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Abstract. There is a formation of a cell-depleted layer adjacent to micro-vessel walls during
blood flow in regime of creeping flow. This biological layer is of vital importance in the trans-
port of oxygen-saturated red cells to the unsaturated tissues. In this work, we first discuss
the physical mechanisms in this creeping flow which lead to the formation of a cell-depleted
layer. The main non-dimensional physical parameter governing the layer formation are pre-
sented from a simple model of predicting the layer thickness in steady state. In particular, we
study the blood flow in two different scales (i.e. lower and upper bound limit) of the in vitro-
microcirculation. For this end we examine the capillary core flow solution in which the inner
fluid is considered a non-Newtonian one facing a small annular gap of a Newtonian plasma.
This model is a good approximation for the blood flow occurring in the length scales of venules
and arterioles diameters. In addition, we also propose a model for smaller vessels, like cap-
illaries with diameter of few micrometers. In this lower bound limit we consider a periodic
configuration of lined up paraboloidal cells moving in a flow under regime of lubrication ap-
proximation. So, the boundary condition in this lower flow limit considers the cell velocity and
a numerical integration is used to solve the volumetric flux as a function of the pressure drop in-
side the capillary. The effect of the cell volume fraction in terms of the depleted layer thickness
and cell aggregations is also investigated with this model. The influence of the wall irregulari-
ties on the flow is studied by using a simple sinusoidal model for the wall. Finally, an intrinsic
viscosity of the blood is predicted theoretically for both the lower and upper bound regimes as a
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function of the non-dimensional vessel diameter, in good agreement with previous experimental
works. We compare our theoretical predictions with experimental data and obtain a qualitative
good for the classic Fahraeus-Lindqvist effect. A possible application of this work could be in
illness diagnosis by evaluating of changes in the intrinsic viscosity due to blood abnormalities.

Keywords: blood, hydrodynamic diffusion, non-Newtonian, rheology, cell-depleted layer
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1 Introduction

Blood can be defined as a suspension of cells in Newtonian plasma exhibiting a non-
Newtonian behavior in which its rheological properties can be affected by several factors. Some
diseases, such as diabetes, sickle cell anemia, malaria, and some kinds of cancer, directly al-
ter blood rheological properties (Klingel et al., 2000). Thus, the rheology of blood constitutes
an interesting object of study, since it allows relating changes in its flow behavior with certain
pathologies. The study of microcirculation in particular is of extreme importance, as 80% of the
pressure drop between the aorta and the vena cava happens within the microcirculation (Sung
et al., 1982), where the most interesting rheological phenomena occurs (Popel and Johnson,
2005).

The blood cells are classified into 3 main types: erythrocytes, leukocytes and platelets.
The erythrocytes, also known as red cells, are the responsible for the oxygen transportation
throughout the body. Their scale is larger than the other blood cells, and they correspond to
40% to 45% of the total volume of blood in a healthy human being. The leukocytes, or white
cells, function is to combat body infections. The platelets contribute to blood’s coagulation and
to seal disrupted areas inside the vessels.

The sum of leukocytes and platelets corresponds to less than 1% of the total blood volume.
Therefore, the erythrocytes are the cells that are more relevant to determine the rheological
properties of the blood (Skalak et al., 1989). The volume fraction occupied by the erythrocytes
is called hematocrit.

The red cells in a non-deformation state, that is, in the absence of flow, exhibit a biconcave
disc shape, with a diameter between 7 µm and 8 µm, and thickness of approximately 2.5 µm at
the border and 1 µm at the center.

Blood flows in a network of multiple vessel scales. There are five different types of blood
vessels in the human circulatory system: arteries, arterioles, veins, venules and capillaries.
Veins and arteries hold the largest diameters, being related to the macrocirculation, while arte-
rioles, venules and capillaries are related to the microcirculation. Venules and arterioles have
an approximate diameter of 100 µm and capillary vessel diameter is at the same order of the
erythrocytes length scale, even smaller than the red cells diameter.

Figure 1 shows real blood flowing through the vessels in microcirculation for different
vessel sizes. It is clear the presence of a cell-depleted layer adjacent to the wall.

Due to the difference between scales within microcirculation, it is appropriate to consider
two distinct approaches: a cell approach in the micro scales for the study of blood flow in
capillaries, wherein red cells are assigned as isolated bodies in the Newtonian fluid; and a
continuum approach to the study of venules and arterioles, where the blend of plasma and
erythrocytes is considered as an equivalent continuum non-Newtonian fluid. Furthermore, it is
relevant to consider the effect caused by a cell-depleted layer near the vessel walls. This region
is formed due to the balance between two physical mechanisms: the hydrodynamic diffusion
mechanism (Cunha and Hinch (1996), Acrivos et al. (1992)) and the migration of the particles
away from the wall in the presence of a shear rate (Chan and Leal (1979), Smart and Leighton Jr
(1991), Chaffey et al. (1965)). The existence of this region generates variations on the intrinsic
fluid viscosity, creating the effect known as Fåhræus-Lindqvist Effect (Fåhræus and Lindqvist,
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Figure 1: Micrography of blood flowing in different vessel sizes.

