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Abstract. In order to keep the rolling products free of defects, the calculation and constant 

assessment of the rolling load and torque are required. Many theories for rolling load 

calculation were developed and among them the most used nowadays still are the Bland and 

Ford ’s (1948) model and Alexander’s (1971) model in order to achieve a better online 

control for reversible and tandem cold rolling mills. In this work those models were 

implemented in a numerical calculation software. The elastic roll’s deformation was taken 

into account using the Hitchcock´s formula for the deformed roll radius in an iterative way. 

Those models state that the friction hill (or normal pressure) in the contact arc keeps circular 

after the elastic deformation. This hypothesis is analysed with a third offline model for 

calculating the rolling load, named Noncirc (Shigaki et al., 2015), that considers the real roll 

elastic deformation (not circular anymore). Two cold rolling cases were considered and the 
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friction coefficient was varied in order to evaluate the influence of this parameter on the 

calculated rolling load/width, the contact arc length and profile and pressure distribution 

over the contact arc. It was found that both models present imprecise results for both cases 

analysed, as the thickness is very low and the strip is very work hardened. The noncircular 

model shows higher loads and larger arc of contacts, but has the drawback of being offline. 

Keywords: Rolling load, Cold rolling, Friction hill, Noncircular arc. 

 

1 INTRODUCTION 

 Rolling is a metal forming process in which a material (sheet, plate, strip) is forced 

between two rotational rolls, in order to reduce its thickness. Depending on the equipment 

characteristics, it is possible to say that the rolling process presents good dimensional control 

and high productivity due to its continuity (Helman and Cetlin, 2005).  

 The rolling load calculation is a critical parameter when looking for the correct rolling 

mill setup in steel rolling. The rolling load distribution over the length of the contact arc 

between the sheet and rolls is a complicated phenomenon and it is affected by several factors 

as rolling temperature, rolls geometry, back and front tension, rolling speed, microstructural 

variations in the stock (which leads to variations in yield stress), etc. Modern roll gap setup 

and profile control need an accurate prediction of the roll load under different rolling 

conditions, what justifies the importance of the rolling load calculation (Yang et al., 2004). 

 The cold rolling process was taken as a research subject during many decades, currently 

some theories are capable of output a valuable and detailed description of the gap between the 

rolls during the rolling process (Grimble et al., 1978). First off Siebel (1925) and von Karman 

(1925) started the studies on the topic, their analysis introduced the vertical segments 

homogeneous compression concept of the sheet during the rolling. Other fundamental 

supposition was the occurrence of a neutral plane inside the length of the contact arc 

(Freshwater, 1996). 

 In addition, another approximation, which implies great simplification on the theories, is 

that the contact surface between roll and sheet remains circular, leading to an easier solution 

with minor errors. Among other suppositions, the friction coefficient was chosen as constant 

and the sheet and rolls elastic strain were neglected. However, for certain practical rolling 

conditions as in thin sheets rolling last stand, the algorithms based on the classical theory 

frequently fail to converge or present too discrepant values (Grimble et al., 1978). 

 The models proposed by Sims (1945) and Bland and Ford (1948) allowed the problem to 

be solved analytically, avoiding most of the numerical integrations, unlike the Orowan (1943) 

model, which is far more complex and demands more calculations. However, Bland and Ford 

simplifications led to a sacrifice in accuracy (Alexander, 1971). 

 Trying to reach greater precision in predicting rolling parameters Ford and his colleagues 

(Ford, Ellis and Bland, 1951; Lianis and Ford, 1956; Bland and Sims, 1953 apud Alexander, 

1971) introduced the contribution of the elastic strain zones at the entry and exit of the contact 

arc and allowed for strain hardening using flow equations. 

 With the development of digital computational power, the complexity of differential 

equations that describes any physical phenomenon ceased to stand as barrier to find problem 

solutions, with this in mind Alexander (1972 apud Freshwater, 1996) proposed a 

comprehensive numerical solution to Orowan’s model, although he did not take into account 

the inhomogeneity strain factor, as proposed by Orowan in his theory. Alexander used a 

fourth order Runge-Kutta routine to solve von Karman first order differential equation with 

certain boundary conditions. 
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 Using a numerical calculation software, the Bland and Ford’s model corrected with 

Hitchcock’s deformed radius formula together with Alexander’s model corrected with the 

Hitchcock’s deformed radius formula modified by Ford (1951) were implemented. From this 

point, both models were compared testing various rolling parameters based on two steel 

rolling cases. Both models were also compared with a noncircular rolling model from Shigaki 

et al (2015). 

 

 

2 STUDIED MODELS 

 

2.1 Bland and Ford’s model 

 

 Starting from von Karman’s equation stated below Eq. 1 Bland and Ford (1948) 

suggested some simplifications in a way that the solution to this equation could be found 

analytically. Equation 1 is easily solved numerically, although its analytical solution may not 

be (Helman and Cetlin, 2005). 

 

ℎ𝑆
𝑑(1−

𝑝

𝑆
)

𝑑∅
+ (1 −

𝑝

𝑆
)

𝑑(ℎ𝑆)

𝑑∅
= −𝑝2𝑅′(𝑠𝑒𝑛∅ ± 𝜇𝑐𝑜𝑠∅) (1) 

 

 Von Karman’s theory is based on the following assumptions: 

 Plane strain state. 

