTσ(u)+b= 0 in Ω (1)

and the boundary conditions, u = u on ΓD and t(u) = nσ = t on ΓN . Here, H
(
Ω;R2) is

the Hilbert space of degree one, the space of square-integrable functions with square-integrable
weak derivatives (Oden & Reddy, 1976; Kreyszig, 1989).

The equilibrium equations, Eq. (1), establishes the local (pointwise, for all position x =
{x,y}T ∈Ω) balance of forces per unit volume (Boresi, Chong & Lee, 2011), where the stresses
σ = {σx,σy,τxy}T (each component also being function of the independent variable x, which
will be omitted thereafter to keep the notation simpler) are subjected to a differential operator
L and b= {bx,by}T ∈ L2 (Ω;R2) is the vector of components of applied volume forces, with
L2(Ω;R2) being the space of Lebesgue measurable functions with integrable squares on Ω. The
vector t = {tx, ty}T ∈ L2 (Ω;R2) contains the components of external applied forces per unit
of surface area on some (relatively open) part ΓN of the boundary ∂Ω with exterior unit normal
vector n ∈ L∞

(
∂Ω;R2×3). Additionally, the body is supported on the remaining closed part

ΓD := ∂Ω\ΓN where the displacement field is prescribed by the Dirichlet data u. Finally, the
operators L and n are defined as
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Suzana Moreira Ávila (Editor), ABMEC, Brası́lia, DF, Brazil, November 6-9, 2016



Error estimation in smooth GFEM approximations

L=


∂

∂x 0

0 ∂

∂y
∂

∂y
∂

∂x

 and n=

 nx 0 ny

0 ny nx

 . (2)

In linear elasticity, the stresses are related to the strains through the linear elastic constitu-
tive relation σ =Cε, with C ∈ L∞

(
Ω;R3×3) being a constitutive matrix, and the strains ε =

{εx,εy,γxy}T , in turn, are related to the displacements by ε=Lu, the linear strain-displacement
relationship.

On the other hand, the corresponding continuous variational form of this problem can be
stated as: find u ∈ U, such that

B(u,v) = L (v), ∀ v ∈ V (3)

where an equilibrium condition is now established in the global sense and no longer in the local
sense (Brebbia, Telles & Wrobel, 1984). The so-called weak solution (Babuška, Whiteman &
Strouboulis, 2011) is sought in the set of kinematically admissible functions, defined as

U :=
{
H1 (

Ω;R2) : u= u on ΓD
}

(4)

and the kinematically admissible variations lie in the restriction of H1 (Ω;R2) with homoge-
neous Dirichlet boundary values, such that

V :=H1
D
(
Ω;R2) :=

{
v ∈H1 (

Ω;R2) : v = 0 on ΓD
}
. (5)

The bilinear form B(u,v) in (3), physically meaning the virtual work of the internal
stresses associated with the strains ε related to the virtual displacement v, is a functional on
H1×H1→ R defined as

B(u,v) :=
∫ ∫

Ω

εT (v) σ(u) lz dx dy (6)

and L (v) is a linear functional H1→ R, which represents the virtual work resulting from the
external applied forces, defined as

L (v) :=
∫ ∫

Ω

vT b lz dx dy+
∫

ΓN

vT t lz ds (7)

where lz is the thickness of the body, assumed here as constant by simplification.
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The bilinear form in Eq. (6) induces the definition of the energy norm as

‖u‖E :=
√

B (u,u) (8)

because its physical meaning is related to the energy of the system. A complete explanation
about variational formulation for the finite element method can be found in Babuška, Whiteman
& Strouboulis (2011).

In the next section, a brief explanation on the chosen discretization method is presented.
The aim of such choice is to obtain approximations to the problem in Eq. (3) with higher reg-
ularity, featuring continuous stress fields. As a consequence, a new approach will be proposed
for a posteriori error estimation.