1931).

In this work, we present a discussion on the cell diffusion and migration mechanics in order
to explain the origin of the formation of the layer free of cell adjacent to the vessel wall. We
identify the important physical parameter for controlling the layer formation and a prediction
of the steady state depleted layer thickness.

In addition, we use two different models for solving the flow for two asymptotic limit of
the microcirculation mentioned above: the lower bound or cell scale and the upper bound or
continuum scale. We predict the minimum value of the intrinsic viscosity by the matching
between the two asymptotic limits and use our theoretical calculations to fit experimental data.
A good agreement can be observed.

1.1 Dimensional Analysis
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In this section, we show that the motion of the blood in regime of microcirculation is
typically a creeping flow.

The physiological pressure gradient is approximately ∆p/l ≈ 60 mmHg/cm and a typical
value for the vessel radius is R = 100 µm. From Poiseuille’s law it is possible to estimate a
local shear rate given by γ̇ = R∆p/(8µpl) ≈ 104 s−1 as the plasma viscosity and density are
approximately the same of the water. For a typical length of a red cell (a=5 µm) the particle
Reynolds number Re = ργ̇a2/µp, results in a value approximately 0.1, that corresponds to a
creeping flow regime. Actually this conditions leads to a very short entrance length, keeping
the flow unidirectional and free of inertial effects from the particles.

2 Formation of the Cell-Depleted Layer

Experimental observations show the existence of a cell-depleted layer near the vessel walls
in microcirculation blood flow. This layer affects the pressure drop through the vessel signif-
ficantly, which makes the blood appear to be less viscous then it really is. This effect can be
described as a combination of two physical phenomena: one which scatters the cells througout
the vessel, called hydrodynamic diffusion, and the other which repels them far from the walls,
called particle migration or drift.

In order to examine the particle hydrodynamic migration-diffusion, we first derive the
equivalent diffusion-convection equation. We also show the general theory for determining
the particle hydrodynamic diffusivity (Cunha and Hinch, 1996) and particle drift velocity, re-
spectively. In order to estimate the size of the cell-depleted layer in a simple shear flow bounded
by a rigid plane wall , we use drops of high viscosity ratio as cell prototypes. Indeed real cells
have a high viscosity ratio between the membrane viscosity and the newtonian plasma viscosity.
At higher shear rates, the cells rotate much faster than they deform by the factor 1/λ.

2.1 Governing Equation for the Transport Problem

We now discuss an equation for the macroscopic migration-diffusion problem. This equa-
tion can be used to predict the thickness of the cell or particle-depleted layer near a wall.

The well-known advection-diffusion equation is given in general form by:

∂φ

∂t
+∇ · (uφ) = −∇ · F (1)

Where φ is the particle volume fraction. In the present context, u is the migration velocity
of the drops, which is a combination of the flow velocity with the drift velocity away from the
drop. The constitutive equation for the flux F is given by the classical Fick’s law, namely

F = −D · ∇φ, (2)
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where D is a second-rank tensor called the diffusivity tensor. Hence, the equation takes the
following form:

∂φ

∂t
+∇ · (uφ) = ∇ · (D · ∇φ) , (3)

which is the general form of a sourceless advection-diffusion equation.

Hydrodynamic Diffusivity

The hydrodynamic diffusion phenomenon, in contrast with ordinary diffusion, has its ori-
gins not in the molecular scale, but in the microhydrodynamical scales (Davis, 1996). When
two spherical particles interact with each other in creeping flow there is usually a kinematic re-
versibility. However, this symmetry can be broken. Some of the parameters that can break this
symmetry are: particle deformation, roughness, non-spherical particles, three-body interactions.
This symmetry breaking causes a displacement of the original particle trajectory. When many
particles interact with each other, these particles start to random walk among the streamlines.
This random walk is what causes the self-diffusion of the particles.

∆sγ̇

Figure 2: Displacement for the original trajectory due to symmetry breaking. The solid line represents
the relative trajectory with kinematic reversibility. The dashed line represents the actual relative particle
trajectory.