 Homogeneous strain in each vertical section. 

 Constant friction coefficient (Coulomb friction). 

 Circular contact arc (with deformed radius R’). 

 The existence of a neutral plane inside the contact arc. 

 Elastic sheet and rolls strain is neglected. 

 Figure 1 helps to understand the meaning of the variables used. 

 

 
Figure 1 – Stress equilibrium analysis acting in the element A (a) e B (b). 

Source: Adapted from Helman and Cetlin, 2005. 

 

 In equation (1): 

 h – sheet thickness along the contact arc. 

 S – plane strain yield strength. 

 p – roll vertical pressure, for small angles pr ≈ p. 

 R’ – deformed working roll radius. 

 ∅ – angular coordinate. 
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 In all equations cited in this paper the uppermost of any pair of algebraic signs refers to 

the exit side, the lower to the entry side of the neutral plane. 

 Because of the high stress applied to the rolls by the contact with the stock, they get 

locally flattened and have a different radius from its original. The first known author to 

develop a relationship concerning the roll radius and the deformed roll radius was Hitchcock 

(1935 apud Roberts, 1978), making use of Hertz’s elastic bodies contact theory. His studies 

resulted in the following equation, which was used in this work at Bland and Ford’s model: 

 

𝑅′ = 𝑅 [1 +
𝑐

ℎ𝑖−ℎ𝑓
(

𝑃

𝑊
)] (2) 

 

 Where P is the rolling load, W is the sheet width, R is the working roll radius and c is 

given by equation (3): 

 

𝑐 =
16(1−𝑣𝑟𝑜𝑙𝑙

2 )

𝜋𝐸𝑟𝑜𝑙𝑙
 (3) 

 

 Where 𝐸𝑟𝑜𝑙𝑙 is the roll Young’s modulus and 𝑣𝑟𝑜𝑙𝑙 is the roll Poisson’s coefficient. 

 When it comes to Bland and Ford’s assumptions, they stated that in most rolling cases, 

the rolling pressure variation along the contact arc is bigger than the material yield strength 

variation. Also the hS product is yet smaller, in the sight that when S goes up, h goes down 

(Helman and Cetlin, 2005). Thus, evaluating equation 1 it is reasonable to say that: 

 

 ℎ𝑆
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𝑝

𝑆
)

𝑑∅
≫ (1 −

𝑝

𝑆
)

𝑑(ℎ𝑆)
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 However this becomes invalid whenever the material strain harden too fast, or the applied 

back tension is too high, because both this factors make 
𝑝

𝑆
 variation along the contact arc to be 

smaller (Helman and Cetlin, 2005). 

 Therefore, equation 1 becomes: 

 

 ℎ𝑆
𝑑

𝑑∅
(

𝑝

𝑆
) = 2𝑅′𝑝(𝑠𝑒𝑛∅ ± 𝜇𝑐𝑜𝑠∅) (4) 

 

 The variable h is the sheet thickness along the contact arc, and it is given by equation 5 

below. 

 

 ℎ = ℎ𝑓 + 2𝑅′(1 − 𝑐𝑜𝑠∅) (5) 

 

 Using small angle approximations: 

 

 𝑠𝑒𝑛 ∅ ≅ ∅  and 𝑐𝑜𝑠∅ ≅ 1 −
∅2

2
 

 

 Equation 5 becomes: 

 

 ℎ = ℎ𝑓 + 2𝑅′(1 − 𝑐𝑜𝑠∅) ≅ ℎ𝑓 + 2𝑅′
∅2

2
 

 

 Thus, equation 4 becomes: 
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𝑑
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(

𝑝

𝑆
) = 2𝑅′

𝑝

𝑆

∅±𝜇
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𝑑(𝑝 𝑆⁄ )
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=
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±
2𝜇𝑑∅
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 (6) 

 

 Equation 6 is easily integrated and the solution is given by: 

 

 ln(𝑝 𝑆⁄ ) = ln (
ℎ𝑓

𝑅′ + ∅2) ± 2𝜇
1

√ℎ𝑓

𝑅′

𝑎𝑟𝑐𝑡𝑔
∅

√ℎ𝑓

𝑅′

+ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

 Adopting: 

 

 𝐻 = 2√
𝑅′

ℎ𝑓
𝑎𝑟𝑐𝑡𝑔 (√

𝑅′

ℎ𝑓
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 Results in: 

 

 ln
𝑝

𝑆
= ln (

ℎ

𝑅′) ± 𝜇𝐻 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

 In another way: 

 

 
𝑝+

𝑆
= 𝐶1

ℎ

𝑅′ exp (+𝜇𝐻) Valid to the exit side (8) 

 

 
𝑝−

𝑆
= 𝐶2

ℎ

𝑅′ exp (−𝜇𝐻) Valid to the entry side (9) 

 

 When back and front tensions are applied equation 8 and 9 become: 

 
𝑝+

𝑆
= (1 −

𝑇𝑓

𝑆𝑓
)

ℎ

ℎ𝑓
exp (+𝜇𝐻) Valid to the exit side (10) 

 

 
𝑝−

𝑆
= (1 −

𝑇𝑖

𝑆𝑖
)

ℎ

ℎ𝑖
exp (𝜇(𝐻𝑖 − 𝐻) Valid to the entry side (11) 

 

 In equations 10 and 11: 

 𝑇𝑓 – front applied tension. 