3 APPROXIMATION FUNCTIONS CONSTRUCTION

In order to define the discretized version of the BVP under consideration, let us consider a
conventional finite element triangulation, {Ke}NE

e=1 (NE being the number of elements in Ke),
defined by N nodes with coordinates {xα}N

α=1, in an open-bounded polygonal domain Ω⊂R2.
The interior of the union of all finite elements sharing each of these nodes is denoted as a cloud,
ωα ,α = 1, ...,N, as usually cited in the generalized finite element method (GFEM) literature
(Duarte, Babuška & Oden, 2000; Strouboulis, Babuška & Copps, 2000; Fries & Belytschko,
2010).

In this work, it is proposed to use approximation functions with arbitrary continuity, k, aim-
ing to approximate continuous stress fields and, as a consequence, to obtain continuous strong-
form residuum fields. Thus, the Ck-GFEM (Duarte, Kim & Quaresma, 2006) is employed. Such
special instance of the GFEM is a methodology designed to build mesh-based approximations
with higher regularity, in which the PoU functions are the Shepard ones (Shepard, 1968), con-
sidering smooth weighting functions defined on the clouds. The weighting functions, in turn, are
computed from cloud edge functions, which are defined in global coordinates though a proce-
dure that is completely free of geometric restrictions for the elements and for the nodal patches
(Barcellos, Mendonça & Duarte, 2009; Mendonça, Barcellos & Torres, 2011; Mendonça, Bar-
cellos & Torres, 2013; Torres, Barcellos & Mendonça, 2015; Freitas et al., 2015).

The Ck-GFEM allows to recover the smoothness typical of moving-least squares-based
meshfree methods (Liu, 2003) even considering element meshes. Additionally, the extrinsic
procedure of enrichment, as proposed in the hp-cloud method (Duarte, 1996), favors the adap-
tive algebraic enrichment, either using polynomial p-enrichment functions or tailored functions
for specific problems, as in crack modeling common in XFEM works (Belytschko & Black,
1999; Stazi et al., 2003), grain boundary effects in polycrystal materials (Simone, Duarte &
Van der Giessen, 2006), mesoscale modeling of dislocations (Belytschko & Gracie, 2007), to
cite a few examples.

Let ℑN be an open covering of the domain Ω built by the set of N clouds ωα , that is, the
closure Ω of the domain is contained in the union of the cloud closures ωα

Ω⊂ ∪N
α=1ωα . (9)
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In addition, consider a set of functions SN = {ϕα(x)}N
α=1, each having the corresponding

cloud ωα as its compact support. If this set has the property that each one of these functions
is such that ϕα (x) ∈ Ck

0 (ωα) ,k > 0 and ∑
N
i=1 ϕα (x) = 1, ∀ x∈Ω, and every compact subset

of Ω intersects only a finite number of supports, then the set {ϕα (x)}, α = 1, ...,N is said to
be a Partition of Unity, PoU, subordinated to the covering ℑN (Oden & Reddy, 1976). The first
requirement indicates that a function ϕα is non-zero only over its respective cloud ωα and is, at
least, k times continuously differentiable.

There are several kinds of PoU used in computational mechanics and the Lagrangian FEM
shape functions are just one type, which is in C0

0(ωα). Additional examples can be found in
several meshless methods, such as the hp-cloud method. Another example, the Shepard scheme,
makes use of weighting functions, Wα : R2→ R, with the cloud ωα as their compact support1,
such that Wα belongs to the space Ck

0 (ωα). The Shepard PoU functions subordinated to the
covering ℑN are defined as

ϕα (x) =
Wα (x)

∑β (x)Wβ (x)
, β (x) ∈

{
γ |Wγ (x) 6= 0

}
. (10)

Therefore, the regularity of these PoU functions relies only on the regularity of the weight-
ing functions. The weighting function, in turn, can be defined as the product of all cloud edge
functions εα, j as

Wα(x) :=
Mα

∏
j=1

εα, j
(
ξ j
)

(11)

in case of a convex cloud ωα , where Mα is the number of cloud edge functions associated with
the cloud.

