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Abstract. The proposed work uses a meta-heuristic algorithm with a multi-objective approach 

to optimize the suspension parameters of a half car ride model, representing a passenger car, 

when it travels at a constant speed on a certain road profile. The numerical-computational 

routine developed seeks to simulate the dynamic behavior of the vehicle model in response to 

the excitations caused by the pavement’s irregularities, and to obtain the parameters that 

minimize both the vertical acceleration of the driver seat and the front and rear tire deflections 

of the model. The ISO 8608 (1995) standard methodology is used to obtain the base excitation 

signals that represent the track’s irregularities. The method proposed by Shinozuka and Jan 

(1972) is used to obtain the road irregularity profile in the time domain from the power spectral 

density (PSD) equations that represent the different pavement classes. The Newmark’s method 

(1959) is used to solve the differential motion equation in order to obtain the vehicle model’s 

responses to these irregularities. Finally, the NSGA-II meta-heuristic algorithm proposed by 

Deb et al. (2002) is used to obtain the optimal suspension parameters, which minimize the 

vertical accelerations of the driver seat. 

Keywords: Multi-objective optimization, Half car ride model, Random road profile, PSD, 

NSGA-II. 
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1  INTRODUCTION 

The use of meta-heuristic algorithms has been increasing in mechanical systems 

optimization, providing speed and accuracy in obtaining an optimal result. Combining an 

optimization algorithm with a model that satisfactorily represents a mechanical system yields a 

tool that indicates the system’s maximum efficiency parameters, which can be used in numerous 

applications. 

The automotive industry faces the challenge of combining maximum safety, performance 

and comfort with minimum cost, weight and production time. Thus, precise numerical models 

of the vehicle, as well as an accurate representation of the road network, have become 

imperative to achieve the targeted quality standards on the manufacturing of vehicles and its 

components. Beyond the precision of the numerical models, many situations still require the 

uncovering of the best possible parameters of the vehicle’s components to reach these quality 

standards, which can be obtained through an optimization algorithm. Ultimately, even the 

option between the best parameters of opposing characteristics may be demanded, which 

requires a multi-objective optimization algorithm (MOOA). 

A vehicle suspension optimization problem is a multi-objective optimization problem 

(MOOP), which requires a multi-objective approach since the suspension main objectives are 

conflicting: to isolate the vehicle’s occupants from vibrations imported from the road 

roughness; and to provide the vehicle a good road holding or handling by suppressing the 

vibration of the wheels. The first of the suspension’s objectives is directly related with the 

occupants’ comfort, which is primarily influenced by the seat motion absorbed by the driver 

and the passenger’s bodies. Not less importantly, the suspension’s second objective is mainly 

related to the occupants’ safety, which is affected by the firmness of the tire contact with the 

ground. 

Some of the MOOAs published in the literature have gathered high attention because of its 

effectiveness in obtaining a Pareto front closest to the real Pareto front when solving MOOPs. 

Gadhvi et al. (2016) compared the results of three of the most widely used multi-objective 

evolutionary algorithms (MOEAs) when solving a vehicle suspension MOOP. The authors 

concluded that marginally better optimum values are obtained with the NSGA-II algorithm. 

Genetic algorithms are frequently used due to its flexibility, precision and speed, being the 

NSGA-II recently used by different authors to solve the vehicle suspension MOOP of different 

vehicle models. Shojaeefard et al. (2014) used the NSGA-II algorithm to perform the Pareto 

optimization of a five-degree of freedom vehicle vibration model travelling on a random road 

profile, considering three conflicting objective functions simultaneously. Nagarkar et al. (2016) 

used the same algorithm to realize a multi-objective optimization of a quarter-car and driver 

model travelling on a random track, given multiple comfort and stability criteria. 