However, unlike ordinary diffusion, the self-diffusion does not coincide withD. Acctually,
D is given by 2 times the self diffusivity plus a down-gradient diffusivity contribution (Cunha
and Hinch, 1996):

D = 2DS +DDG, (4)

given in the general form for a simple shear by the functional relation

D = φγ̇a2f [s], (5)

where s is the position of a tracked particle and the square brackets indicate a functional relation.
In the problem of simple shear, the diffusivity tensor has two main directions and one null
direction. The general expression to calculate theoretically the hydrodynamic diffusivity from
the analysis of two interacting particle relative trajectories is given by (Cunha and Hinch, 1996):
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D =
3

4π

∫ ∞
−∞

∫ ∞
−∞

(
∆s∆s|x2|+ |∆s2|x22ê2ê2 + |∆s3|x23ê3ê3

)
dx2dx3 (6)

Determination of the Drift Velocity

When a particle is submitted to an external flow, it generates disturbances in the velocity,
pressure and stress fields. If a particle is force and torque free, the lowest order disturbance
on the fields is due to the stresslet. The disturbance in the velocity field by a single stresslet is
given by

u = − 3

8πµ
S :

rrr

r5
, (7)

where S is the particle stresslet, which is the symmetric and traceless part of the hydrodynamic
dipole, related to the particle stress exerted on the fluid. This particle stresslet is given by the
symmetric part of the integral

∫
∂D

[x (n̂ · σ)− µ(un̂+ n̂u)] dS, (8)

where ∂D is the surface of the particle. This integral depends on the shape and size of the
particles, local traction and flow velocity evaluated on the particle surface. This disturbance in
the velocity field does not satisfy the no-slip boundary condition on the plane. To correct this
we can introduce an image system at the other side of the wall (Kim and Karrila, 2013) in order
to satisfy the boundary conditions. The general form of the drift velocity induced by the the
image system on the particle in this case is

u∗ = (S · n̂) · (α11 + α2n̂n̂) (9)

In the case of a rigid wall, the constants α1 and α2 are given by:

α1 = − 1

8πµ

3

4s2
, α2 = − 1

8πµ

3

8s2
, (10)

where s is the distance between the particle and the wall. Projecting the drift velocity on the
normal component, we have:

n̂ · u∗ = − 9

64πµs2
(n̂n̂ : S). (11)

Thus, the bulk drift velocity u for the problem is given by:
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uy = − 9

64πµy2
〈Syy〉 , (12)

where y is the coordinate that represents the distance between any point in space and the wall.
The brackets represent a statistical average of the particle in a volume V ∗. In this case, V ∗ is a
volume which contains a large number of particles but small enough to be considered a point.
Considering a statistically homogeneous suspension, this statistical average over the particles is
given by:

〈S〉 =
1

N

∑
α

Sα (13)

The average normal particle stress contribution 〈Syy〉 can be calculated analytically under
condition of small deformation and dilute regimes. For moderate and large particle deforma-
tions, a boundary integral method is required for the calculation of stresslet integral (Kennedy
et al., 1994).

2.2 General Expression for the Particle-Depleted Layer Thickness in a
1-D Diffusion Problem

Now we develop a generic model for the size of the particle-free layer adjacent to a bound-
ary of a sheared suspension of non-Brownian particles in a low Reynolds number.

The particle drift velocity can be written in a general form as

uy = γ̇ag(y). (14)

In addition, the most general expression for the shear-induced diffusion is:

D = γ̇a2φf [s] (15)

Under these conditions, the drift-diffusion equation (3) for a one dimensional diffusion simpli-
fies to

d

dy
(γ̇ag(y)φ) =

d

dy

(
γ̇a2φf [s]

dφ

dy

)
. (16)

In terms of the non-dimensional length ỹ = y/a:

d

dỹ
(g(ỹ)φ) =

d

dỹ

(
φf [s]

dφ

dỹ

)
(17)
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Now, by a direct integration, using the boundary condition φ(ỹ →∞) = φ∞, we obtain:

φ(ỹ) = φ∞ −
∫ ∞
ỹ

g(t)

f [s]
dt, for ỹ ≥ δ̃ (18)

φ(ỹ) = 0, for ỹ ≤ δ̃ (19)

where φ∞ is the particle volume fraction in the bulk suspension far from the boudary. Therefore,
a particle-free layer is predicted and δ̃ can be found by the following expression

φ∞ =

∫ ∞
δ̃

g(t)

f [s]
dt (20)

2.3 Prediction of the Particle-Depleted Layer Thickness for a Sheared
Emulsion Near a Wall

Now, we apply the general theory described in sections 2.1 and 2.2 for the case of a dilute
emulsion of high viscosity drops under condition of small deformation. The idea is to explore
the balance of the main physical mechanisms of migration and diffusion by considering drops as
being prototypes of cells. So, we study the drop-free layer adjacent to the wall when the dilute
emulsion is undergoing a simple shearing flow. Figure 3 gives a sketch of the flow problem
analyzed here.