Finally, the only component that needs to be defined is the cloud edge function, εα, j. A
cloud edge function is a function which vanishes, together with its k derivatives, as this edge is
approached and is strictly positive in the interior of the cloud. In Eq. (11) the dependency on
the parametric coordinate

(
ξ j
)

is made evident. Such a parametric coordinate is defined inside
the cloud for each edge, being normal to it and growing towards the cloud node. A complete
description on the procedure may be found in Torres (2012) and Barcellos, Mendonça & Duarte
(2009).

Many functions meet the pointed requirements for a cloud edge function and in Barcellos,
Mendonça & Duarte (2009) polynomials and exponential functions were subjected to numerical
investigations. Herein, exponential edge functions are used, considering γ = 0.3 and β = 0.6
(Barcellos, Mendonça & Duarte, 2009), which guarantee C∞(Ω) on meshes with only convex
clouds. On the contrary, if non-convex clouds are identified along the mesh, it is necessary to
replace the edge functions of a pair of non-convex edges of a cloud with a single new edge
function obtained through a boolean product (Rvachev & Sheiko, 1995), before to perform the
weighting functions computation, as proposed by Duarte, Kim & Quaresma (2006).

1The GFEM scheme uses element meshes to define the clouds aiming to reduce the computational effort and
to make the implementation simpler.
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As commented by Mendonça, Barcellos & Torres (2011), it should be noted that the lower-
regularity PoU of the standard GFEM (like lagrangian shape functions) is able to generate a
complete polynomial of degree one, over the domain. Differently, the smooth PoU as described
in this section is only capable of guaranteedly reproducing a unitary constant functions, even
though it can generate something else but not polynomial. This low reproducibility makes
necessary the application of polynomial enrichments to assure convergence.

Basically, GFEM proposes that a local approximation subspace Xα(ωα) may be chosen for
each cloud ωα in such a way that one or some enrichment functions Lαi ∈ Xα(ωα) can closely
approximate u|ωα

over the cloud ωα , without compromising the conforming requirement since
each Lαi is multiplied by the PoU of the node α .

Thus, the PoU functions can be enriched by multiplying any of them by a set of enrich-
ment functions, {Lαi}i∈I(α), where I(α), α = 1, ...,N, is an index set of known functions,
for instance, polynomials, generalized harmonic functions, boundary layer functions, partic-
ular solutions to similar problems, singular solutions to the specific problem under consider-
ation, and anisotropic functions. Therefore, the local approximation subspaces, denoted as
χα(ωα) = span{Lαi}i∈I(α), may also be enriched according to an adaptive method.

For instance, a set of polynomial enrichment functions Lp
αi of a node α which involves nine

polynomial functions such as

L
p
αi(x,y) =

{
x, y, x2, x y, y2, x3, x2 y, x y2, y3

}
, i = 9 and p = 3 (12)

can span the set of polynomials of degree p ≤ 3. In this work, a scaling is performed by a
characteristic length hxα

of the cloud, which can be taken as the largest distance parallel to the
x-axis from the node xα to each of their cloud edges, such that the intrinsic coordinate x, for
example, is defined as x := (x− xα)/hxα

. A similar treatment is employed for the y monomials.
This strategy has been used in Torres, Mendonça & Barcellos (2011) and Torres, Barcellos &
Mendonça (2015).

Therefore, the cloud functions family F
p
N is composed by the union between the PoU and

enriched functions as

F
p
N =

{
{ϕα(x)}N

α=1

⋃{
ϕα(x)L

p
αi(x)

}N
α=1 |i ∈ I(α)

}
(13)

where ϕα(x) are PoU functions and L
p
αi(x) are the enrichment functions, both related to the

node α , and I is an index set which refers to the enrichment functions associated with each
node.