 𝑇𝑖 – back applied tension. 

 𝑆𝑓 – material plane strain yield strength at the exit side (see equation 17 to 20). 

 𝑆𝑖 – material plane strain yield strength at the entry side (see equation 17 to 20). 

 ℎ𝑓 – sheet thickness at exit. 

 ℎ𝑖 – sheet thickness at entry. 

 𝐻𝑖 – equation 7 (H) calculated when ∅ = 𝛼. 

 The contact arc length is given by equation 12: 

 

𝐿 = √𝑅2 − (𝑅 −
∆ℎ

2
)

2

= √𝑅∆ℎ −
∆ℎ2

4
 (12) 

 

 The contact angle can be written as follows: 



A study of the rolling load calculation models for flat cold rolling process 

CILAMCE 2016 

Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering 

Suzana Moreira Ávila (Editor), ABMEC, Brasília, DF, Brazil, November 6-9, 2016 

 

 𝑠𝑒𝑛 𝛼 =
𝐿

𝑅
=

√𝑅∆ℎ − 
∆ℎ2

4

𝑅
→ 𝛼 = asin (

√𝑅∆ℎ − 
∆ℎ2

4

𝑅
) (13) 

 

 Equations 10 and 11 output the pressure distribution along the contact arc, thus in order 

to find the total pressure per sheet width the following integration is needed: 

 

 
𝑃

𝑤
= ∫ 𝑝𝑑𝑥

𝐿

0
 

 

 Usually 𝑑𝑥 is translated into angular coordinates, and for most cold rolling cases the 

following approximation is valid, because contact angles are small: 

 

 𝑑𝑥 = 𝑅′𝑑∅𝑐𝑜𝑠∅ ≈ 𝑅′𝑑∅ (1 −
∅2

2
) ≈ 𝑅′𝑑∅ 

 

 Therefore: 

 

 
𝑃

𝑤
= ∫ 𝑝(∅)𝑅′𝑑∅

𝛼

0
= 𝑅′ (∫ 𝑝+(∅)𝑑∅

𝛼𝑁

0
+ ∫ 𝑝−(∅)𝑑∅

𝛼

𝛼𝑁
) (14) 

 

 In equation 14: 

 𝛼 – is the contact angle. 

 𝛼𝑁 – is the neutral plane angular coordinate. 

 The value of 𝛼𝑁 is found when: 

 

 𝑝+ = 𝑝− 
 

 Solving the equality: 

 

 𝛼𝑁 = √
ℎ𝑓

𝑅′
𝑡𝑎𝑛 [√

ℎ𝑓

𝑅′

𝐻𝑁

2
] (15) 

 

 And: 

 

 𝐻𝑁 =
𝐻𝑖

2
−

1

2𝜇
𝑙𝑛 [

ℎ𝑖

ℎ𝑓
.

(1−
𝑇𝑓

𝑆𝑓
)

(1−
𝑇𝑖
𝑆𝑖

)
] (16) 

 

 For the first iteration in the iteration process, the deformed radius (𝑅′) is replaced with 

the regular roll radius (𝑅) at all equations. With the value for 
𝑃

𝑤
 now calculated, it is then used 

in equation 2 to calculate the deformed roll radius. This new deformed roll radius is used to 

recalculate a new rolling load per unit width. The process is continued until the stop criterion 

is met. 

 In both Bland & Ford’s and Alexander’s models, the following flow equation was applied 

in order to include the strain hardening effect that the material undergoes: 

 

𝜎 = (𝐴𝐴 + 𝐵𝐴 × 휀)̅ × (1 − 𝐶𝐴 × 𝑒𝑥𝑝(−𝐷𝐴 × 휀)̅) − 𝐸𝐴  (17) 
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 Where: 

 𝜎 – material uniaxial yield stress. 

 휀 ̅– uniaxial equivalent strain. 

 AA, BA, CA, DA, EA – material related coefficients. 

 The uniaxial equivalent or effective strain (휀)̅ in plane strain compression is given in 

terms of the true strain in equation 18 and 19 (Alexander, 1971): 

 

휀̅ =
2

√3
휀 (18) 

 

 Where: 

 

휀 = 𝑙𝑛 (
ℎ𝑖

ℎ
) = 𝑙𝑛 (

ℎ𝑖

ℎ𝑓+2𝑅′(1−𝑐𝑜𝑠∅)
) (19) 

 
 In plane strain compression the yield stress is given by equation 20 (Alexander, 1971). 

 

𝑆 =
2

√3
𝜎 (20) 

 

2.2 Alexander’s model 

 

 Making use of Orowan’s approach, Alexander (1971) developed a FORTRAN algorithm 

that could solve most rolling problems efficiently. However, he neglected Orowan’s 

inhomogeneity factors, which are mostly valid when the ratio between the contact arc length 

and the mean thickness is less than 3 (𝐿
ℎ⁄ < 3). In cold rolling is usual to have 𝐿

ℎ⁄ > 3, 

therefore the homogeneous compression hypothesis is valid (Montmitonnet, 2006). 