γ̇

φ = 0 δ

Figure 3: Formation of a particle-depleted layer near a wall in simple shear flow emulsion

Using the advection-diffusion equation, it is possible do predict the size of the particle-
depleted layer near a plane wall. The governing equation (3) for the problem can be written in
the following form:

∂φ

∂t
+

∂

∂x
(uxφ) +

∂

∂y
(uyφ) =

∂

∂y

(
D
∂φ

∂y

)
(21)

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
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as in this problem there is only diffusion in the y direction. The diffusivity for this case is given
by the expression

D = φγ̇a2f(λ). (22)

in which a is the radius of the drops and f(λ) is a function of the viscosity ratio, being a
specific case of the f [s] in equation (15). For f(λ) we use the relation proposed by Cunha &
Hinch (Cunha and Hinch, 1996):

f(λ) = λc1 (c2 + c3 log(λ))c4 (23)

where c1, c2, c3 and c4 are constants given by:

c1 = −0.2915
c2 = 1.347
c3 = 2/3

c4 = −0.7012

For high viscosity ratio drops it is possible to calculate the drift velocity uy using equation
(12). The stresslet average 〈S〉 is related with the particle stress tensor in the following form
(Kim and Karrila, 2013):

〈S〉 =
1

n
σp (24)

in which n is the number density of particles. For a dilute emulsion of high viscosity ratio, the
22 component of the particle stress tensor is given by (Schowalter et al., 1968):

σp22 = −16

3
Ca γ̇µφ h(λ) (25)

where:

h(λ) =
9

2240

(19λ+ 16)(9λ2 + 17λ+ 9)

(λ+ 1)3
(26)

Hence, for the case of high viscosity ratio drops, using equations (12), (24), (25) and (26)
the drift velocity is given by:

uy =
Caγ̇a3

y2
h(λ), (27)

It can be noticed that the drift velocity uy can be written in terms of Taylor deformation
DT = (19λ+16)

16(λ+1)
Ca as
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uy =
γ̇a3

y2
9

140
(9λ2 + 17λ+ 9)DT . (28)

Actually, this shows explicitly a relation between drift velocity and particle deformation.

For the nondimensionalization of equation (21), the scales are chosen such as:

t ∼ µa

σ
x ∼ a φ ∼ φ∞, (29)

where σ is the surface tension of the drop and φ∞ is the particle volume fraction far from
the wall. Using the expressions (22) and (27) for the diffusivity and drift velocity, the nondi-
mensional equation is given by:

∂φ̃

∂t̃
+ Ca

∂

∂x̃

(
ỹφ̃
)

+ Ca2h(λ)
∂

∂ỹ

(
φ̃

ỹ2

)
=
f(λ)φ∞
Pe

∂

∂y

(
φ̃
∂φ̃

∂ỹ

)
. (30)

Here, Ca = µγ̇a/σ is the capillary number and Pe = σa/(µD0) is a hydrodynamic Peclet
number (related to hydrodynamic diffusion). It can be noticed that in the case of shear induced
diffusion where D0 = γ̇a2 we have Pe = Ca−1. This is related to the fact that the diffusion
and the drift happen in the same scale of the flow. The same parameters that characterize the
diffusion (λ and Ca) are the same that characterize the drift velocity. Considering the problem
near the wall (ỹ � 1/ỹ2) in steady state, equation (30) takes the form of a specific case of
equation (17), written as:

Ca h(λ)
∂

∂ỹ

(
φ̃

ỹ2

)
= f(λ)φ∞

∂

∂y

(
φ̃
∂φ̃

∂ỹ

)
, (31)

where f [s] = f(λ) and g(y) = y−2h(λ). By the general solution given by equation (18), we
find:

φ̃ =
Ca h(λ)

φ∞f(λ)

(
−1

ỹ
+

1

δ̃

)
for ỹ > δ̃. (32)

Therefore, we obtain an expression for the nondimensional thickness δ̃ of the particle-depleted
layer, given by:

δ̃ =
Ca

φ∞

h(λ)

f(λ)
(33)

Equation (33) indicates that the important physical parameters identified by our simple
model of drop-like-cell are the viscosity ratio and the capillary number. In this flow λ measures
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the relative importance between time scales for rotation and deformation. For high viscosity
suspension the particles rotates much faster than deforms and they do not breakup under shear
flow (Oliveira and Cunha, 2011). Actually, the drop-like-cell rotates with the vorticity of the
imposed shear with just a small amount of deformation. This small deformation is already
sufficient to break the time reversibility of the particle relative trajectories producing a hydro-
dynamic diffusion, and also to produce the amount of asymmetry of the particle stress close to
wall which results in a particle drift. So, both mechanisms of particle migration have origin in
the hydrodynamic scale (it is not molecular nature) and both depend on particle deformation,
and consequently on the capillary number. These two fluxes (diffusional and drift) are in bal-
ance near to the wall and it defines the thickness of the depleted layer as shown by equation
(33). From equation (33) we can also argue that increasing the λ the δ tends to the decrease
by the fact that higher viscosity ratios inhibit particle deformation. Deformation here is the
essential mechanism to produce both diffusion and drift.