This cloud family is used to build the Galerkin approximation, e.g., for the x-component of
displacement ux, as following

uxp(x) =
N

∑
α=1

ϕα(x)

{
uα +

qα

∑
i=1

L
p
αi(x)bαi

}
= Φ(x)U (14)
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where uα and bαi are the nodal parameters associated with the PoU ϕα(x), and to the enriched
functions ϕα(x)Lp

αi(x), respectively, with qα being the number of polynomial enrichment func-
tions of each node. In addition, for the matrix notation, U is an array of nodal coefficients and
Φ(x) is an array formed by the basis functions.

Clearly, the approximation up(x) = {uxp,uyp}T of the solution u of Eq. (3) is an entity of a
subspace Up ∈U (see Eq. (4)) spanned by a set of kinematically admissible GFEM approxima-
tion functions. Similarly, the subspace Vp is defined for composing the discretized variational
problem, corresponding to Eq. (3), that is: find up ∈ Up(Ω) such that

B (up,vp) = L (vp) , ∀ vp ∈ Vp . (15)

Remark 1. When the PoU is built from polynomial finite element shape functions, as in
conventional GFEM, the system of equations resulting from Eq. (15) using Eq. (14) is linearly
dependent (Duarte, Babuška & Oden, 2000). In the present case, where the PoU is built as
quotients of exponential functions, the resulting global stiffness matrix is positive definite if the
boundary conditions imposed are sufficient to prevent rigid body motions.

Remark 2. It should be observed that the usual structure of the standard displacement-
based FEM is preserved in the present formulation. The entire Ck-GFEM formulation, summa-
rized in the present section, enters into the program structure encapsulated in a single routine,
which computes the set of approximate functions as in the case of the FEM functions, which is
to be used normally in the computation of the element contributions.

4 Discretization error and correspondent variational equation

Let us consider the approximated solution up of the discretized variational problem in Eq.
(15) and built following Eq. (14). Here, considering only polynomial enrichment, the index p
represents the polynomial character of the resulting approximation. Consequently, the error of
an solution up can be defined as

ep = u−up (16)

where u refers to the exact solution of the mathematical model in Eq. (3), such as u∈U of Eq.
(4). Replacing u = ep +up in Eq. (3), and considering the linearity of the functional B(•,•)
in Eq. (6) it can be found

B(ep +up,v) = L (v) ∴ B(ep,v) = L (v)−B(up,v) ∀ v ∈ V . (17)

A global variational equation for the error can be recovered as: find ep ∈ V of Eq. (5) such
as

B(ep,v) = R(v) ∀ v ∈ V (18)
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where the residual functional or weak form of the residuum R(•) is defined as

R(v) = L (v)−B(up,v) . (19)

Here, without loss of generality, it is assumed that the essential boundary conditions are
exactly satisfied.

According to Dı́ez, Parés & Huerta (2004) and Parés, Dı́ez & Huerta (2006), the problem in
Eq. (18) is decomposed into local contributions formulated over subdomains which can be the
clouds of the GFEM approach, in such a way that employing the PoU property, can be obtained:
find ep ∈ V such that

B (ep,v) = R(v) = R

(
v

N

∑
α=1

ϕα

)
=

N

∑
α=1

R (ϕαv) (20)

where ϕα represents any kind of partition of unity. Since that R(ϕαv)= 0 when ωα∩supp(v)=
/0 the residual functional can be decomposed into local contributions, defined over each cloud.

In order to establish local problems exploiting the localization of the residual functional
obtained with Eq. (20), the bilinear form is generalized to accept broken functions (Parés, Dı́ez
& Huerta, 2006) that are samples of local sub-spaces Vωα

defined as

V(ωα) := V∩H1 (
Ω,R2) (21)

and, therefore, Vbrok :=⊕N
α=1V(ωα) is the definition of a broken space.

Any function v ∈ V(ωα) of Eq. (21) is defined only over a cloud ωα but is extended to
Ω by setting the values outside ωα equal to zero. Consequently, the error function eωα

p will be
continuous over a cloud ωα but the summation of all cloud error functions eωα

p will generate
discontinuities over all interelement edges of the mesh.