 Alexander’s model is flexible in a way that it could even be used for hot rolling 

conditions, needing only slight modifications in theory as shown by Chen et al (2014) in his 

article. 

 Ford et al. (1951) demonstrated how Hitchcock’s equation should be modified in order to 

include the elastic strain effect that occurs at the entry and exit of the roll bite, keeping the 

contact arc as a circular surface, what is shown in equations 21 to 26: FORD et al. (1951) 

 

𝑅′ = 𝑅 [1 +
𝑐

(√∆ℎ+𝛿𝑒𝑓+𝛿𝑡+√𝛿𝑒𝑓)
2 (𝑃)] (21) 

 

∆ℎ = ℎ𝑖 − ℎ𝑓 (22) 

 

𝛿𝑒𝑓 =  
(1−𝑣𝑠ℎ𝑒𝑒𝑡

2 )(𝑆𝑓−𝑡𝑒𝑓)ℎ𝑓

𝐸𝑠ℎ𝑒𝑒𝑡
 (23) 

 

𝑡𝑒𝑓 = 𝑇𝑓 −
2𝜇𝑃𝑒𝑓

ℎ𝑓
 (24) 

 

𝑃𝑒𝑓 =
2

3
√

𝑅′(1−𝑣𝑠ℎ𝑒𝑒𝑡
2 )ℎ𝑓

𝐸𝑠ℎ𝑒𝑒𝑡
(𝑆𝑓 − 𝑡𝑒𝑓)

3

2 (25) 
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𝛿𝑡 =  
𝜈𝑠ℎ𝑒𝑒𝑡(1+𝜈𝑠ℎ𝑒𝑒𝑡)(ℎ𝑓𝑇𝑓−ℎ𝑖𝑇𝑖)

𝐸𝑠ℎ𝑒𝑒𝑡
 (26) 

 

 In the equations above the undefined variables have the following meaning: 

 𝜈𝑠ℎ𝑒𝑒𝑡 – rolling material Poisson’s coefficient. 

 𝐸𝑠ℎ𝑒𝑒𝑡 – rolling material Young’s modulus. 

 In Alexander’s (1971) work it is shown that 𝑡𝑒𝑓 e 𝑃𝑒𝑓 must be iteratively found, since 

they depend on each other. For the first iteration the deformed radius at 𝑃𝑒𝑓 equation can be 

estimated with the basic Hitchcock’s formula and 𝑡𝑒𝑓 = 𝑇𝑓. 

 Following Orowan’s method, Alexander’s model easily deals with the mixed boundary 

conditions (slip/no-slip regions) in the roll bite. This is introduced in the codding with the 

following statement: solve the shear stress (𝜏𝑠) using 𝜏𝑠 = 𝜇𝑝𝑟 and 𝜏𝑠 = 𝐾 = 𝑆 2⁄ ,  and use 

whichever is the smaller (Alexander, 1971). A slip zone will occur if the shear stress is 

smaller than the material shear strength, and a no-slip/sticking zone will take place if the shear 

stress reaches the material shear strength. For the slip zone, the shear stress is given by the 

Coulomb’s friction law, which means it is the product between the roll normal pressure (𝑝𝑟)  

and the friction coefficient (𝜇). For the no-slip region the shear stress can never be higher 

than the material shear strength which is K=𝑆 2⁄  (Alexander, 1971). 

 Alexander (1971) considered von Karman’s basic equation under the following format: 

 
𝑑[ℎ(𝑝𝑟−𝑆∓𝜏𝑠𝑡𝑎𝑛∅)]

𝑑∅
= 2𝑅′(𝑝𝑟𝑠𝑒𝑛∅ ± 𝜏𝑠𝑐𝑜𝑠∅) (27) 

 

 In equation (27) the upper algebraic signs refer to the situation on the exit side of the 

neutral plane, the lower to the entry side. Figure 2 refers to some variables used. 

 

 
Figure 2 – Detailed geometry and variables. 

Source: Adapted from Alexander, (1971). 
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At figure 2: 

 
𝑃

𝑤
  – pressure per sheet width. 

 𝑡𝑒𝑖 – back tension stress actually applied to the plastic arc. 

 𝑡𝑒𝑓 – front tension stress actually applied to the plastic arc. 

  

Slip zone. Using 𝝉𝒔 = 𝝁𝒑𝒓 in equation 27 the following differential equation is encountered: 

 
𝑑𝑝𝑟

𝑑∅
= 𝑔1(∅)𝑝𝑟 + 𝑔2(∅) (28) 

 
 Where: 

 

𝑔1(∅) =
± 𝜇𝑠𝑒𝑐∅(

2𝑅′

ℎ
+𝑠𝑒𝑐∅)

(1∓𝜇𝑡𝑎𝑛∅)
 (29) 

 

𝑔2(∅) =
(

2𝑅′𝑆

ℎ
𝑠𝑒𝑛∅+

𝑑𝑆

𝑑∅
)

(1∓𝜇𝑡𝑎𝑛∅)
 (30) 

 

No-Slip/Sticking zone. Using 𝝉𝒔 =
𝑺

𝟐
 in equation 27 the following is found: 

 
𝑑𝑝𝑟

𝑑∅
= 𝑔𝟑(∅) (31) 

 

 Where: 

 

𝑔3(∅) = 𝑆 {
2𝑅′

ℎ
𝑠𝑒𝑛∅ (1 ±

1

2
𝑡𝑎𝑛∅) ± (

𝑅′

ℎ
𝑐𝑜𝑠∅ +

1

2
𝑠𝑒𝑐2∅)} + (1 ±

1

2
𝑡𝑎𝑛∅)

𝑑𝑆

𝑑∅
 (32) 

 

 Again, the upper algebraic signs refer to the situation on the exit side of the neutral plane, 

the lower to the entry side (Alexander, 1971). 

