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Abstract. The necessity of computational tools to predict the long-term behavior of bone im-
plants and prosthetic devices in orthopedics, has a tremendous importance, considering pop-
ulation aging as a world wide problem. However, specifically in the hip prosthesis research
area, the bone density growth process modeling using the finite element method (FEM) is still a
challenging task. In this work, we investigate the bone density growth based on growth and re-
modeling theories for biological materials and its treatment using continuum mechanics. There
are presented the kinematics, the balance laws for mass and linear momentum and the con-
stitutive equations for bone density growth, along with the governing equations resulting from
the coupling of the mass and momentum balances. We present an example considering the
healthy and the prosthetic femur submitted to loads and bone formed by cortical and spongious
tissues, which was carried out using daily physical activities load cases, for locate possible
growth and resorption. In addition, a preliminary density growth model to locate bone growth
or reabsorption zones for the intact femur and its post-operative condition is presented.
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1 INTRODUCTION

Total Hip Arthroplasties (THA) implantations associated to degenerative and traumatic

hip conditions such as osteoarthritis, post-traumatic arthritis, and hip fractures, reaches about

500000 procedures performed annually in the UK and the USA, and are estimated in more

than one million worldwide (Frenzel et al., 2015; Taylor and Prendergast, 2015; Pivec et al.,

2012). Despite THA shows excellent clinical outcomes and is considered a successful and cost-

effective procedure to relieve pain and restoring hip joint (Pivec et al., 2012), some prosthesis

fails, most commonly due to aseptic loosening secondary to wear or dislocation (Smith et al.,

2012; Malak et al., 2014). Therefore, the development of computational assessment tools with

the capability to estimate bone growth and resorption when prosthetic devices are used has a

remarkable importance, since these processes could determine the implant success or failure.

In this scenario, the FEM has been playing a key role, being used to study and evaluate the

mechanical behavior of prosthetic devices (Taylor and Prendergast, 2015; Prendergrast, 1997),

and to improve our understanding on the fundamentals of the mechanics of biological processes

such as growth and remodeling (Taber, 1995; Ambrosi et al., 2011; Jones and Chapman, 2012;

Menzel and Kuhl, 2012). Through the multiplicative decomposition of the deformation gra-

dient, the biological growth is associated with soft tissues and remodeling with hard tissues,

while the former are treated kinematically, considering changes in volume at constant density

(Rodriguez et al., 1994; Kuhl, 2014; Menzel and Kuhl, 2012; Ambrosi et al., 2011), the latter

are associated with changes in properties at constant volume (Taber, 1995; Ambrosi et al., 2011;

Jones and Chapman, 2012; Menzel and Kuhl, 2012), such as internal structure, strength or den-

sity (Taber, 1995). In density growth case, focus of this work, the approach is of a constitutive

kind using continuum nonlinear mechanics for hard tissues (Ambrosi et al., 2011; Menzel and

Kuhl, 2012).

The objective of this work is the presentation of a density growth model theory, follow by

the FEM implementation of a preliminary model to simulates for a healthy femur and for the

femur with an implanted prosthesis (THA), submitted to loads equivalent to daily physical ac-

tivities, based on growth and remodeling theories for biological materials. A model considering

the effect of daily physical activities for healthy and for a prosthetic femur is also presented. We

adopted a nonlinear formulation for large deformations using the isotropic functional adaptation

approach proposed by (Harrigan and Hamilton, 1993), used for bone density growth applica-

tions (Kuhl and Steinmann, 2003b; Pang et al., 2012; Waffenschmidt et al., 2012).

2 THEORETICAL FRAMEWORK

Let consider a body B capable of changing its density due to a mechanical stimulus, where

two coupled processes are taking place: a mechanical one, driven by the body deformation due

to loads and a biological one, related to density changes in an energy-driven format due to a

mass source.