Using Eq. (20), therefore, the problem in Eq. (18) can be replaced by a set of local problems
defined over each cloud ωα as: find eωα

p ∈ V(ωα) such as

Bζα

ωα

(
eωα

p ,vωα
)
= Rωα

(ϕαv
ωα ) ∀ vωα

∈ V(ωα) . (22)

The l.h.s. of Eq. (22), the weighted bilinear form, is defined as

Bζα

ωα

(
eωα

p ,vωα

)
:=
∫ ∫

ωα

ζα ε
T (vωα ) σ

(
eωα

p
)

lz dx dy (23)

and the r.h.s. of Eq. (22), the localized residual functional, is defined as
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Rωα
(ϕαv

ωα ) = Lωα
(ϕαv

ωα )−Bωα
(up,ϕαv

ωα ) . (24)

The first term of the r.h.s. of Eq. (24) is defined as

Lωα
(ϕαv

ωα ) =
∫ ∫

ωα

(ϕαv
ωα )T b lz dx dy+

∫
∂ωα∩ΓN

(ϕαv
ωα )T t lz ds (25)

whereas the second term is written as

Bωα
(up,ϕαv

ωα ) =
∫ ∫

ωα

εT (ϕαv
ωα ) σ (up) lz dx dy . (26)

In Eq. (23), ζα represents a weighting function. In the approach proposed by Prudhomme
et al. (2004) it is used ζα = ϕα , that is, the PoU function associated to the cloud ωα . On the
other hand, can be seen that ζα = 1 in the approach of Strouboulis et al. (2006). It should be
noted that

B (•,•) =
N

∑
α=1

Bζα

ωα
(•,•) (27)

only holds if ζα is also a partition of unity.

Remark 3. The the main reason of this localization is to avoid integration of stresses (or
fluxes) along the boundary of inner clouds in the computation of Eq. (24), leading to local
problems like Eq. (22) with homogeneous Neumann boundary conditions. The presence of the
function ϕα in the residual functional of Eq. (24) nullifies any integration along the boundary
of inner clouds, whereas in case of clouds along the domain boundary, the integration of the
second term in the r.h.s. of Eq. (25) is normally performed.

Remark 4. Additionally, the error in the tractions2 along interelement edges do not appears
in the problem of Eq. (22) because, as such local problems are posed on the clouds, the effect
of the tractions jumps across element edges inside the cloud is implicitly taken into account, as
a subdomain approach (Dı́ez, Parés & Huerta , 2004; Prudhomme et al., 2004; Strouboulis et
al., 2006; Barros, Barcellos & Duarte, 2009; Barros et al., 2013).

Since generally it is impossible to seek for an exact solution eωα
p for the problem in Eq.

(22), here the exact error is replaced by its approximation ẽωα
p , as suggested by (Oden et al.,

1989). Thus, the approximated error will be sought from the sub-space

χ
0
p+q(ωα) =

{
v0,ωα

p+q ∈ χp+q(ωα) ; Πp

(
v0,ωα

p+q

)
= 0 ; v0,ωα

p+q = 0 on ∂ωα ∩ΓD

}
(28)

2Even though generally there are errors on the stresses along element edges, in Ck-GFEM approximations the
stress fields are naturally continuous.
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where Πp : V(ωα)→ Xp(ωα) is the local projector operator of degree p. In this study, the
higher-order polynomial spaces Xp+q(ωα)=Xp+1(ωα)⊂V(ωα) and Xp+q(ωα)=Xp+2(ωα)⊂
V(ωα) are tested, due to the dichotomy phenomenon, as explained in Babuška & Strouboulis
(2001).