Figure 4 shows the concentration profile φ̃ as a function of ỹ in the solution domain of
the flow. The presence of the depleted layer close to the wall can be seen as (y → 0) as
well as the linear increase of its thickness with Ca. The results also show the presence of a
concentration gradient for ỹ ∼ 1 characterizing a boundary layer of particle concentration due
to the balance between a diffusional flux and a particle migration, both mechanisms occurring
on the hydrodynamic time scale and induced by particle deformation. Defining a parameter ỹ∗

as being the value of ỹ corresponding to φ = 0.99φ∞ we define the thickness of the particle
concentration boundary layer δ̃∗ = ỹ∗ − δ̃. Again this parameter increases significantly as the
Ca increases. From capillary varying form 0.4 to 0.6, δ∗ has a increase of 50%

The upper bound limit of this concentration boundary layer is just the hematocrit of the
bulk blood which was an imposed boundary condition.

3 Continuum Model

In this section, we examine the continuum modeling of pressure-driven blood flow in the
regime of microcirculation, which corresponds to length scales of microvessels up to 100 µm.
Therefore, the model is an approximation to the blood flow in venules and arterioles, in which
we model the core flow as a continuum non-Newtonian fluid and the cell-depleted layer as a
Newtonian (i.e. pure plasma region) gap on the near wall region. In this model we assume that
the depleted layer thickness is a given parameter of the flow geometry.

For the core flow, a standard generalized Newtonian fluid model proposed by Casson is
used (Bird et al., 1977). In this model the yields stress effect due to cell-aggregate formation
is mainly captured at low shear rates. In the regimes of moderate shear rates a shear thinning
behavior of the blood dominates the yield stress. On the other hand, at high shear rate the model
describe the blood as a bulk fluid with a constant viscosity depending on the hematocrit only
(no shear rate dependence).

Fig 5 shows a sketch of the studied flow in regime of microcirculation. The main parameters
and geometric quantities of the problem are: plasma viscosity µp, blood’s bulk viscosity µ0,
cross section radius R(z), average cross section radius R0, core flow radius Rδ, cell-depleted
layer thickness δ, Casson’s radius RB and the yield stress τ0. The vessel walls are modeled
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Figure 4: Steady-state particle concentration profile near a plane wall located in ỹ = 0

considering a typical sinusoidal disturbance on the regular cylindrical geometry. So, under this
condition the radius of the vessel is described by

R = R0(1 + α sin(2πz/l)). (34)

Now, the Cauchy’s governing equation for an unidirectional flow in axisymmetric cylindri-
cal coordinates is given by:

1

r

∂

∂r
(rτ) =

dp

dz
= −G(z) (35)

The viscous stress in eq. (35) is described by the following constitutive equation:

τ = η(γ̇)
∂u

∂r
(36)

where γ̇ = (2E : E)1/2 with E being the rate of strain tensor, i.e E = (∇u+ (∇u)T )/2,
and the apparent viscosity η given by the Casson’s model (Bird et al., 1977):
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Cell−Depleted

Layer

Core Flow

Region

which behaves as a

rigid body

Portion of the core flow

Figure 5: A sketch of the blood flow in a mcrovessel . The core flow of blood is modeled as a continuum
non-Newtoinian fluid , whereas the cell-free layer of pure plasma adjacent to the wall is considered a typical
Newtonian fluid.

η(γ̇) =

{
∞ for |τ | ≤ τ0

µ∞ + τ0γ̇
−1 + 2

√
µ∞τ0γ̇

−1/2 for |τ | > τ0.
(37)

The infinite viscosity for low shear stress represents an equilibrium condition due to the yields
stress effect, in which the fluid only starts to flow when the shear stress modulus is above
a certain value τ0. Consequently, in the case of pressure driven flow in a micro-vessel, this
creates a region r < RB in the cross section so that the fluid behaves like a rigid body. Solving
equation (35) in terms of shear rate γ̇ and applying the boundary condition of velocity and
tangential viscous stress continuity, one finds:

γ̇(r, z) =



0 for r ≤ RB

Gr

2µ∞
+
GRB

2µ∞
− GR

1/2
B

µ∞
r1/2 for RB < r ≤ Rδ

Gr

2µp
for Rδ < r ≤ R

(38)

Now, the volumetric rate of the flow can be calculated by:

Q = π

∫ R

0

r2γ̇dr. (39)

Solving the integral (39) for the solution presented in (38) we found:

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
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Q =
πGR4

δ

8µ∞
A
(
RB

Rδ

)
+
πG

8µp

(
R4 −R4

δ

)
. (40)

Here, A(x) is a function given by:

A(x) = 1 +
4

3
x− 17

7
x1/2 − 1

21
x4. (41)

In order to write the solution in terms of non-dimensional quantities we shall use as the
reference a standard Poiseuille flow of water in a tube of radius R0. So, let’s consider the
following non-dimensional quantities by using the references values, R0 and µw:

G̃ ≡ G
8Qµw
πR4

0

; R̃ ≡ R
R0

; µ̃ ≡ µ
µw

Nondimensionalization of equation (40) leads to

R̃4 = µ̃p
1

G̃
− χ4µ̃p

µ̃∞
A
(

ΩRew

χG̃

)
+ χ4, (42)

which is a non-linear equation for the nondimensional pressure gradient G̃. The non-dimensional
parameters appearing in eq (42) are:

χ ≡ Rδ
R0

; Rew ≡ ρŪR0
µw ; Ω ≡ τ0

4ρwŪ
2 ,

where ρw is the density of the water and Ū ≡ Q/πR2
0 is the mean velocity of the flow. The pa-

rameter χ is related with the size of the region occupied by the bulk blood, Rew is the Reynolds
number based of the vessel radius and the water viscosity. Ω is the parameter that controls the
yield stress.