 

Boundary conditions. In the plastic deformation zone, the boundary conditions are 

determined from the equilibrium equation for a volume finite element, as shown in figure 2, 

which means: 

 

𝜎3𝑅′𝛿∅𝑐𝑜𝑠∅ = 𝑝𝑟𝑅′𝛿∅𝑐𝑜𝑠∅ ∓ 𝜏𝑠𝑅′𝛿∅𝑠𝑒𝑛∅   or   𝜎3 = 𝑝𝑟 ∓ 𝜏𝑠𝑡𝑎𝑛∅ (33) 

 

 The upper algebraic signs refer to the exit side, the lower to the entry side (Alexander, 

1971). 

 The compressive vertical and horizontal stress can be related using the Huber-Mises yield 

criterion: 

 

𝜎3 − 𝜎1 = 2𝐾 = 𝑆 → 𝜎3 = 𝑆 + 𝜎1 (34) 

 

Thus, replacing equation 34 in equation 33: 

 

𝜎1 = 𝑝𝑟 − 𝑆 ∓ 𝜏𝑠𝑡𝑎𝑛∅ (35) 
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Therefore, at the entry of the plastic arc, when ∅ = 𝛼, 𝑆 = 𝑆𝑖 𝑒 𝜎1 = −𝑡𝑒𝑖, the roll 

normal pressure is: 

𝑝𝑟𝑖 = 𝑆𝑖 − 𝑡𝑒𝑖 − 𝜏𝑠𝑖𝑡𝑎𝑛𝛼 (36) 

 

 Or: 

 

𝑝𝑟𝑖 = (𝑆𝑖 − 𝑡𝑒𝑖)/(1 + 𝜇𝑡𝑎𝑛𝛼)   if   𝜏𝑠𝑖 = 𝜇𝑝𝑟𝑖 (37) 

 

𝑡𝑒𝑖 = 𝑇𝑖 −
2𝜇𝑃𝑒𝑖

ℎ𝑖
 (38) 

 

𝑃𝑒𝑖 =
(1−𝜈2)ℎ𝑖

4

(𝑆𝑖−𝑡𝑒𝑖)2

𝐸
√

𝑅′

ℎ𝑖−ℎ𝑓
 (39) 

 

 At the exit, where ∅ = 0: 

 

𝑝𝑟𝑓 = 𝑆𝑓 − 𝑡𝑒𝑓 (40) 

 

𝑡𝑒𝑓 = 𝑇𝑓 −
2𝜇𝑃𝑒𝑓

ℎ𝑓
 (41) 

 

𝑃𝑒𝑓 =
2

3
√

𝑅′(1−𝜈2)ℎ𝑓

𝐸
(𝑆𝑓 − 𝑡𝑒𝑓)

3

2 (42) 

 

 As shown earlier in this work, (𝑡𝑒𝑖,𝑃𝑒𝑖) and (𝑡𝑒𝑓,𝑃𝑒𝑓) must be iteratively found, since they 

depend on each other. For the first iteration the deformed radius at 𝑃𝑒𝑖 and 𝑃𝑒𝑓 equations can 

be estimated with the basic Hitchcock’s formula and 𝑡𝑒𝑖 = 𝑇𝑖, 𝑡𝑒𝑓 = 𝑇𝑓 should be used. 

 

Calculating the roll force per unit width. Alexander assumed that the roll force per unit 

width (
𝑷

𝒘
) must act midway along the angular arc of contact and be directed towards the 

deformed roll center. Considering this, the rolling load is written as a function of the projected 

𝒑𝒓 e 𝝉𝒔 in this direction (Alexander, 1971): 

 
𝑃

𝑤
= 𝑅′ ∫ 𝑝𝑟 cos (∅ −

1

2
𝛼) 𝑑∅ + 𝑅′ [∫ 𝜏𝑠𝑠𝑒𝑛 (∅ −

1

2
𝛼) 𝑑∅ −

𝛼

𝛼𝑁
∫ 𝜏𝑠𝑠𝑒𝑛 (∅ −

1

2
𝛼) 𝑑∅

𝛼𝑁

0
]

𝛼

0
 (43) 

 

 Therefore, the total rolling load per unit width (𝑃) considering the elastic zones 

contribution is given by equation 44: 

 

𝑃 =
𝑃

𝑤
+ 𝑃𝑒𝑖 + 𝑃𝑒𝑓 (44) 

 

 For the first iteration in the iteration process, the deformed radius (𝑅′) is replaced with 

the regular roll radius (𝑅) at all equations. With the value for (𝑃) now calculated, it is then 

used in equation 21 to calculate the deformed roll radius. This new deformed roll radius is 

used to recalculate a new rolling load. The process is continued until the stop criterion is met. 
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2.3 Noncircular model 

 

 Newly studied mathematical models for extremely thin and hardened sheets show that the 

rolls undertake severe elastic deformation and the contact surface does not remain circular. As 

proposed by Le and Sutcliffe (2001), the first deformation at onset of contact is an elastic 

compression; when stresses have grown to such an extent that the yield condition is met, 

plastic deformation starts; as the strip speed is increasing, the slip condition prevails; a flat, 

sticking zone may occur under higher loads at the center; followed by a second plastic 

reduction zone - with slip. In all cases, the contact is bounded by a final elastic unloading 

zone which begins at the minimum thickness point xd (Shigaki et al, 2015). 