In this paper, the NSGA-II algorithm is used for a multi-objective optimization of a five 

degrees-of-freedom vehicle vibration model, travelling with a constant speed on a random road 

profile composed by three different pavement classes of the ISO 8608 standard (1995). The 

method proposed by Shinozuka and Jan (1972) is used to obtain the road irregularity profiles 

in the time domain from the PSD equations that represent these pavement classes. The 

differential motion equation of the vehicle’s response to the road irregularities is solved 

numerically using the method proposed by Newmark (1959). Three objective functions are 
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considered for minimization: root mean square (RMS) values of the driver seat vertical 

acceleration (�̈�𝑐), representing the ride comfort; RMS values of the front tire deflection (𝑧𝑡𝑓 −

𝑧𝑅𝑓), expressing the road holding; and, similarly, RMS values of the rear tire deflection (𝑧𝑡𝑟 −

𝑧𝑅𝑟), also expressing the road holding. The stiffness and damping coefficients of the driver seat 

and the front and rear suspensions form the six-variable design vector, �⃗�. 

2  ROAD ROUGHNESS SIMULATION 

2.1 Representation of different road profiles 

The road surface representation is a topic of constant investigation by several authors 

throughout the years. Dodds and Robson (1973) showed that a single direct PSD function 

provides a road surface description that is sufficient for multi-track vehicle response analysis, 

proposing a road classification method based on this function. Honda et al. (1982) developed a 

model for the representation of road surface roughness on highway bridges using PSD 

functions. The progress of the vehicle modelling studies lead to the necessity of a standard 

model of road roughness representation, which was consolidated by the International 

Organization for Standardization, through the ISO 8608 (1995) standard. 

Being the only input of the passive suspension system, the road profile has a major role on 

the vehicle’s vibration; therefore, this standard model of representation represents a great 

improvement on vehicle dynamics analysis. In the ISO 8608 (1995) standard, the road surface 

was modeled as a one variable stochastic process with an indicated PSD function. According 

to this standard, there is a logarithmic linear relation between the vertical displacement PSD 

and the spatial frequency of a given road profile. Thus, a classification system composed by 

different roughness pavements, illustrated in Fig. 1, could be determined. 

 

 

Figure 1. Road roughness classification system in terms of displacement PSDs 

Source: ISO 8608 (1995) 
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The relation between the vertical displacement PSD and the spatial frequency is defined 

as: 

 

          𝐺𝑑(𝑛) = 𝐺𝑑(𝑛0). (
𝑛

𝑛0
)

−𝑤

                                                                                                           (1) 

 

where 𝑛0 denotes the reference spatial frequency (cycles/m), 𝑛 is the spatial frequency 

(cycles/m), 𝑤 is the wavelength distribution, 𝐺𝑑(𝑛0) is the reference vertical displacement PSD 

(m3) and 𝐺𝑑(𝑛) is the vertical displacement PSD (m3). The reference spatial frequency, 𝑛0, is 

defined by the standard as a constant (0.1 cycle/m), and the value for the wavelength 

distribution, 𝑤, is usually defined as 2, which yields a constant speed PSD, meaning that the 

vehicle is moving at a fixed speed. The range of the spatial frequency defined by the standard 

goes from 0.011 cycle/m to 2.83 cycles/m. Table 1 shows the reference PSD, 𝐺𝑑(𝑛0), for 

different classes of roads, which can provide an estimate of the degree of roughness of the road. 

 

Table 1. Degree of roughness of different classes of roads in terms of the reference PSD 

Road 

Class 

Degree of roughness 

Gd(n₀)⁽1⁾  (10⁻⁶ m³) 

Lower limit Geometric mean Upper limit 

A - 16 32 

B 32 64 128 

C 128 256 512 

D 2048 1024 2048 

E 2048 4096 8192 

F 8192 16384 32768 

G 32768 65536 131072 

H 131072 262144 - 

⁽1⁾ n0 = 0.1 cycle/m 

Source: ISO 8608 (1995) 

 

According to Reza-Kashizadeh et al. (2014), the displacement PSDs, in terms of spatial 

and time frequencies, are related according to: 

 

          𝐺𝑑(𝑓) =
𝐺𝑑(𝑛)

𝑣
                                                                                                                             (2) 

 

where 𝐺𝑑(𝑓) denotes the vertical displacement PSD (m2s) in terms of temporal frequency, 

𝐺𝑑(𝑛) denotes the vertical displacement PSD (m3) in terms of spatial frequency, and 𝑣 is the 

vehicle speed (m/s). 
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2.2 Road profiles in the time domain 

The method proposed by Shinozuka and Jan (1972) was used to obtain the road 

displacement signals in the time domain, which are the input parameter that represents the 

excitations imposed by the pavement to the suspension of the vehicle model. In this method, a 