Body motion is given by the vector field χ, consequently, v = χ̇ is the velocity field. Map-

ping x = χ(X, t) is considered one-to-one in X for fixed t, so invertible then: X = χ−1(x, t),
being X and x, the position vectors referred to reference and current configurations. Defor-

mation gradient is defined as F = ∇χ and the volumetric Jacobian of the deformation is the

determinant of F, being: J = det(F). Dot symbol and ∇ operator denote material time deriva-

tive and gradient of a quantity. The displacement u of X is defined as u(X, t) = χ(X, t) − X,
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Suzana Moreira Ávila (Editor), ABMEC, Braslia, DF, Brazil, November 6-9, 2016



J. O’Connor, L. A. Borges, F. P. Duda, A. G. B. da Cruz

where its gradient is related with F through F = I + ∇u, being I the second-order identity

tensor. Density growth process is regulated by the rate of the density scalar field ρK .

2.1 Balance equations

In the mass balance1, the rate change of mass due to volumetric mass sources, neglecting

mass fluxes (Kuhl et al., 2003; Pang et al., 2012; Waffenschmidt et al., 2012), is given by:

ρ̇K = ΓK (1)

expressing the equilibrium of the rate change of mass ρ̇K with the mass source ΓK , being ρK
the mass density.

The linear momentum balance, balances the rate change of momentum ˙ρKv with the mo-

mentum contributions of traction, body forces and mass source (Kuhl and Steinmann, 2003a;

Epstein and Maugin, 2000; Lubarda and Hoger, 2002), hence:

˙ρKv = DivP + b + ΓKv (2)

being v the velocity, b the body force and P the first Piola-Kirchhoff stress tensor. Div denotes

the divergence of a quantity. Considering (1) in (2), the linear momentum balance gives:

ρK v̇ = DivP + b (3)

2.2 Density growth constitutive equations

In the mass balance of (1), the mass source term ΓK has the following form (Harrigan and

Hamilton, 1993):

ΓK = c
([

ρK
ρK∗

]−m

ψK − ψK
∗
)

(4)

being ρK
∗ the initial density, ψK

∗ the stimulus attractor (Carter and Beaupré, 2007), considered

as the energy saturation value for density evolution (Waffenschmidt et al., 2012), m the bone

adaptation process exponent (Harrigan and Hamilton, 1993), and c the adaptation process co-

efficient (Kuhl et al., 2003), assumed equals to unity. The strain energy density form adopted

is:

ψK =

[
ρK
ρK∗

]n
ψK

neo (5)

with the relative density term [ρK/ρK
∗]n used for open-pored cell materials (Carter and Hayes,

1977; Gibson and Ashby, 1982), where n is the porosity exponent.

By neglecting tissues viscous effects for short time-scales (seconds or minutes order) and

assuming that growth occurs for large time-scales (weeks or months), its constitutive response

can be considered as hyperelastic (Kuhl and Steinmann, 2003b). Accordingly, the strain energy

function considered is of a Neo-Hookean type (Attard, 2003):

ψK
neo =

[
λ

2
ln2J +

μ

2

(
FTF : I − 3− 2 ln J

)]
(6)

being λ and μ the Lamé constants and FT the transpose of F.

1Mass and momentum balances are presented in the local form referred to the reference configuration.
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Piola-Kirchhoff Stress can be obtained through the derivative of the strain energy with

respect to the deformation gradient, hence, using (5) and (6):

P =
∂ψK

∂F
=

[
ρK
ρK∗

]n [
(λlnJ − μ)F−T + μF

]
(7)

being F−T the inverse of the transpose of F.

3 GOVERNING EQUATIONS AND BOUNDARY CONDITIONS FOR
DENSITY GROWTH

The governing equations are obtained coupling the biological problem, defined through the

mass balance, with the mechanical problem defined through the momentum balance, hence:

ρ̇K =
1

2

[
ρK
ρK∗

]n−m [
λln2 (J) + μ

[
FTF : I − 3− 2 ln (J)

]]
− ψ∗

K (8)

0 = Div

([
ρK
ρK∗

]n [
(λlnJ − μ)F−T + μF

])
(9)

considering a quasi-static process and neglecting body forces.