Therefore, the problem for approximating the error for Eq. (22) can be stated as: find
ẽωα

p ∈ χ0
p+q(ωα) such as

Bζα

ωα

(
ẽωα

p ,v0,ωα

p+q

)
= Rωα

(
ϕαv

0,ωα

p+q

)
∀ v0,ωα

p+q ∈ χ
0
p+q(ωα) (29)

where the weighted bilinear form for the error Bζα

ωα
and the residual functional Rωα

are simi-
larly defined as in Eqs. (23) and (24). Nevertheless, it is proposed in this study to replace the
conventional computation of Eq. (24), which is employed in Barros et al. (2013), for instance,
with

Rωα

(
ϕαv

0,ωα

p+q

)
= R

ωα

Ω

(
ϕαv

0,ωα

p+q

)
+R

ωα

ΓN

(
ϕαv

0,ωα

p+q

)
. (30)

The first term of the r.h.s. of Eq. (30), Rωα

Ω
, is an weak residual along the domain and is

defined as

Rωα

(
ϕαv

0,ωα

p+q

)
:=
∫ ∫

ωα

(
ϕαv

0,ωα

p+q

)T
R(up) lz dx dy (31)

whereR(up) = {Rx,Ry}T is the strong form residuum of the approximation up defined as

R(up) :=LTσ(up)+b (32)

since the approximation up solution of Eq. (15) generally does not satisfy the strong-form
equilibrium equations in Eq. (1).

Remark 5. Even the strong-form residuum field defined in Eq. (32) is generally not self-
equilibrated on a single cloud ωα , an equilibrating process like that of Parés, Dı́ez & Huerta
(2006) is not necessary in this approach. It should be noted the bubble characteristic of the
functions in Eq. (28) used to approximate the error. Such feature comes up because the enrich-
ment functions of Eq. (12) for each node are always null right at the node, and consequently
rigid body motions are suppressed when solving the local problems for error estimation.

The second term of the r.h.s. of Eq. (30), Rωα

ΓN
in turn, is related to the residuum along the

Neumann boundary, r(up) = {rx,ry}T , in strong-form, which is

r(up) := t−nσ(up) (33)
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following the notation of sections 2 and 3, being the operator n defined in Eq. (2). Thus, the
term R

ωα

ΓN
is defined as

R
ωα

ΓN

(
ϕαv

0,ωα

p+q

)
:=
∫

∂ωα∩ΓN

(
ϕαv

0,ωα

p+q

)T
r(up) lz ds . (34)

Equation (30) consists of an inner product of the continuous strong-form residuum field
expressed by Eq. (32), jointly with the residuum on the Neumann boundary as Eq. (33), with
the higher order functions of an appropriate sub-space in Eq. (28) from which the error function
is sought. This is the key contribution of this work and it allows to look for estimates based on
the strong-form residuum field, which may be directly computed in case of smooth GFEM
approximations, without any type of post-processing heuristics due to stress discontinuities
common in FEM solutions.

Moreover, it should be noted that second order derivatives of the approximation up appear
in Eq. (31) whereas Eq. (26) only involves first order derivatives of up. Then, it is intended to
compare the integration cost of these two approaches. Additionally, some improvement in the
estimates can manifest, and an issue raises: Would second order derivatives of a solution up
of degree p contain more information than first order derivatives of functions vωα , of degree
higher than p, in (26) ?

Then, assuming that the problem data are such that ẽωα
p exist in all ωα of the mesh, it can

be shown that

‖ep‖2
E = B(ep,ep) =

N

∑
α=1

R (ϕαep) (35)

using Eqs. (8) and (20). The error field ep of an approximation of degreeup, being a continuous
functions from an infinite functions space V as Eq. (5), provides an upper bound in terms of the
energy norm of the exact error field (Prudhomme et al. , 2004; Mariné, 2005; Parés, Dı́ez &
Huerta, 2006; Strouboulis et al., 2006).