PSD is used for the digital simulation of random processes, through the following equation: 

 

          �⃗�(𝑡) = ∑ √2𝐺𝑑(𝑓𝑘)∆𝑓𝑘cos (2𝜋𝑓𝑘𝑡 + 𝜓𝑘)
𝑁

𝑘=1
                                                                     (3) 

 

where �⃗�(𝑡) denotes temporal displacement signal of the track (m), N is the number of intervals 

of the frequency domain, 𝜓𝑘 is an independent random phase angle (rad) uniformly distributed 

between 0 and 2π, and ∆𝑓𝑘 = 𝑓𝑘+1 − 𝑓𝑘 is the frequency variation range (Hz). 

3  PASSIVE HALF-VEHICLE MODEL 

A five degrees-of-freedom half-vehicle model with a passive suspension, intended to study 

the vertical motions and pitch of a passenger vehicle travelling on a straight line, is shown in 

Fig. 2. The car body is represented by the sprung mass, 𝑚𝑠, connected to both of the unsprung 

masses, 𝑚𝑡𝑓 and 𝑚𝑡𝑟, denoting the front and rear wheel masses, respectively. The sprung mass 

is assumed rigid, and has freedom of motion in the vertical and in the pitch direction, while the 

unsprung masses are free to bounce vertically with respect to the sprung mass. A third unsprung 

mass, 𝑚𝑐, representing the seat and the driver, connects to the sprung mass and is also free to 

bounce vertically. The distances between the center of gravity of the sprung mass and the points 

where the unsprung masses connect to it are 𝑎, 𝑟 and 𝑏, for the front wheel, the driver seat and 

the rear wheel, respectively. 

The motion variables vector is composed by the five degrees-of-freedom of the half-vehicle 

model, 𝑧𝑐, 𝑧𝑠, 𝜃𝑠, 𝑧𝑡𝑓 and 𝑧𝑡𝑟, namely the seat and the sprung mass vertical displacements, the 

pitch angle, and the front and rear wheel vertical displacements, respectively. The pitch angle, 

𝜃𝑠, is assumed to be small. The vertical displacement imposed to the vehicle model by the road 

irregularities is represented by 𝑧𝑅𝑓, for the front wheel, and 𝑧𝑅𝑟, for the rear wheel. The front 

and rear stiffness coefficients are given by 𝑘𝑓 and 𝑘𝑟 for the suspension and 𝑘𝑡𝑓 and 𝑘𝑡𝑟 for the 

tires, respectively. Similarly, the front and rear damping coefficients are given by 𝑐𝑓 and 𝑐𝑟 for 

the suspension and 𝑐𝑡𝑓 and 𝑐𝑡𝑟 for the tires, respectively. The seat stiffness and damping 

coefficients are denoted by 𝑘𝑠 and 𝑐𝑠, respectively. 
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Figure 2. Five degrees-of-freedom passive half-vehicle model 

Source: Adapted from Shojaeefard et al. (2014) 

 

The linearized differential equations of motion, with respect to the five degrees-of-freedom 

of the model, can be written as follows: 

 

          𝑚𝑐�̈�𝑐 = −𝑘𝑠(𝑧𝑐 − 𝑧𝑠 − 𝑟𝜃𝑠) − 𝑐𝑠(�̇�𝑐 − �̇�𝑠 − 𝑟�̇�𝑠)                                                                (4) 

          𝑚𝑠�̈�𝑠 = 𝑘𝑠(𝑧𝑐 − 𝑧𝑠 − 𝑟𝜃𝑠) + 𝑐𝑠(�̇�𝑐 − �̇�𝑠 − 𝑟�̇�𝑠)                                                                    (5) 

          𝐼𝑠�̈�𝑠 = 𝑟[𝑘𝑠(𝑧𝑐 − 𝑧𝑠 − 𝑟𝜃𝑠) + 𝑐𝑠(�̇�𝑐 − �̇�𝑠 − 𝑟�̇�𝑠)]                                                                 (6) 

          𝑚𝑡𝑓�̈�𝑡𝑓 = −𝑘𝑡𝑓(𝑧𝑡𝑓 − 𝑧𝑅𝑓) − 𝑐𝑡𝑓(�̇�𝑡𝑓 − �̇�𝑅𝑓)                                                                        (7) 