The boundary conditions that supplement the above governing equations can be established

as follows: Let the body B be given with loading surface tractions τ̄ defined on ∂τB, and with

prescribed displacements ū = 0 on ∂uB, then, Neumann and Dirichlet boundary conditions

(BC) for the mechanical problem are, respectively

P(X)n(X) = τ̄(X), X ∈ ∂τB
u(X) = ū(X), X ∈ ∂uB

(10)

where n is the unit normal to ∂τB. Prescribed displacements ū and prescribed tractions τ̄ are

given functions on ∂uB and ∂τB which are respectively, complementary disjoints of ∂B. Within

the mechanical problem is embedded the biological density growth boundary value problem

given by the mass balance (1), with the initial condition:

ρK(X, 0) = ρK
∗ (11)

4 NUMERICAL APPLICATION

To solve the theoretical model presented, we have used COMSOL Multiphysics v 4.4. The

goal is to solve the incremental problem of density evolution due to the mass source ΓK for

an hyperelastic material, embedded into the mechanical problem, which is coupled to density

through the deformation field generated in response to the applied load. The coupled problem

given by the nonlinear system equations formed by (8) and (9), was solved numerically using

the Solid Mechanics mode for the mechanical problem, and using the General Form PDE for

the biological problem of density evolution. The strain energy function was reprogrammed

including the relative density term in the Neo-Hookean hyperelastic strain energy. A function

for the mass source term ΓK was also implemented.
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The model was discretized with Lagrangian2 quadratic elements to interpolates displace-

ments u and the density ρK . For the time discretization, a General-α backward differentiation

method was used (Chung and Hulbert, 1993). The MUMPS (MUMPS, 1996) solver was used

to solve the discrete system resulting from each time step discretization with residual tolerance

levels of 10−4, which is considered sufficient since similar solutions were obtained at lower

tolerance levels. Plane stress condition was adopted.

5 GEOMETRICAL MODEL

The geometrical two-dimensional (2D) model for healthy femur (HF) and for the femur

with an implanted prosthesis (FP) is shown in Fig. 1 corresponding to a 2D slice in the mid-

frontal plane for healthy and prosthetic femur.

Figure 1: Two-dimensional geometrical model of HF and FP, relevant dimensions, characteristics and main
anatomical landmarks. a) HF: total length, neck-shaft angle and head diameter. b) HF 2D model: medullary
canal diameter and cortical wall thickness at the mid-diaphysis (by medial and lateral). c) FP 2D model:
prosthesis stem length and size (diameter) and head diameter. (All dimensions are in millimeters)

Cortical and spongious tissues contours were obtained in previous works (O’Connor et al.,

2011), and compared with femur anatomical standard dimensions of a human adult (Husmann

et al., 1997). Tissues contours Splines were converted to 2D surfaces to generate cortical and

2Lagrangian quadratic: Lagk(T ), k = 2, being k the polynomial degree of the element shape function and T
the mesh type: triangular in this case (COMSOL, 2013)
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spongious domains. The prosthesis is considered as conceptual (cementless type), with typi-

cal dimensions according to specialized literature (Chandran et al., 2010; Gabbar et al., 2008).

The tissues and prosthesis (stem and head) geometrical domains were generated using soft-

ware Solidworks version 2013 and a coupled structure-structure model was constructed using

boolean operations in COMSOL Multiphysics.

6 RESULTS AND DISCUSSION

6.1 Example 1: Dynamic model without considering density growth

Firstly, it was implemented a FEM model without considering density growth for HF and

FP, submitted to three daily physical activities: Normal walk (NW), going up stairs (US) and

going down stairs (DS), to locate high-stress concentration zones that could be possible density

growth areas. Loads conditions and model meshes are shown in Fig. 2. Zero displacements BC

were considered in femurs distal ends (Fig. 2a.1). Loads were applied on HF and FP heads (Fig.

2a). Load functions were taken from public database Orthoload (Bergmann, 2009), considering

x and y components for the three load cases (Fig. 2a.2). Abductor muscle force was considered

of 703 N applied on the greater trochanter (Kuhl and Balle, 2005; Carter and Beaupré, 2007).

