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Abstract. Programs that utilize the finite element method (FEM) have as purpose the virtual 

analysis of real problems, and there is a search for those with better results reliability at lower 

cost. Hence, the comparison between free and proprietary FEM platforms was proposed, using 

data from an experimental test to feed the analysis and compare it with the numerical results. 

It has been noted that in the studied point the variations in relation to experimental data were 

below 15% and under 6% in comparison to analytical data. Consequently, as to the accuracy 

of static analysis results, it was possible to verify that free programs have similar reliability as 

proprietary ones. 
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1  INTRODUCTION 

The finite element method (FEM), as Rao (2004) states, ascended from the need to solve 

highly complex problems, exchanging these for simpler ones, but with similar results. Felippa 

(2004) notes that the FEM was only to have a commercial application in industry and in the 

solving of engineering problems in the late fifties and early sixties, with the developer Professor 

Ray Clough. Barkanov (2001) declares that in the beginning, such software was limited to 

computers in the state of the art, which were held only by large enterprises and aerospace, 

automotive, military and nuclear industries. However, in the late seventies, the FEM tools began 

to gain popularity due to technological development in the information area. 

According to Hughes (2000), since the appearance of the first FEM program, which had a 

free distribution policy, several other commercial software based on this arose. Rolandsson et 

al. (2010) and Gaff et al. (2012), emphasize advantages attributed to free software due to its 

applicability in business and academia, and also for their low cost, ease of editing and support 

provided by user communities. Galeano et al. (2007) says that the solution of the complex linear 

system, which is a domain of multiple degrees of freedom, requires high processing capabilities, 

which inflates the cost for the method implementation; which shows another advantage of free 

programs. Its application allows a utilization flexibility, the FEM dissemination and 

consequently the reduction of licensing costs. 

Brito (2011) shows in his study of free software, evidence of the importance of the search 

for knowledge and digital inclusion. Stefanuto and Salles (2005) addresses the philosophy of 

free software, which challenges the software industry for committing appropriation of 

knowledge. In this context, there is a loss attributed to the use of proprietary software by 

restricting the expansion of knowledge, whereas the free software distribution enables the 

exchange of knowledge among users, all of which can contribute to development of their own 

code; enhancing the knowledge exchange. 

This paper aims to compare free and proprietary software, applied to the FEM, assessing 

their applicability in solving physical engineering everyday problems. The comparison was 

made for static analysis, with reference to experimental results. Thereupon, the results obtained 

are presented and the advantages and disadvantages associated with the use of each software 

are displayed. 

1.1 FEM utilized software 

Present in this article one finds the comparison between five different FEM programs, 

namely: CalculiX, Elmer, Z88, OptiStruct and NX Nastran; where the first three are free and 

the later proprietary. Dhondt and Wittig. (2016) claims that the CalculiX is a free program 

developed by Guido Dhondt and Klaus Witting, which enables the construction, calculation and 

post-processing of three-dimensional structural problems by MEF. 

According to CSC - IT Center for Science (2016), Elmer is a program initiated in 1995, 

that turned into open source in 2005. The program's aim is to be a platform for multi-physics 

simulations, having structural mechanics, fluid dynamics, electromagnetics, heat transfer, 

acoustics and others solution modules. 

Rieg (2015) reports that the Z88 was created at the University of Bayreuth, Germany, and 

is a complete FEM platform, having solvers, pre- and postprocessors. This, however, does not 

have an open license and it is only free distributed. It has a friendly and easy to use interface, 

managing to perform linear and nonlinear static, free vibration, and thermal analysis. 
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2  METHODOLOGY 

In order to grant adequate reliability, parameters of nine cantilever tests were used in the 

comparison between the FEM platforms. Three bars of the same material and of similar 

geometry were machined. Two rosette gauges were placed on each one of the bars, these being 

positioned in a region that is greatly influenced in flexion, however, away from a possible FEM 

singularity zone. After the surfaces and strain gages preparation, installation was performed at 

45 mm from the second constraint hole. The tests were performed with the bars constrained by 

two screws and another was applied on the free end, for fixing the masses as shown in Fig. 1. 

Three masses were selected (a: 0.271 kg, b: 1.338 kg and c: 2.502 kg), they were applied one 

at a time, making at least sixty seconds of data gathering each time. 

 

 

Figure 1. Experimental tests 

The experiments provided stresses for comparison with the theoretical and numerical 

values, and fed simulations with the Poisson ratio and bulk density of the material. To construct 

the model, the three bars were dimensionally checked, accordingly to the JCGM (2008), thus 

the measures of a virtual medium bar was achieved. Hence, with all data necessary to carry out 

the analytical and FEM analysis, the theoretical and numerical portion of the work began. 

The analytical calculus was held as shown in Beer, Johnston and DeWolf (2009). 

In order to reduce inequities between programs, a single mesh with the same boundary 

conditions for all analyzes was used. A convergence study, with elements between 10 mm and 

0.5 mm, was conducted to determine the optimum element size. Through this study and 

targeting an improvement in results and computation time, a mesh adopting symmetry 

conditions was created, using second order tetrahedral elements with 1 mm dimensions. 

After a boundary conditions review, it was concluded that as the objective of this study 

was the stress comparison, the consideration that the bar was constrained only in the screw 

holes proved to be appropriate; what was done directly to the nodes, without using rigid 

elements. The restriction was made for three translational degrees of freedom for the bolt holes, 

translation in Z axis and rotation of X and Y in the symmetry face; and the mass load value in 

Newtons divided equally in the load application hole. 