Therefore, following Strouboulis et al. (2006)

‖ep‖2
E ≤

√
N

∑
α=1
‖eωα

p ‖2
E(ωα )

√
MB(ep,ep) =

√
N

∑
α=1
‖eωα

p ‖2
E(ωα )

√
M ‖ep‖E (36)

and a global estimate E= ‖ep‖ is now defined in terms of the approximated error field ẽωα
p as

E=
√

M

√
N

∑
α=1

∥∥ẽωα
p
∥∥2

E(ωα )
, with ‖ẽωα

p ‖2
E(ωα )

= Bζα

ωα

(
ẽωα

p , ẽωα

p
)

(37)

where M is the overlapping index of the employed partition of unity, that comes from the choice
ζα = 1 in Eq. (23) (Strouboulis et al., 2006). In case ζα = ϕα , according to Prudhomme et al.
(2004), a global estimate Eϕα = ‖ep‖ is computed as

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
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Eϕα =

√
N

∑
α=1

∥∥ẽωα
p
∥∥2

E(ωα )
(38)

in such a way the weighting of the energy from the error allows to verify the condition expressed
in Eq. (27), and therefore avoiding the superposition evidenced by the overlapping index M in
Eq. (37).

Additionally, the nodal error indicators are computed as

Iωα
=

√
M
∥∥ẽωα

p
∥∥2

E(ωα )
and I

ϕα

ωα
=

√∥∥ẽωα
p
∥∥2

E(ωα )
(39)

considering ζα = 1 and ζα = ϕα , respectively (Strouboulis et al., 2006; Prudhomme et al.,
2004).

5 NUMERICAL EXAMPLE

The classical problem of a L-shaped domain, loaded by tractions given by the analytical
solution for stresses, according to Szabó & Babuška (2011), is analyzed, considering plane
strain state. For the computation of such tractions the following values were considered: a1 =
1.0, λ1 = 0.544 483 737 and Q1 = 0.543 075 579. Moreover, for the results reported here, the
characteristic dimension for such L-shaped domain (the length of the two sides that share the
reentrant corner) is a = 100.0, and the thickness is lz = 1.0, both having units of length, [L].

The material properties considered are the Young modules E = 1000, with units [F ]/[L]2,
with [ F ] being the unit of force, and Poisson ratio ν = 0.3. The exact energy norm is provided
by Barros, Proença & Barcellos (2004), considering the exact solution provided by Szabó &
Babuška (2011).

Four different meshes are used (Fig. 1), for which the approximations up are computed
considering p= 1. The rigid body motions are suppressed by applying the pointwise restrictions
ux(0,0) = uy(0,0) = uy(141.42,0) = 0.
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Figure 1: Four different nested meshes, in which there are only convex clouds. Therefore, since exponential
edge functions are used, the approximated solutions herein have continuity C∞(Ω).
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The local problems for the error on the cloud are computed using Eq. (29). For the bilinear
form Bζα

ωα
, the both cases, ζα = 1 and ζα = ϕα are considered, following Strouboulis et al.

(2006) and Prudhomme et al. (2004), respectively. Therefore, the nodal error indicators are
computed using Eq. (39) and the global estimators are computed using Eqs. (37) and (38).

Herein, the estimations are performed only using q = 1, in other words, only considering
one polynomial degree higher than the approximated solution. Thus, the estimated error energy
is computed from functions in Eq. (28) with p+q = 2.

Figure 2 shows the cartesian components of the strong-form residuum field, computed
using Eq. (32), associated with the approximation up with degree p = 1 for the mesh in Figure
1b. Such field is a vector valued function as the displacement field, and it has dimensions
[F ]/[L]3, similar to the body force b (see Section 2), disregarded herein.
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Figure 2: Strong-form residuum field for the approximation up, with p = 1, using the second mesh (from
left to right) in Figure 1. (a) x-component. (b) y-component.

Is is worth to note that the Ck-GFEM methodology allows to compute continuous residuum
field directly, without any type of smoothing operation in the post-processing stage. The mag-
nitudes showed in the color scales mean the error in the internal force per volume unit, for each
cartesian direction. In case the approximation up reaches the exact solution of the problem, the
residuum field is null on the entire domain, meaning that the strong form equilibrium equations
are satisfied everywhere. Therefore, it should be noted that such residuum field is not an error
field ep, but can be understood as a body force associated to it.