          𝑚𝑡𝑟�̈�𝑡𝑟 = −𝑘𝑡𝑟(𝑧𝑡𝑟 − 𝑧𝑅𝑟) − 𝑐𝑡𝑟(�̇�𝑡𝑟 − �̇�𝑅𝑟)                                                                          (8) 

 

The motion equations are a set of five, second order ordinary differential equations, and 

can be written in the matrix form as shown in Eq. (9). The implicit numerical integration method 

proposed by Newmark (1959) was used for the dynamic analysis of the proposed model. 

 

          [𝑀]�̈⃗�(𝑡) + [𝐶]�̇⃗�(𝑡) + [𝐾]𝑧(𝑡) = �⃗�(𝑡)                                                                                      (9) 
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where [𝑀], [𝐶] and [𝐾] are the mass, damping and stiffness matrices, respectively, �⃗�(𝑡) is the 

forcing function vector, and 𝑧(𝑡) is the motion variables vector. These matrices and vectors are 

displayed below, considering the half-vehicle model in study: 
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4  MULTI-OBJECTIVE OPTIMIZATION OF THE VEHICLE MODEL 

4.1 Multi-objective optimization 

An optimization process that simultaneously finds the best possible set of solutions for two 

or more conflicting objectives, subject to certain constraints, is defined as multi-objective 

optimization. Mathematically, a MOOP can be written as: 

 

          min �⃗�(�⃗�) = [𝑓1(�⃗�), 𝑓2(�⃗�), … , 𝑓𝑘(�⃗�)]𝑇                                                                                 (15) 

 

subject to 
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          𝑔𝑖(�⃗�) ≤ 0 , 𝑖 = 1, 2, … , 𝑝                                                                                                         (16)  

          ℎ𝑗(�⃗�) = 0 , 𝑗 = 1, 2, … , 𝑞                                                                                                        (17) 

          𝑥𝑖,𝑙𝑏 ≤ 𝑥𝑖 ≤ 𝑥𝑖,𝑢𝑏 , 𝑖 = 1,2, … , 𝑛                                                                                            (18) 

 

where �⃗� = [𝑥1,  𝑥2, … , 𝑥𝑛] ∈ ℝ𝑛 is the design variables vector, �⃗�(�⃗�) ∈ ℝ𝑘 is the vector of 

objective functions, 𝑔𝑖(�⃗�) are the inequality constraints, ℎ𝑗(�⃗�) are the equality constraints, 𝑥𝑖,𝑙𝑏 

are the design variables lower bounds, and 𝑥𝑖,𝑢𝑏 are the design variables upper bounds. 

The solution of a MOOP provides a Pareto optimal front, composed by multiple optimal 

solutions. The non-dominated optimized points that form the Pareto set offer a range of best 

possible solutions for a given problem, so the chosen optimal point can be the one that best suits 

the designing conditions of that problem. A MOOP may also be a maximization problem, 

which, mathematically, is equivalent to a minimization problem of the objective function’s 

negative values. 

4.2 The NSGA-II Algorithm 

A genetic algorithm (GA) is a meta-heuristic algorithm based on the evolutionary 

principles of natural selection. According to Goldberg et al. (1989) and Haftka et al. (1993), 

the optimization GA starts from an initial set, or first generation, of randomly chosen designs 

with uniform probability distribution. Given a current generation of designs, the algorithm is 

implemented in three steps: reproduction, crossover and mutation. The population size 

maintains the same throughout the optimization steps, and a complete iteration or new 

generation of designs is formed after completing all three steps. This process is then repeated 

for the new generation. 

In the non-dominated sorting genetic algorithm (NSGA-II), each solution, or individual, is 

compared to the remaining individuals of a population, and then all non-dominated solutions 

and non-dominated fronts are identified and ranked with different fitness values. After the 

sorting, the crowding distance parameter is assigned to each individual, and measures the 

proximity to its neighbors. Parents are selected from de non-dominated front, and new 

offsprings are created using mutation and crossover operators. The new generation of offsprings 

is then combined with the current population to generate a new one, and the selection is 

proceeded on the next generation individuals (Deb et al., 2002). 