3.1 Computation of the Intrinsic Viscosity

It is well-know that for an incompressible Newtonian fluid flowing through a cylindrical
capillary tube of radius R with a constant volumetric flow rate, the pressure drop is linear with
the fluid viscosity for a given length `. This relation is given by the classic Poiseuille’s law,
namely:

µ =
πR4

8Q`
∆p. (43)

In the case of the problem in study, neither the vessel radius is constant nor the viscosity. How-
ever, Poiseuille’s law can be used for defining an intrinsic viscosity term as being:
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µi ≡
πR4

0

8Q`
∆p =

πR4
0

8Ql

∫ `

0

Gdz (44)

Defining the aspect ratio z̃ = z/`, one finds:

µ̃i =

∫ 1

0

G̃(z̃)dz̃. (45)

Here, µ̃i is nondimensionalized by the viscosity of the water. Note that the calculation
of a non-dimensional intrinsic viscosity requires only the integration of the non-dimensional
pressure gradient along the aspect ratio z̃.

It is instructive to note that (42) is a transcendental equation to be solved in terms of G̃.
So G̃ is straightforward to be calculated analytically. However, in the limit case of Ω = 0 and
α = 0 (i.r. R̃ = 1) the intrinsic viscosity reduces simply to:

µ̃i =
µ̃p

1 + χ4

[
µ̃p
µ̃∞
− 1

] . (46)

Considering that the result given by equation (46) is only valid on the larger scales of microcir-
culation, where δ/R0 � 1, the geometric parameter χ4 can be assymptoticaly expanded by the
use of a binomial series O(δ/R0)

2 as follows:

χ4 =

(
1− δ

R0

)4

≈ 1− 4
δ

R0

(47)

Consequently, the asymptotic expression for µi from (46) results in:

µ̃i =
µ̃∞

1 + 4
δ

R0

[
µ̃∞
µ̃p
− 1

] (48)

This expression was calculated previously by several authors (Popel and Johnson, 2005).
However, we have shown that in a more general condition of the blood flow in microcirculation,
the intrinsic viscosity should be calculated by the numerical integration of equation (44).

4 Cell Approach

In this section we examine a model of blood flow from the cell scale approach. In this
regime the vessel diameter is of the same order of the cell size. In this case, the cells usually
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have to bend before enter the vessel. Figure 1 illustrates this regime of flow in the microcircu-
lation also studied previously by Secomb and co-authors (Pries et al., 1994). The lined up cells
configuration in the flow is approximately axisymmetric.

Based on experimental observation shown in figure 1 we propose a theoretical model to
study the blood flow on these scales. The assumption of this model is that the blood flow
consists of lined up rigid cells moving on Newtonian plasma in a periodic configuration with
period l + s. Although the cells are not rigid, we assume that the reach a steady state of
deformation as they enter into the vessel. Figure 6 presented a sketch of the flow problem that
we studied in the lower regime of the microcirculation.

RC
R

l

s

Figure 6: Lined up cells model for the blood flow in capillaries.

Even with those assumptions, the problem is still hard to be solved analytically due to the
complex geometry of the flow domain. In addition, we assume that the lubrication approxima-
tion can be applied for the motion of the fluid in the gap between cell-wall. This is justified
by the dimensional analysis of the flow, since the lubrification approximation only requires that
Re(a/L)� 1. As the particle Reynolds number is 0.1 and a/`� 1, this hypothesis is valid.

The governing equation for the flow under regime of lubrication is given by:

µp∇2u = ∇p, (49)

subject to the no-slip and impenetrability boundary conditions at the surface of the cells and the
vessel walls. Under condition of lubrication approximation and for a flow free of inertia at the
full domain, we can split the problem in two parts:
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µp

1

r

∂

∂r

(
r
∂u

∂r

)
=
∂p

∂z
≡ −G(z)

u(RC(z), z) = UC (b.c. on the cell surface)
u(R(z), z) = 0 (b.c. on the vessel wall)

(50)

in the gap between the cell and the vessel wall and

µp
1

r

∂

∂r

(
r
∂u

∂r

)
=
∂p

∂z
≡ −G(z)

u(R(z), z) = 0 (b.c. on the vessel wall)
(51)

in the region between two cells. Equations (50) and (51) are connected to each other by the
continuity equation, which in incompressible media requires that the volumetric flow rate must
be equal in all transverse sections of the vessel.