Relaying on the work of Galeano et al. (2007) and practical experience of the authors, it 

was decided to use for the comparison OptiStruct and NX as proprietary and CalculiX, Elmer 

and Z88 Aurora as free programs. After the solution of the three cases for each of the five 

platforms, the results were acquired and worked up in order to quantitatively compare them. 

a. b. c. 
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3  RESULTS AND DISCUSSION 

In these topic the results obtained during the work are presented. 

3.1 Beam dimensional analysis 

The dimensional analysis resulted in the bar in Fig. 2 and its measures are shown in Table 

1. In the row "Real" the dimensions of the physical bar are presented, and in the "FEM" row 

measures adopted in the virtual model are displayed. 

 

 

Figure 2. Virtual medium bar 

 

Table 1. Real and FEM beam dimensions 

 A B C D E F G 

Real (mm) 570 ± 3 38,00 ± 0,29 20,05 ± 0,76 20,32 ± 0,52 6,27 ± 0,27 12,50 ± 0,20 7,00 ± 0,23 

FEM (mm) 570,0 38,0 20,0 20,0 6,3 12,5 7,0 

 

Subsequent to the dimensional analysis, the mass of the three bars were measured and with 

the coupling of these results to the bars volume, the material bulk density of 7879 ± 118 kg/m³ 

was obtained. 

3.2 Experimental static analysis 

The rosettes provided the bars specific deflection, and with the 0° and 90° direction, the 

Poisson's ratio of 0.26 was found. With these data the von Mises stress was achieved. Hence, 

the reference stresses for the FEM programs were 5.07 ± 0.31 MPa for the experiment "a", 

26.88 ± 1.10 MPa for the "b" and 50.13 ± 1 47 MPa for test "c". 

3.3 Mesh convergence study 

The second order tetrahedral mesh convergence study, with elements between 10 mm and 

0.5 mm, generated in NetGen is shown in Fig 3, which compares the results with the analytical 

response. The graph shows the variation of the bar stress between the fixing and loading screws 

when subjected to a loading in its free end; for each one of the six meshes and for analytical 

data. Due to the singularity problem presented by FEM stresses calculation in corners, the stress 

values until a distance of 20 mm were ignored. 
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Figure 3. Elemental stress result along bar for same load and different meshes 

Observing the results on the bar’s region of interest, in meshes with elements sizes of 5 and 

10 mm errors were higher than 60.0% and 18.9% for 2.5 mm elements. The 0.5 mm elements 

mesh showed the best results, 6.0% error, and 1 mm the second best (8.95%). Due to this 

difference of less than 3.0% and processing costs, the latter was adopted, and at it symmetry 

was applied, improving the results, 7.8% error, and simplifying processing. 

 

Figure 4. FEM mesh generated for all platforms through NetGen 

Hence, the final mesh was achieved with 382,077 second order tetrahedral elements with 

1 mm and 576,264 nodes, as presented on Fig. 4. In this the blue portion denotes the nodes that 

have all degrees of freedom restricted, orange are the symmetry condition nodes and in red are 

the load application ones. 

3.4 Calculated stresses via FEM programs 

Using the experimental data, the mesh created and elastic modulus of 200 GPa (ASM 

International, 2005), the simulations were held and the stress distribution along the bar was 

reached. The stresses acquired in OptiStruct, NX and CalculiX were nodal stresses, oppose to 

Elmer and Z88, whose elemental stresses were obtained. In the graph of Fig. 5, one finds these 

values at the upper side along the bar symmetry profile, starting from the second fixing hole 

until the load application hole. Three groups of curves are presented a, b and c, where these 

relates to the masses used on the experiments, as stated earlier in this paper. 

 

Figure 5. Stress at the upper side along the bar symmetry profile 
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Due to the difficulty in interpreting the results, thanks to the low variance in results, a 

comparison between the data was then performed. The divergence between the calculated 

analytical and FEM stress in relation to the experimental values at a distance of 45 mm, strain 

gage position, are presented for the three experiments in Table 2. 

Table 2. Divergence between calculated analytical and FEM data relative to experimental stress 

 Analytical OptiStruct NX CalculiX Elmer Z88 

a 2.82 % 3.04 % 3.10 % 3.04 % 8.50 % 8.52 % 

b 9.57 % 9.77 % 9.83 % 9.77 % 14.86 % 14.88 % 

c 9.33 % 9.53 % 9.59 % 9.53 % 14.63 % 14.66 % 

4  CONCLUSION 

From the research that has been conducted, one concludes that free FEM programs can be 

so assertive as proprietary programs regarding linear static simulations. In Table 2 one perceives 

that in all cases the deviation was less than 15% in comparison to the experimental result, noting 

that Elmer and Z88 got a greater divergence because the elemental stress was utilized, instead 

of nodal. It’s also notable that when comparing the results from FEM against the analytical, the 

divergence in all three cases - a, b and c - were equal for each software; 0.22% for OptiStruct; 

0.28% for NX; 0.22% for CalculiX; 5.85% for Elmer and 5.86% for Z88. These comparisons 

endorse the applicability of free FEM software. 

The use of FEM programs is increasing, and these are no longer limited to engineering 

applications. For instance, Lotti et al. (2006) points out how FEM can be applied in the field of 

Orthodontic analysis. Aiming at a greater method popularization, it is important to spread the 

usage of free FEM software as a mean to enable researches of all areas to benefit of such tool. 
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