The flexibility, precision and speed of the NSGA-II algorithm was compared to other 

consolidated and widely used MOOAs in a recent study performed by Gadhvi et al. (2016), 

which compared multi-objective optimization solutions of a vehicle model’s suspension 

system. The authors compared the results of three of the most widely used multi-objective 

evolutionary algorithms (MOEAs) when solving a vehicle suspension MOOP: the elitist based 

non-dominated sorting genetic algorithm (NSGA-II) by Deb et al. (2002); strength Pareto 

evolutionary algorithm (SPEA2) by Zitzler et al. (2001); and region based Pareto Envelope 

based Selection Algorithm (PESA-II), by Corne et al. (2001). It was shown that the Pareto 

fronts obtained from NSGA-II yielded extreme trade-off optimal points giving marginally 

better optimum values of the objective vector as compared to SPEA2 and PESA-II, with a 
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slightly less diversified Pareto front. In the present study, the importance of obtaining better 

optimal results was favored instead of a more diversified set of optimal solutions, besides the 

fact that the NSGA-II algorithm has also presented a satisfactory diversification of the Pareto 

front, justifying the choice of this algorithm. 

4.3 Multi-objective Optimization of a passive half-vehicle model  

For a multi-objective optimization of a vehicle suspension system, the objective functions 

needs to be composed of parameters that represent the performance of this system. According 

to Baumal et al. (1998), there are three characteristics commonly used to assess the performance 

of vehicle suspension systems: ride comfort, which improves as the magnitude of the seat 

acceleration, |�̈�𝑐|, decreases; road-holding ability or safety, which is acceptable for restricted 

or low tire-road contact forces and is quantified by the front tire deflection, (𝑧𝑡𝑓 − 𝑧𝑅𝑓), or the 

rear tire deflection, (𝑧𝑡𝑟 − 𝑧𝑅𝑟); and the suspension working space, which must be restricted 

and is given by (𝑧𝑠 − 𝑎𝜃𝑠 − 𝑧𝑡𝑓) for the front wheel and by (𝑧𝑠 + 𝑏𝜃𝑠 − 𝑧𝑡𝑟) for the rear wheel. 

In the present study, the root mean square (RMS) values of the first two characteristics are 

defined as the objective functions to minimize, resulting in three objective functions, 𝑓1(𝑥), 

𝑓2(𝑥) and 𝑓3(𝑥), to be optimized simultaneously. 

The design variables vector, composed by the remaining six unknown parameters of the 

vehicle model, is given by Eq. (19). The constant parameters of the model, adopted according 

to Haug et al. (1979) and converted to SI units, are presented in the Table 2. 

 

          �⃗� = [𝑘𝑠   𝑐𝑠   𝑘𝑓   𝑐𝑓   𝑘𝑟   𝑐𝑟]
𝑇

                                                                                                  (19) 

 

Table 2. Fixed parameters of the half-vehicle model 

     Parameter Nomenclature Value Unit 

Seat and driver mass mc 132 kg 

Sprung mass ms 2040 kg 

Pitch moment of inertia Is 4630 kg.m2 

Front wheel mass mtf 44 kg 

Rear wheel mass mtr 44 kg 

Front tire stiffness coefficient ktf 262700 N/m 

Rear tire stiffness coefficient ktr 262700 N/m 

Front tire damping coefficient ctf 876 N.s/m 

Rear tire damping coefficient ctr 876 N.s/m 

Longitudinal distance between the seat 

and the sprung mass c.g. 
a 1.01 m 

Longitudinal distance between the 

front axle c.g. to the sprung mass c.g. 
b 2.03 m 

Longitudinal distance between the rear 

axle c.g. to the sprung mass c.g. 
r 0.25 m 
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The half-vehicle model is supposed to travel at a constant speed of 24.4 m/s over a road 

profile composed by classes A, B and C of the ISO 8608 standard, portrayed in the Fig. 3 for 

the front and rear wheels of the model. The lag time between wheels is given by Eq. (20). 