These differential equations subjected to these boundary conditions are called pseudo par-
tial differential equations, as they are just ordinary differential equations, as a direct conse-
quence of the independence of u on z and p on r due to the unidirectional character of a flow
free of inertia. Therefore the general solution for the velocity field inside the vessel is given by
:

u = −Gr
2

4µp
+ C1 log(r) + C2 (52)

As the interest is to calculate the volumetric flow rate, it is not necessary to know the value of
C2, due to (40). In the region of the gap, C1 vanishes as a direct consequence of the continuity
of the velocity. On the other hand, in the region of the gap between the cell and the vessel wall,
we have

C1 =
G

4µp log(R/RC)
(R2 −R2

C)− UC
log(R/RC)

(53)

Using (40), it is straightforward to find that the volumetric flow rate is given by

Q =
πGR4

8µp
(54)

in the gap region and

Q =
πG

8µp
B(z) + πUCC(z) (55)
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in the cell region, where

B(z) = R4 −R4
C −

(R2 −R2
C)2

log(R/RC)
(56)

and

C(z) =
R2 −R2

C

2 log(R/RC)
(57)

The nondimensionalization of the volumetric flow rate is made in the same way as de-
scribed in section 3. The same scale are used here, except the one of z. Here, the appropriate
longitundinal length scale is the l of the cell. By doing this, the non-dimensional pressure
gradient is represented in the following form

G̃s =
µ̃p

R̃4
(58)

in the region of the gap and

G̃l = µ̃p

(
1− ŪC C̃(z̃)

B̃(z̃)

)
(59)

in the cell region. Using the definition for intrinsic viscosity in (44), one finds:

µ̃i =
1

1 + s̃

[∫ 1

0

G̃ldz̃ +

∫ 1+s̃

1

G̃s(z̃)dz̃

]
. (60)

Depending on the cell profile, the integral of Gl is not straightforward to be calculated ana-
lytically, so it is convenient use a numerical integration method in order to compute the intrinsic
viscosity. In the result section we shall present numerical results of the intrinsic viscosity as
a function of the vessel/cell aspect ratio. The solutions are obtained by numerical integration
based on a simple trapezoidal rule.

4.1 Cell Aggregation

Our lined cells model can be used to predict the effects of cell aggegation on the intrinsic
viscosity. Considering the flow as having a periodic domain, the volume fraction is given by the
ratio between the volume of the cell and the volume of the lattice. In terms of nondimensional
quantities, we have:
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φ =

∫ 1

0

R̃2
Cdz̃∫ 1+s̃

0

R̃2dz̃

(61)

It should be important to note that the hematocrit φ depends on the geometric parameter s̃.
For a cylindrical cell of constant R̃C and a cylindrical vessel of constant R̃ = 1, we have:

φ =
R̃2
C

1 + s̃
(62)

Under this condition, the intrinsic viscosity reduces to:

µ̃i = µ̃p +
(
G̃l − µ̃p

) φ

R̃2
C

(63)

So, for the case of a constant radius vessel and a cylindrical cell, the relation between
the intrinsic viscosity and the cell volume fraction is linear. The expression (63) is similar to
an effective viscosity O(φ) as predicted by Einstein (Einstein, 1956) for a dilute statistically
homogeneous suspension undergoing linear shear. Since we have considered the motion of
undeformed cells in the absence of hydrodynamic interaction between them, anO(φ) correction
due to the presence of the cell must persist for any steady state geometry of our model. It is
interesting, however, that our coefficient (G̃l − µ̃p)/R̃

2
C depends on the flow properties and

geometry. So, this coefficient is not universal and clearly a non-local quantity, even for the case
of non-interacting cells. In the present context, the general calculation O(φ) of the intrinsic
viscosity for an arbitrary permanent cell profile moving in a microvessel of constant radius is
found to be

µ̃i = µ̃p +

(∫ 1

0

G̃ldz̃ − µ̃p
)

φ∫ 1

0

R̃2
Cdz̃

. (64)

It has to be noticed that the model only predicts values of φ between the range from 0 to∫ 1

0
R̃2
Cdz̃. In general, for periodic configurations, µ̃i is linear with respect to φ. Considering

the vessel with a periodic disturbance to account the effect of the vessel roughness, the most
general way to write the intrinsic viscosity is in the form:

µ̃i = µ̃p [A(α) + φB(α)] (65)

with
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A(α) =
1

1 + s̃

∫ 1+s̃

0

R̃−4dz̃ (66)

and

B(α) =
1

1 + s̃

∫ 1+s̃

0

R̃2dz̃∫ 1

0

R̃2
Cdz̃

∫ 1

0

[
1− ŨC C̃(z̃)

B̃(z̃)
− R̃−4

]
dz̃. (67)

Owing to the fact that R̃ is a function of z̃/(1+ s̃), it is straightforward to show by a simple
change of coordinates that A and B are only functions of the variable α, any other dependence
with the geometry is purely functional. In the case of a non disturbed vessel, the intrinsic
viscosity has the form µi = µp (1 +B0φ), with

B0 =

[∫ 1

0

R̃2
Cdz̃

]−1 ∫ 1

0

[
1− ŨC C̃(z̃)

B̃(z̃)
− 1

]
dz̃. (68)

In general, the vessel profile can be written in the following form:

R̃ = 1 + αf

(
z̃

1 + s̃

)
(69)

where α� 1 and f(x) a periodic function in x ∈ [0, 1] and amplitude O(1), with

∫ 1

0

f(x)dx = 0 (70)

In this paper, we consider the simple case of a single harmonic mode disturbance with
f(x) = sin(2πx), but this holds in general, as any periodic disturbance can be represented
accurately by a Fourier series.