Figure 2: Loads, boundary conditions, and meshes for HF and for FP. a) Proximal part of the model do-
mains, applied load regions for daily activities loads and abductor forces (Fab), with α = 28◦. a.1) Dirichlet
BC of zero displacements in HF and FP distal ends. a.2) Daily activities loads values for: NW, US and DS.
Load functions values were taken from public database Orthoload (Bergmann, 2009), with permission. b)
Meshes of HF and FP proximally. b.1), b.2) Meshes details.
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Table 1: Material properties for cortical and spongious tissues and for prosthesis biomaterials

E ν λ μ ρ σyc σyt

(MPa) (MPa) (MPa) (kg/m3) (MPa) (MPa)

Cortical bone 16000 0.3 9230 6153 1800 115 121

Spongious bone 2000 0.3 1153 769 600

Ti6Al4V alloy 110000 0.3 63461 42307 970 880

Co-Cr alloy 230000 0.3 132692 88461

E, ν: Young modulus and Poisson ratio. σyc, σyt: Compressive and tensile yield strength

Cortical and spongious tissues were considered as hyperelastic, homogeneous and isotropic

(Kuhl and Balle, 2005; Cowin and Doty, 2007; Goldstein, 1987) and prosthesis materials, as

linear elastics and isotropic, using a Titanium alloy and a Cobalt-Chromium alloy for stem and

head, respectively (Niinomi and Nakai, 2011; Wong and Bronzino, 2007), material properties

are shown in Table 1. The model was discretized in 27712 elements (Fig. 2b), and solved for

118914 degrees of freedom (DOF), after two previous mesh refinement steps until convergence

was achieved. The total time for simulations were: tNW = 1.103 s, tUS = 1.593 s and

tDS = 1.439 s, corresponding to 100% of the entire cycle of each load case (Bergmann, 2009).

The time step used was Δt = 0.01. Bone-prosthesis interface was considered as fully bonded

(Jonkers et al., 2008; Bougherara et al., 2010).

6.2 Dynamic model results

The interest of this work is focus in cortical bone tissue since it is the main responsible

for prosthesis stem fixation. However, some results concerning prosthesis will briefly discuss.

Results were analyzed and there were found three main critical regions, coincident in location

for the three load cases. Region 1: located in medial cortical wall HF mid-diaphysis, region 2:

in medial cortical wall FP mid-diaphysis, and region 3: in HF neck as shown in Fig. 3, where

it can be found the Von Mises stress distribution of analyzed load cases at times: tNW = 0.55
s, tUS = 0.81 s and tDS = 0.8 s, for a NW, US and DS respectively, where maximum stresses

were attained. Additionally, a region 4 located in FP neck, was included in the analysis to

compare critical regions for both situations, healthy and post-operative.

Higher stresses were found in HF over the medial cortical wall from mid-diaphysis to prox-

imal for NW due to a higher bending moment, when compared with US and DS, where a pre-

dominant compressive situation leads to stresses concentration in the neck, also is observed,

that the higher stresses were located in femurs necks for the healthy condition for the three load

cases (Fig. 3a-c). In contrast, in FP, the higher stresses were found in mid-diaphysis, being the

most critical situation for NW, due to a higher bending moment (Fig. 3d-f). In FP neck, an

unloading situation was detected proximally due to stress shielding, being critical for US.

There are also plotted the stresses along HF and FP medial inner and outer cortical walls

(Fig. 3 right panels), from a point p located proximally in femurs necks (at lesser trochanter

height) to a point d located in the mid-diaphysis. As shown in Fig. 3, stresses were higher

in FP medial cortical wall mid-diaphysis (region 2) than in HF analogous region for the three
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Figure 3: Von Mises stress distribution at physical activities times where maximum stresses were attained,
critical regions, and stresses along medial cortical walls from proximal to distal (outer and inner cortical
stresses from point p to point d), in HF (left) and FP (right) for: a), d) NW at t = 0.55 s (the red arrows
describes the displacements vector field); b), e) US at t = 0.81 s; c), f) DS at t = 0.8 s. Being 1, 2, 3 and 4,
the critical regions.
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load cases, indicating that for a prosthetic condition, bone is significantly overloading (in about

10 MPa), in the outer cortical wall due to a bending moment and at inner cortical wall due

to the prosthesis distal tip load transferring contribution. We hypothesized that these critical

areas (Fig. 3d-f), could be one of the causes of periprosthetic fractures that commonly occurs

underneath of implanted prosthesis (Frenzel et al., 2015; Fleischman and Chen, 2015; Drexler

et al., 2014).