 

 

Figure 3. Road profile composed by classes A, B and C of the ISO 8608 standard 

 

        𝜏 =
𝑎 + 𝑏

𝑣
                                                                                                                                       (20) 

 

The optimization problem presented in this paper is a modified version of the single 

objective optimization problem described by Baumal et al. (1998), and can be written as: 

 

          min �⃗�(�⃗�) = [𝑓1(�⃗�)   𝑓2(�⃗�)   𝑓3(�⃗�)]𝑇                                                                                       (21) 

 

where 

 

          𝑓1(�⃗�) = √
1

𝑇
∫ �̈�𝑐

2𝑑𝑡
𝑇

0

                                                                                                                  (22)  

          𝑓2(�⃗�) = √
1

𝑇
∫ (𝑧𝑡𝑓 − 𝑧𝑅𝑓)

2
𝑑𝑡

𝑇

0

                                                                                             (23) 

          𝑓3(�⃗�) = √
1

𝑇
∫ (𝑧𝑡𝑟 − 𝑧𝑅𝑟)2𝑑𝑡

𝑇

0

                                                                                             (24) 

 

subject to 
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8756 𝑁/𝑚 ≤ 𝑥1 ≤ 87563 𝑁/𝑚                                                                                                    (25)   

350 𝑁. 𝑠/𝑚 ≤ 𝑥2 ≤ 8756 𝑁. 𝑠/𝑚                                                                                                 (26)   

35025 𝑁/𝑚 ≤ 𝑥3 ≤ 175127 𝑁/𝑚                                                                                               (27)   

875 𝑁. 𝑠/𝑚 ≤ 𝑥4 ≤ 14010 𝑁. 𝑠/𝑚                                                                                               (28)   

35025 𝑁/𝑚 ≤ 𝑥5 ≤ 175127 𝑁/𝑚                                                                                               (29)   

875 𝑁. 𝑠/𝑚 ≤ 𝑥6 ≤ 14010 𝑁. 𝑠/𝑚                                                                                               (30)   

 

where Eq. (21) denotes the vector of objective functions to minimize; Eqs. (22) through (24) 

explicit the objective functions, namely, the RMS values of the seat acceleration and the front 

and rear tire deflection signals, respectively; and Eqs. (25) through (30) determine the lower 

and upper bounds that limit the design variables within a certain range. 

5  RESULTS AND DISCUSSION 

The proposed MOOP was solved using the NSGA-II algorithm, using a population of 200 

individuals with a crossover probability of 0.9 and a mutation probability of 0.1. These criteria 

were used in 3000 generations. Figure 4 shows the results of the three objective optimization 

in the 𝑓1(�⃗�) - 𝑓2(�⃗�) plane, as well as the extreme trade-off points for this plane, denoted by A 

and B. Similarly, Fig. 5 shows the results of the three objective optimization in the 𝑓1(�⃗�) - 𝑓3(�⃗�) 

plane, as well as the extreme trade-off points for this plane. 

 

 

Figure 4. Pareto front and extreme trade-off points of the 𝒇𝟏(�⃗⃗⃗�) - 𝒇𝟐(�⃗⃗⃗�) plane obtained using the NSGA-II 

algorithm 
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Figure 5. Pareto front and extreme trade-off points of the 𝒇𝟏(�⃗⃗⃗�) - 𝒇𝟑(�⃗⃗⃗�) plane obtained using the NSGA-II 

algorithm 

 

As can be seen in Figs. 4 and 5, the 𝑓1(�⃗�) - 𝑓2(�⃗�) plane has a wider spread of optimal 

solutions when compared to the 𝑓1(�⃗�) - 𝑓3(�⃗�) plane. This means that the spread of the front tire 

deflection is approximately 2.5 times wider than the rear tire deflection, for virtually the same 

range of variation of the seat acceleration, in terms of objective functions. The 𝑓2(�⃗�) - 𝑓3(�⃗�) 

plane is not presented in this study because, according to Gadhvi et al. (2016), the Pareto front 

of this plane is not important to make a decision regarding optimized design parameters of 

individual suspensions. 