5 Numerical Results

In this section, we examine results for the two previously presented models. First com-
paring the numerical results for the models with experimental data, then using the models to
predict variations in the intrinsic viscosity due to the change of roughness, yield stress and
plasma viscosity.
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5.1 Fåhræus - Lindqvist effect

The Fåhræus-Lindqvist effect (Fåhræus and Lindqvist, 1931) predicts a change of viscosity
due to a variation in the vessel radius. With the two models presented on this paper, it is possible
to predict such changes in the smaller and larger scales of the microcirculation.

Figure 7 shows the results for the two models with constant cross section radius R = R0

in the absence of yield stress. These results are compared with results from the experiments
carried out by Pries (Pries et al., 1994) on in-vitro blood flow. We consider a value of δ = 1 µm
and RC = 1.25 δ in order to fit the results. With RC being the maximum value of RC(z).
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Figure 7: Prediction of the Fåhræus-Lindqvist effect by the two different models. The dashed line − − −
represents the result for the lined up cells model while the − · − · − curve is the result for the continuum
model. These two results are compared with the empirical fit (�) of the experimental results for in vitro
blood flow by Pries et. al (Pries et al., 1994) for a hematocrit of 55 %

In this case, for the continuum model, the result shown in the plot is the analytical one
given by equation (46). The result for the lined up cells model is given numerically considering
a parabolic profile for the cells.

The experimental data gives a minimum value of the intrinsic viscosity lower than the
predicted by the theoretical model. The discrepancy is about 33 % greater than the experimental
value. We argue that this difference can be related with the cell-cell hydrodynamic interaction
and the irregularaties distribution in the microvessel wall, including the presence of other types
of particles.
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Both asymptotic limits corresponding to the lined up cells and continuum model are in
very good agreement with the experimental data. We can see that as R0/RC → 0, the intrinsic
viscosity rapidly increases when R0 is about 2RC . In this limit the non-local characteristic of
the blood viscosity has a very strong dependence on the geometry so that the blood can not
be described by a continum equivalent media. On the other hand, for large values of R0/RC

the blood viscosity increases monotonically with R0/RC , tending to a saturation point for a
sufficent large size of vessel R0 ∼ 100RC . In this limit the intrinsic viscosity can be interpreted
as an effective visocosity of the bulk blood.

5.2 Effects due to the presence of Yield Stress

When the red cells aggregate, it’s necessary to make a minimum stress in order for the
blood to flow. This minimum value for the stress is the yield stress τ0. Using the continuum
model for the blood flow it is possible to predict the effect of the yield stress on the intrinsic
viscosity.

Figure 8 shows a plot of the blood intrinsic viscosity as a function of the non-dimensional
yield stress for different values of the microvessel roughness. The increase of the intrinsic
viscosity as the cells tends to aggregate can be seen. This effect is even stronger as the amplitude
of the roughness increases. For instance, for a yield stress value of 0.4 we can see an increase in
the intrinsic viscosity of 2% for α varying from 0 to 0.09. So the effect of the wall irregularities
is very significant in a microcirculation regime.
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Figure 8: Intrinsic viscosity as a function of the nondimensional yield stress parameter Ω for Rew = 0.1,
χ = 0.9, µ̃p = 1, µ̃∞ = 4 and different values of α.

It is important to discuss the range of this method. The condition for this method to work
is that RB/Rδ ≤ 1. In that way we can define a critical value ΩC , so that:

ΩC =
χG̃min

Rew
(71)
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For a vessel of constant radius, where G̃ = µ̃i is a constant, we can trace a straight line to
show the region where the numerical results represents the model. Out of this region, the model
predicts that µi is a constant, as the whole core flow behaves like a rigid body.

6 Conclusion

In this work, we discussed the physical mechanisms in creeping flow which lead to the
formation of the cell-depleted layer adjacent to the vessel wall. We also predicted the layer
thickness in steady state, relating it to the main non-dimensional parameters which govern the
mechanisms of the layer formation.

In addition, we studied the blood flow in two different scales (i.e. lower and upper bound
limit) of the in vitro-microcirculation. Both the continuum model and our lined up cells model
have shown good agreement with experimental data for the Fåhræus-Lindqvist. This models
can be used to predict alterations in the blood viscosity due to blood abnormalities, which can
be used to diagnose illnesses.
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