Regarding FP neck (region 4, Fig. 3d-f), stresses were lower (in about 17 MPa) than in

the analogous HF region for the three load cases due to the unloading situation proximally. It

was also significant that stresses over FP medial cortical wall were higher and more uniformly

distributed (through the cortical thickness) for DS than for NW and US activities (Fig. 3d-f),

suggesting that DS activity may stimulate bone in the medial cortical wall and may reduce the

unloading situation in FP proximally. Maximum stresses (Fig. 3) were below cortical bone

compressive and tensile yield strength values (Table 1), without compromise bone integrity. In

the prosthesis, most significative stresses were found in the neck between 70 and 97 MPa (Fig.

3d-f), in agreement with (Bougherara et al., 2010), reporting values between 85 and 75 MPa.

Stresses obtained, were below the titanium alloy compressive and tensile yield strength (Table

1). Even though a fatigue analysis is required, however, fatigue is out the scope of the current

work.

In addition, four probes were positioned in the regions of interest to analyze stresses and

strains behavior through the time for the three load cases (not presented in the paper). From

the analysis of intervals: 10 - 50% NW, 15 - 55% US and 50 - 90% DS, stresses were signifi-

cantly higher in FP region 2 than in HF region 1 all over the referred intervals, confirming, that

bone in the mid-diaphysis is submitted to higher stresses levels post-operatively (7 - 10 MPa

overloaded), being NW activity, the most critical situation. Regarding femoral neck, for pros-

thetic condition (region 4), stresses were significantly lower than for healthy condition (region

3), confirming the unloading situation (of about 13 - 17 MPa), found previously. Maximum

stresses and strains found at: 50% NW, 52% US and 53% DS, are shown in Table 2.

This part of the study has examined the biomechanical behavior of healthy femur and its

post-operative condition after a THA surgery for three daily physical activities. From a quali-

tative point of view, there were found higher stresses in compressed cortical wall medially than

in tensed cortical wall laterally, in agreement with (Wagner et al., 2010; Jonkers et al., 2008).

Also, Von Mises stress results reproduced the typical bending stress distribution reported in

literature with maximum values located in mid-diaphysis medial cortical bone for healthy and

prosthetic condition (Piao et al., 2014; Wagner et al., 2010; Jonkers et al., 2008). However, di-

rect comparisons with other authors reports are often difficult, due to the load levels variability

in numerical and experimental studies and material properties and boundary conditions adopted

in numerical studies.

6.3 Example 2: Density growth model

In this example is implemented a preliminary density growth FEM model for HF and FP

submitted to loads equivalent to the physical activities studied previously, following the for-

mulation presented in sections 2 and 3, in order to analize bone growth and resorption in the

regions of interest for the healthy and post-operative femur condition.

A multiple step load type was considered (Kuhl and Steinmann, 2003b; Waffenschmidt
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Table 2: Maximum stresses and strains in HF and FP critical regions at 50% NW, 52% US and 53% DS of
physical activities

Stress (MPa) Strain (με)

NW(50%) US(52%) DS(53%) NW(50%) US(52%) DS(53%)

HF 1 40.36 24.00 33.00 1120 677 906

FP 2 46.00 32.80 43.14 1250 899 1180

HF 3 42.50 41.17 52.00 1117 1180 1430

FP 4 29.00 28.00 35.40 800 788 972

με: microstrains

et al., 2012), acting on HF and FP as an average daily load, in a range of a NW. The multiple

step load was considered of 1850 N, applied in femur and prosthesis heads as shown in Fig. 4a

(250 N increment was added to include DS load levels). Cortical and spongious tissues were

treated as hyperelastic, homogeneous and isotropic.

The corresponding density variables were defined as ρKc and ρKe and computed using the

density evolution expression from the governing equations of section 3. The corresponding

mass sources ΓKc and ΓKe, were implemented (see section 2.2). Initial density was ρK
∗ =

600 kg/m3 for both tissues, under homogeneous density assumption at simulation start. The

stimulus attractor considered was ψK
∗ = 0.01 MPa according to (Carter and Beaupré, 2007;

Kuhl and Balle, 2005; Kuhl et al., 2003; Kuhl and Steinmann, 2003b) and the parameters values

were n = 2, m = 3 (Waffenschmidt et al., 2012; Kuhl and Balle, 2005; Kuhl et al., 2003; Kuhl

and Steinmann, 2003b). Prosthesis materials were treated as in the previous example (Table

1). Also, the previous example model mesh was adopted (Fig. 2b). Simulation total time was

t = 40 dimensionless time units, and the time step for the incremental problem was Δt = 0.01.