The three objective optimization results and the extreme trade-off points in the 𝑓1(�⃗�) - 

𝑓2(�⃗�) - 𝑓3(�⃗�) space are displayed in Fig. 6. This figure shows that the extreme points A and C, 

which respectively minimizes the seat vertical acceleration in the 𝑓1(�⃗�) - 𝑓2(�⃗�) and 𝑓1(�⃗�) - 

𝑓3(�⃗�) planes, are coincident. 
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Figure 6. Pareto front and extreme trade-off points of the 𝒇𝟏(�⃗⃗⃗�) - 𝒇𝟐(�⃗⃗⃗�) - 𝒇𝟑(�⃗⃗⃗�) space obtained using the 

NSGA-II algorithm 

 

The three-dimensional Pareto front presented displays a generation of 200 optimized 

solutions of the problem, including the extreme points that represent the sets of design variables 

that minimize each of the objective functions individually. The Table 3 presents the values of 

the design variables and objective functions in these extreme points. This front represents a 

decision-making tool that aids in the choosing of the optimal set of design variables that best 

suits the solution of the real problem. 

 

Table 3. Values of the design variables and objective functions in the extreme trade-off points obtained 

Design 
Point 

ks (N/m) cs (N.s/m) kf (N/m) cf (N.s/m) kr (N/m) cr (N.s/m) f1 (m/s2) f2 (m) f3 (m) 

A 40477.62 350.00 50285.53 3849.29 35025.00 1169.51 0.02221 0.00164 0.00125 

B 40521.98 2497.55 50154.66 1915.35 35025.00 875.00 0.02512 0.00141 0.00125 

C 40477.62 350.00 50285.53 3849.29 35025.00 1169.51 0.02221 0.00164 0.00125 

D 40476.62 6250.94 50732.73 875.00 35025.00 1838.14 0.03240 0.00162 0.00117 

 

The dynamic response of the half-vehicle model to the proposed road profile, using the set 

of design variables from the extreme point A or C, which minimizes the RMS value of the seat 

vertical acceleration, 𝑓1(�⃗�), is portrayed on Fig. 7. This figure displays the temporal signals of 

the motion variables vector, 𝑧(𝑡), as well as its first and second derivatives, �̇⃗�(𝑡) and �̈⃗�(𝑡), in 

response to the excitations caused by the proposed road profile. These vectors represent the 

vertical displacement, velocity and acceleration of the half vehicle model’s motion variables. 
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Figure 7. Displacements, velocities and accelerations of the half-vehicle model’s motion variables, using 

parameters that minimize the RMS value of the seat vertical acceleration, 𝒇𝟏(�⃗⃗⃗�) 

 

The temporal signals used to obtain the RMS values of the three objective functions, 𝑓1(�⃗�), 

𝑓2(�⃗�) and 𝑓3(�⃗�), using the  set of design variables from the extreme point A or C, which 

minimizes the RMS value of the seat vertical acceleration, 𝑓1(�⃗�), are displayed in Fig. 8. These 

signals represent the seat vertical acceleration, �̈�𝑐(𝑡), the front tire deflection, (𝑧𝑡𝑓 − 𝑧𝑅𝑓), and 

the rear tire deflection, (𝑧𝑡𝑟 − 𝑧𝑅𝑟), respectively. 
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Figure 8. Seat vertical acceleration, �̈�𝒄(𝒕), front tire deflection, (𝒛𝒕𝒇 − 𝒛𝑹𝒇), and rear tire deflection, (𝒛𝒕𝒓 −

𝒛𝑹𝒓) of the half-vehicle model’s motion variables, using parameters that minimize the RMS value of the 

seat vertical acceleration, 𝒇𝟏(�⃗⃗⃗�) 

 

6  CONCLUSIONS 

This paper presented a methodology to improve the design of a vehicle’s suspension 

system. The modified non-dominated sorting genetic algorithm (NSGA-II) was used to solve 

the multi-objective optimization problem of the passive suspension system of a half-vehicle 

model travelling on a random road profile. The road roughness was modeled as a composition 

of random processes with determined PSDs specified in the ISO 8608 Standard.  

The optimization process considered three objective functions that represented conflicting 

objectives – comfort and safety of the vehicle model. The process resulted in the obtainment of 

a three-objective Pareto front, in which the extreme trade-off design sets were compared and 

further studied. The Pareto front has proven to be an effective way of providing a variety of 

optimal design sets, which assist the designer in the decision of choosing the one that best suits 

the solution of the real problem. The use of random road profiles to conduct the study elevates 

the computational cost, but yields more realistic design variables than using a less sophisticated 

excitation road profile. 
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