 The formulation is derived from the work by Le and Sutcliffe (2001). Only a summary is 

given here. The material is elastic-plastic work-hardening. Following the Slab Method, strain 

and stresses do not vary in the thickness direction, they are independent of y. The balance of 

the forces applied to all the sides of the slab (Fig. 3 and 4) in the rolling direction writes: 

 

ℎ
𝑑𝜎1

𝑑𝑥
+ (𝜎1 + 𝑝)

𝑑ℎ

𝑑𝑥
+ 2𝜏𝑠 = 0      (45) 

 

x is the coordinate in the rolling direction, h the strip thickness, 𝜎1 the tensile stress in the 

rolling direction, p the interface pressure and 𝜏𝑠 the shear stress.  

 

 
Figure 3 - Notations of the slab method. 

Source: Adapted from Shigaki et al, (2015). 

 

 The equations governing the different zones are given next: 

a) plastic slip zone: the equilibrium equation (45) is solved simultaneously with the 

elastic-plastic constitutive equations. A Tresca yield criterion is assumed: p + 𝜎1 = 

S (S is the plane strain yield stress of the strip). Reporting into Eq. (45) gives: 

 
𝑑𝑝

𝑑𝑥
=

𝑆

ℎ

𝑑ℎ

𝑑𝑥
+

2𝜏𝑠

ℎ
+

𝑑𝑆

𝑑𝑥
 (46) 

  

 The friction stress 𝜏𝑠, wherever sliding is present, is given by: 

 

𝜏𝑠 = ±𝜇𝑝 (47) 

 

𝒉𝒊
𝟐
 

𝒉𝒇

𝟐
 

𝑻𝒊 

𝑻𝒇 

𝝉𝒔 

𝝈𝟏 𝝈𝟏+d𝝈𝟏 



A study of the rolling load calculation models for flat cold rolling process 

CILAMCE 2016 

Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering 

Suzana Moreira Ávila (Editor), ABMEC, Brasília, DF, Brazil, November 6-9, 2016 

 
Figure 4 - The CPZ, Contained Plastic Zone, in the deformed contact arc. 

Source: Adapted from Shigaki et al, (2015). 

 

  

 Where "+" stands for the backward slip at entry and the "-" for the forward slip at exit. 

The Coulomb friction coefficient  is assumed constant. 

 In case regularization is applied, Eq. (47) is rewritten as: 

 

𝜏𝑠 = 𝜇𝑝.
𝑣𝑠

√𝑣𝑠
2 + 𝐾𝑟𝑒𝑔

2 . 𝑉𝑟𝑜𝑙𝑙
2

 
(48) 

  

 Vroll, the work roll velocity, is introduced to non-dimensionalize the regularization 

coefficient (from now on termed Kreg). The slip velocity vs is derived from volume 

conservation, neglecting elastic compressibility:  

 

𝑣𝑠 = (
ℎ𝑛

ℎ𝑥
− 1) 𝑉𝑟𝑜𝑙𝑙 (49) 

  

 Where hn and hx are the strip thickness at the neutral point and at point x, respectively. 

b) elastic zones at entry and exit of the roll bite: strip / roll slip occurs. Following Le 

and Sutcliffe (2001), the elasticity and equilibrium equation are reprocessed: 

 
𝑑𝑝

𝑑𝑥
≅ −

𝐸𝑠
∗

ℎ

𝑑ℎ

𝑑𝑥
+

𝜐𝑠

1 − 𝜐𝑠

2𝜏𝑠

ℎ
  (50) 

 

c) contained plastic zone (CPZ): the no-slip condition is used to calculate pressure 

gradient and shear stress for roll and strip. Equations (46) and (47) are replaced by: 

 
𝑑𝑝

𝑑𝑥
= −

𝐶1𝐸𝑠
∗

ℎ

𝑑ℎ

𝑑𝑥
+ 𝐶1

1 − 2𝜈𝑠

1 − 𝜈𝑠

𝑑𝑆

𝑑𝑥
 (51) 

 
(52) 

𝑻𝒊 𝒉𝒊
𝟐
 

𝒉𝒇

𝟐
 𝑻𝒇 
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𝜏𝑠 =
ℎ

2
[𝐶1

(1 − 2𝜈𝑠)

(1 − 𝜈𝑠)
− 1]

𝑑𝑆

𝑑𝑥
− 𝑆

𝑑ℎ

𝑑𝑥
−

𝐶1𝐸𝑠
∗

2

𝑑ℎ

𝑑𝑥
 

 