For these results, the Wandzura symmetric triangle integration rule (Wandzura & Xiao,
2003), with 175 points, was used for all integrations over element domains, for composing the
global stiffness matrices or to build the local stiffness matrices for error estimation. Addition-
ally, the Gauss-Legendre rule with 25 points was used for all numerical integrations on element
edges.

As the procedure presented herein involves the strong-form residuum of the Neumann
boundary conditions in Eq. (33), it should be noted that contributions from the error in the
natural boundary conditions, for the local error problems of Eq. (29), raise along the entire
boundary ∂Ω. Figure 3a shows the non-null externally applied tractions t for composing Eq.
(7) (see Section 2), whereas Fig. 3b shows the computed error in the natural boundary condi-
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tions, for the same mesh as in Fig. 2, considering approximation with degree p = 1. Note that
there is such residuum even along the reentrant edges, where homogeneous Neumann boundary
conditions were prescribed, and it means the error in the normal derivative of the approximation.
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Figure 3: Tractions along the domain boundary. (a) Non-null externally applied surface forces. (b) Strong-
form residuum along the boundary.

Figure 4 shows the x-component of the local approximated error field ẽωα
p , solution of Eq.

(29), for the cloud associated with the node marked in red color in Fig. 1b, for the two tested
ways of weighting the bilinear form in Eq. (23). It may be seen that the error field is null right
on the seven nodes covered by such cloud, in accordance with the feature commented in the
Remark 5.
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Figure 4: x-component of the local estimated error field ẽωα
p , with p= 1 and q= 1, on the cloud ωα associated

to the node in red color in Fig. 1b. (a) Considering ζα = 1 (Strouboulis et al., 2006). (b) Considering ζα = ϕα

(Prudhomme et al., 2004).

The nodal effectivity indices are displayed in Fig. 5. It may be seen that a slightly local
overestimation right at the reentrant corner ensures the identification of the critical point. Some
overestimations on boundary nodes also happen for this coarse mesh (Fig. 1b), probably due
the low degree of the approximation.

Finally, the global effectivity indices are displayed in Fig. 6. Such index is defined as a
ratio between the estimated error and the exact one, a measure that is possible for this model
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Figure 5: Local effectivity, the ratio between the nodal indicator and the exact error associated to the node.
(a) Considering Iωα

, when ζα = 1 in Eq. (23), following Strouboulis et al. (2006). (b) Iϕα

ωα
, when ζα = ϕα in

Eq. (23), following Prudhomme et al. (2004).

problem because the exact solution is known. The global estimators are computed by Eqs. (37)
and (38). For the curves, each point is related to a mesh of Fig. 1, considering approximations
of degree p = 1 and using functions of one degree higher for error estimation.
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Figure 6: Global effectivity, the ratio between the estimator and the exact global error, considering E defined
in Eq. (37), when ζα = 1 in Eq. (23), following Strouboulis et al. (2006), and Eϕα defined in Eq. (38), when
ζα = ϕα in Eq. (23), following Prudhomme et al. (2004).

6 CONCLUDING REMARKS

The proposed way of computing the residual functional for cloud-based error estimators
exploits the continuity provided by continuous approximation functions generated through the
Ck–GFEM. Additionally, it allows to benefit from some information from higher-order deriva-
tives of the approximations.

An investigation on the effects on the integration cost is being carried out. Results for
the global effectivity, considering different degrees of approximations will be presented in a
forthcoming paper.
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Additionally, an improvement which is a direct extension of this subdomain procedure is to
consider a localization of the residual functional in Eq. (20) using a step function ψα such that
ψα = 1 on the cloud and equal to zero outside the cloud. Firstly, it should be remembered that
the original goal of performing the localization in Eq. (20) using the PoU ϕα is to avoid equi-
librating procedures required in conventional element-based estimators and the line integration
of Neumann boundary conditions along the cloud boundary (see Remark 3 and Remark 4).
When using smooth approximation functions, both the stress and residuum fields are continuous
and, therefore, the residuum along the cloud boundaries ωα may provide Neumann boundary
conditions for the problems on the clouds. This approach will be investigated.
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