6.4 Density growth model results

In this work is only analyzed the density behavior in the regions of interest found in the

previous example. Density evolution in these regions was measured over time (Fig. 4b), ex-

hibiting a relaxation tendency to biological equilibrium, where each load increases is followed

by changes in density towards to a new equilibrium state for the loading history τ̄ , as obtained

in (Kuhl and Steinmann, 2003a,b; Waffenschmidt et al., 2012).

An increase of density in high-stress concentration areas and a bone resorption situation

associated to low-stress regions were obtained, consistent with (Kuhl and Balle, 2005; Jonkers

et al., 2008; Avval et al., 2015), also this phenomenon was confirmed since localization of

significative growth and resorption regions coincide with critical stresses regions found in the

previous example. At simulations end, density values obtained for HF, were in agreement with

values reported by (Ashman and Rho, 1988; Natali and Meroi, 1989).

The nonlinear behavior and relaxation behavior of density towards to biological equilibrium

is observed in Fig. 4b. Each load increase of τ̄ is followed by changes in density converging

to a new equilibrium state, where biological stimulus equals the attractor ψK
∗, mass source

ΓKc vanishes and ρKc undergoes no further changes in cortical tissue, providing to HF and FP
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Figure 4: Density prediction for HF and FP, multiple step load and density evolution in the regions of
interest. a) Multiple step load. b) Density evolution (where 1, 2, 3 and 4 are the regions of interest).

the optimal density distributions to support the load environment simulated, in agreement with

(Kuhl and Steinmann, 2003b; Waffenschmidt et al., 2012; Pang et al., 2012).

Finally, the proposed model results analysis is in a preliminary research stage. However,

density growth results shown good agreement with previous results presented by other authors

and the model is shown promissory.

7 CONCLUSIONS

A density growth model for hard tissues based on growth and remodeling theories was

presented in this work and was implemented in a FEM software.

For the model considering physical activities, results shown that for post-operative con-

dition: (i) Bone is significantly overloading in the mid-diaphysis, situation that may lead to

peri-prosthetic fractures. (ii) Going down stairs activity is suggested to stimulate bone and to

reduce the unloading situation detected proximally.

For the density growth model implemented, preliminary results obtained for bone density

evolution due to loads are in agreement with literature.

The proposed density growth model in conjunction with the dynamical model for daily

physical activities loads, represents a potentially computational assessment tool for orthopedic

surgeons, to evaluate the behavior of the healthy femur and its post-operative condition after a

THA procedure.
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Suzana Moreira Ávila (Editor), ABMEC, Braslia, DF, Brazil, November 6-9, 2016



 
 
 
 
 
 
 

Bibliography 
 
 
 
 
Ambrosi, D., Ateshian, G., Arruda, E., Cowin, S., Dumais, J., Goriely, A., Holzapfel, G., 

Humphrey, J., Kemkemer, R., Kuhl, E., Olberding, J., Taber, L., Garikipati, K., 2011. Per- 
spectives on biological growth and remodeling. Journal of the Mechanics and Physics of 
Solids 59, 863 – 883. 

 

Ashman, R.B., Rho, J.Y., 1988. Elastic modulus of trabecular bone material. Journal of Biome- 
chanics 21, 177–181. 

 

Attard, M.M., 2003. Finite strain isotropic hyperelasticity. International Journal of Solids and 
Structures 40, 4353 – 4378. 

 

Avval, P.T., Samiezadeh, S., Klika, V., Bougherara, H., 2015. Investigating stress shielding 
spanned by biomimetic polymer-composite vs. metallic hip stem: A computational study 
using mechano-biochemical model. Journal of the Mechanical Behavior of Biomedical Ma- 
terials 41, 56 – 67. 
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