𝐶1 =   [
2 − 4𝜐𝑠

1 − 𝜐𝑠
−

(1 − 2𝜐𝑅)

(1 − 𝜐𝑅)

𝐸𝑠
∗

𝐸𝑅
∗]

−1

 
(53) 

  

 In the cases addressed here (steel rolls and strip), s = R (strip and roll Poisson’s 

coefficient) and Es* = ER* (plane strain Young's modulus for the strip and roll). Hence C1 = 

(1-)/(1-2)  1.8 so that Equations 51 and 52 give: 

 
𝑑𝑝

𝑑𝑥
= −

𝐶1𝐸𝑠
∗

ℎ

𝑑ℎ

𝑑𝑥
+

𝑑S

𝑑𝑥
 (54) 

 

𝜏𝑠 = − (𝑆 +
𝐶1𝐸𝑠

∗

2
)

𝑑ℎ

𝑑𝑥
 

(55) 

  

 Finally, S is very small (≈ 0.3%) compared with the other term of Eq. (55), hence: 

 

𝑞 = − (
𝐶1𝐸𝑠

∗

2
)

𝑑ℎ

𝑑𝑥
 (55b) 

  

 This slip-less zone begins where 𝜏𝑠(x) (Eq. 55b) first crosses 𝜏𝑠(x) for slipping condition 

(Eqs. 46-49). It ends at the second intersection point. This technique has been developed to 

forbid any increase of the local strip thickness inside the roll bite, as discussed above. 

 The system of equations is integrated by a 4
th

 order Runge-Kutta method (RK4). Each 

zone is discretized into 3000 slabs (i.e. space integration steps). 

 The work roll deformation model is based on the Influence Function Method, based on 

the superposition principle. The influence coefficients used here were developed by Meindl 

(2001); Krimpelstätter (2007) used them for temper rolling. These influence functions are 

computed for a diametrically symmetric loading, not exactly what occurs in strip rolling: the 

work roll / back-up roll contact is shorter and undergoes higher contact stress than the strip / 

work roll contact. However, Saint-Venant's principle is exploited: the contact arc length is a 

few mm, much smaller than roll diameter (400 to 600 mm), so that only the resultant load at 

work roll / back-up roll contact needs to be exact, not its distribution. 

 Generally, four types of terms can be computed, relating orthoradial and radial stresses to 

radial and orthoradial displacements. Krimpelstätter (2007) claimed that orthoradial terms are 

necessary for temper-rolling (very small reduction, hence very local load on the roll). In the 

following, only the coefficients connecting the radial displacement to the radial load are used, 

a sufficient approximation for the large reduction cases investigated here. 

 Displacement is calculated on a roll fraction roughly twice as long as the arc of contact, 

divided into 200 intervals so that  = 2.7 10
-4

 radian. 

 Another interesting concept introduced by Wiklund and Sandberg (2002) was the use of 

the “flattening risk factor”, β, calculated as below: 

 

 β =
𝐿

ℎ𝑖
 (56) 
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 Where L is the contact arc length given by Eq. 12 and hi is the sheet thickness at entry. 

The authors state that when the risk factor exceeds 10, severe roll flattening is expected 

(Lenard, 2007). 

 

3 METHODOLOGY 

 

 Using a Matlab’s programming language, both models were implemented, Bland and 

Ford (1948) (BF) and Alexander (1971) (AX). A cold rolling case was analyzed; it represents 

the last step when rolling thin metal sheets where the material is very work hardened. Only 

the friction coefficient was varied in this work. The main rolling parameters are stated in table 

1 below: 
Table 1 - Rolling cases parameters. 

Parameters Case 1 Case 2 

Sheet thickness at entry (mm) 0.355 0.355 

Sheet thickness at exit (mm) 0.252 0.252 

Working roll radius (mm) 277.5 277.5 

Material related coefficient AA 470.5 470.5 

Material related coefficient BA 175.4 175.4 

Material related coefficient CA 0.450 0.450 

Material related coefficient DA 8.900 8.900 

Material related coefficient EA 25.00 25.00 

Material Young’s modulus (GPa) 210.0 210.0 

Working roll Young’s modulus (GPa) 210.0 210.0 

Material Poisson’s coefficient 0.3 0.3 

Working roll Poisson’s coefficient 0.3 0.3 

Friction coefficient 0.020268 0.0305 

Front applied tension (MPa) 100.0 100.0 

Back applied tension (MPa) 170.0 170.0 

Accumulated strain 2.050 2.050 

 

 In both models (Alexander and Bland and Ford) the contact arc length was discretized in 

1501 segments in order to solve the problem. 

 In the Bland and Ford’s model the stopping criterion was that the relative error between 

the new found rolling load per sheet width and the last one should be smaller than 10
-4

. In this 

model, Simpson’s 1/3 rule was used to integrate the rolling load distribution over the contact 

arc length. 

 In the Alexander’s model the stop criterion was that the relative error between the new 

found total rolling load per unit width and the last one should be smaller than 10
-4

. In this 

model a fourth order Runge-Kutta routine is used to solve the first order differential equation 

and calculate the rolling load distribution over the contact arc length. Then, the Simpson’s 1/3 
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rule is used to integrate the rolling load distribution and calculate the rolling load per unit 

width. Lastly the rolling load per unit width is added to the elastic zones contribution, hence 

the total rolling load per unit width is found. 

 The following parameters were chosen to be compared for both cases: 

 Normal pressure distribution; 

 Deformed roll surface and deformed radius value; 

 Contact arc length; 

 Total rolling load/width; 

 

4 RESULTS 

 

4.1 Normal pressure distribution 

 

 The friction hill, as it may be referred to, is the normal pressure distribution in the roll 

surface due to the contact pressure over the contact arc. 

 Figure 5 represents the normal pressure distribution over the contact arc for case 1, using 

Bland and Ford’s, Alexander’s and the Noncircular’s model. 

 

 
Figure 5 - Normal stress distribution over the contact arc for case 1. 

 

 Figure 6 represents the normal pressure distribution over the contact arc for case 2, using 

Bland and Ford, Alexander and the Noncircular models. 
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Figure 6 - Normal stress distribution over the contact arc for case 2. 

 

4.2 Deformed roll surface and deformed roll radius 

 

 While Bland and Ford model’s and Alexander’s model consider the contact surface of the 

roll circular, the noncircular’s model outputs the approximated deformed shape of the roll 

surface until the exit point at x = 0 for Case 1. 

 Figure 7 represents the deformed surfaces for the upper roll for the simulation of case 1 

using the three models. 

 
Figure 7 - Contact surface over the contact arc for case 1. 
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 Figure 8 represents the deformed surfaces for the upper roll for the simulation of case 2 

using the three models. In this case, the arc of contact calculated from Noncirc gives a length 

much longer than those from BF and Alexander. 

 
Figure 8 - Contact surface over the contact arc for case 2. 

 

 

 Table 2 refers to the values found for the deformed roll radius for both circular models. 

 
Table 2 - Deformed roll radius. 

Deformed roll radius (mm) Case 1 Case 2 

Bland and Ford 888.27 1330.07 

Alexander 717.80 933.70 

 

4.3 Contact arc length and total rolling load/width 

 

 For Bland and Ford’s and Alexander models the contact arc length were estimated using 

Equation 12. 

 In another calculation, also using Equation 12, the deformed roll radius was used in order 

to estimate the contact arc length instead of the nominal roll radius. 

 The flattening risk factor was calculated using equation 56. 

 The total rolling load/width were calculated using Equations 14 and 44. 

 For the noncircular’s model, the data was supplied by the co-author Shigaki. 

 Table 3 refers to the results for contact arc length and total rolling load/width for the three 

models. 
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Table 3 - Contact arc length and total rolling load/width. 

Results Case 1 Case 2 

Bland and Ford   

Contact arc length (mm) 5.35 5.35 

Contact arc length using deformed radius (mm) 9.57 11.70 

Flattening risk factor 26.94 32.97 

Total rolling load/width (N/mm) 10272.04 17702.40 

Alexander   

Contact arc length (mm) 5.35 5.35 

Contact arc length using deformed radius (mm) 8.60 9.81 

Flattening risk factor 24.22 27.62 

Total rolling load/width (N/mm) 9094.90 13679.32 

Noncircular   

Contact arc length (mm) 10.60 13.70 

Flattening risk factor 29.90 38.60 

Total rolling load/width (N/mm) 10377.00 20622.00 

 

 

5 CONCLUSION 

 

 Although it gives a good estimation, it is known that the friction hill is an unrealistic 

representation of actual roll pressures (Pietrzyk, 1991). Comparing the Bland and Ford’s and 

Alexander’s pressure distribution with the noncircular one for Cases 1 and 2, it can be seen 

that there are significant differences. It is known that noncircular models estimate better the 

load distribution over the contact arc for sheet thickness smaller than 0.4mm (Lenard, 2007), 

as is the case here. In their research, Wiklund and Sandberg (2002) found that the use of 

cylindrical roll deformation models is valid when the sheet thickness is thicker than 0.4mm. 

Therefore, noncircular roll deformation models are necessary when the thickness goes below 

that value, which results to severe roll flattening and leads to a flat contact region inside the 

roll gap, as it can be seen in figure 7 and 8. The flattening risk factor can be used as well. 

 It was pointed out in some detail by Roychoudhuri and Lenard (1984) that Hitchcock's 

formula does not predict the deformed roll shape very well. Figures 7 and 8 shows that there 

are expressive differences between the deformed roll surface predicted by Hitchcock’s 

formula and the noncircular surface.  

 Comparing the values for the contact arc length, both models have shown good 

agreement with the noncircular values, but only when the deformed roll radius is used at 

Equation 12. Bland and Ford’s model gives output closer to the results from noncircular 

model, though Lenard (2014) states that the original roll radius should be used for. 

 As the cases tested represent a severe rolling condition, as confirmed by the calculation of 

the flattening risk factor (β>10), the total rolling load/width found using both models may 

disagree with the literature and with the noncircular model used. The noncircular model is 
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considered a more precise and exact model due to its better contact surface deformation 

modeling, but has the shortcoming of not being suitable for online use (except for Dbouk et 

al., 2014). For controlling purposes, a Bland and Ford model may be used for most cases in 

order to give good results for rolling load, with some correction factors calculated from tuning 

the rolling mill with the computer model. 
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