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Abstract. This paper studies the dynamic buckling of thin and thick circular and 
annular plates on elastic foundation subject to nonconservative forces. The initial elastic, 
geometric stiffness and mass matrices are  obtained using the Rayleigh-Ritz method. The 
approximation functions for displacements are polynomials in the radial direction combined 
with trigonometric functions in the circumferential direction, enriched by higher order 
polynomials without inclusion of additional nodes. The effect of load displacement-
dependence is introduced in the so-called load matrices, which are obtained from equilibrium 
considerations in the case of nonconservative behavior. The model was implemented in 
MAPLE. The examples present comparisons illustrating the effect of shear deformation, 
rotatory inertia and elastic foundation on flutter loads. 
Keywords: Circular plate; elastic foundation; stability of circular plates; nonconservative 
tangential follower loads; Rayleigh-Ritz method  
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INTRODUCTION 
The dynamic stability of structures subjected to nonconservative forces is a subject of 

classical and present research in  the areas of civil, mechanical and aerospace engineering..  
The case of Euler-Bernouilli beams on elastic foundation was studied by Smith and 

Herrmann (1972). They investigated the phenomenon of the critical flutter load of a column 
supported entirely by an elastic foundation of varying constant and subjected to an axial load. 
They concluded that, surprisingly, the flutter load is independent of  the rigidity of the elastic 
foundation in the case of follower loads. More recent research (Jae-On Kim et al., 2008) 
introduced a consideration of a mass on a cantilevered beam totally and partially attached to 
an elastic foundation and subjected to a distributed follower force.  

This paper addresses the case of circular and annular plates subjected to in-plane forces 
which remain tangent to the deformed surface (a particular type of nonconservate loading). 
The presence of an elastic foundation of Winkler type is supposed to affect differently the 
flutter load and the static buckling load. Previous studies (Salas, 2016) considered the effect  
of shear deformation, which is also included in the present analysis. A Rayleigh-Ritz model is 
used to obtain results which illustrate the phenomena. 

1  MATHEMATICAL MODEL 
Figure 1 shows the mathematical model of a circular annular plate with clamped inner 

edge and outer edge free (C - F), supported by the elastic foundation of stiffness k, under a 
follower force P. 

Herein an energy approach and the Rayleigth-Ritz method is adopted in order to 
investigate the frequencies and the critical loads. 
1.1 Description of the geometrical parameters 

Consider a homogeneous isotropic annular plate of thickness h, with inner and outer 
radius denoted by b and a respectively. The origin of the coordinate system is taken at the 
center of the plate in the middle plane, as show in Figure 2. Thus, the circular plate geometry 
and dimensions are defined by a cylindrical coordinate system  zr ,, , the corresponding 
displacement components at a generic point are uur ,  and zu  in the radial, circumferential 
and transversal directions, respectively. 

 
Figure 1. Mathematical model of a circular annular plate subjected to a follower force 
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Figure 2. Geometry of a circular annular plate in cylindrical coordinate system  

1.2 Equation of motion 
Based on the assumptions of Mindlin-Reissener plate theory, the displacement field of the 

circular plate may be described as follows:  
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In the above equations, the terms 00 ,vu  and 0w  are the radial, circumferential and 
transverse displacement components of the mid-surface of the circular annular plate, 
respectively, and r  and are rotations in the radial and circumferential directions, 
respectively. In bending analysis, 0u  and 0v  may be set equal to zero. 
1.3 Strain displacement relations 

For small deflections, the strain-displacement relation may be described as follows: 
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Where rr  and   are the normal strains and  rrz , and z are the engineering shear 
strains. 
1.4 Hooke’s law 

The stress-strain relations may be described as follows: 
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where E  and   are the Young’s modulus and Poisson’s ratio, respectively, and 2k  
denotes the transverse shear correction factor, adopted as 12/22 k  (according to Reddy, 
2007). 
1.5 Rayleigh-Ritz for analysis 

The problem is to determine the buckling load of the thick circular plate under uniform 
in-plane radial compression.  

The plate model contains three degrees of freedom for both end nodes. The accuracy of 
the Rayleigh-Ritz model is controlled by the number of functions (N) used to provide the 
description of the displacement field, in addition to the basic linear functions (for the thick 
plate model) or cubic functions (for the thin plate model). There is considerable freedom in 
the choice of the additional functions, except that they should be zero at the nodes (the thin 
plate functions must also have zero derivatives at the nodes). 
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The coefficients (c, d, e, f, j, s) in Eq. (4) are weighting terms associated with their shape 
functions ,n rw  and   which correspond to the transverse displacement and the two 
rotations at each point along the radius in the mid surface. The indexes (1), (2)  correspond to the 
polynomial functions in the radial directions and trigonometric functions in the 
circumferential directions for displacements.  

The boundary conditions are imposed by adding adequate spring stiffness values at the 
diagonals of the stiffness submatrix associated with the nodal degrees of freedom, zero 
representing a free displacement and a very large value (penalty approach) corresponding to a 
restraint. Herein the approximation to be used for the displacement field is polynomial in the 
radial direction and trigonometric in the circumferential direction. The parameters are 
displacements and rotations in ar   and br   (“nodal” displacements), plus the magnitudes 
of an arbitrary number of polynomial functions of increasing order which are zero at the ends.  
This approach satisfies exactly the essential boundary conditions (displacements and 
rotations) at ar   and br  , and is assured to converge for other boundary conditions. 
1.6 Equation of motion 

The governing equations of motion for the model, can be expressed as 
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In the above expressions, T is the kinetic energy, U is the elastic potential energy from 
both circular annular plate and foundation, k  is the spring constant of the elastic foundation,  is the specific mass of the plate material,d the upper dot represents the differentiation with 
respect to the time variable t, cW the work done by the conservative component of the 
distributed follower force, and ( rN , N ) are radial and axial components of forces applied 
along  edge. 

2  FORMULATION OF THE EIGENVALUE PROBLEM 
The extended Hamilton’s principles for a nonconservative system under consideration 

can be written in the form 
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Substituting Eq. (5) - (7) into the Eq. (8) 
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For linear small-strain assuming harmonic motion, the global displacement vectors can be 

written as, 
tiexx   (10) 
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Here x  is a nonzero vector of constants to be determined,   is the natural circular 
frequency. Substituting Eq. (5), (6) and (7) into the expressions (8) leads to the governing 
eigenvalue equation of the form    02  xMGGK s

Lcr   (12) 
In the above expression, K  is the stiffness matrix, G  is the geometric matrix, s

LG  is the 
symmetric load matrix, M  is the mass matrix, cr  is the parameter load and   is the 
frequency. Clearly, this matrix cannot be obtained from the energy functional, but results 
from consideration of equilibrium in the deformed configuration. 
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3  RESULTS AND DISCUSSION 
The numerical analyses on the dynamic stability of a circular annular plate with clamped 

inner edge and outer edge free (C - F) attached to an elastic foundation under a follower force 
are performed by employing the Rayleigh-Ritz method. For the next examples the geometry

ma 0.9 , mb 7.2  and materials GPaE 5.2 , 3.0 is considered. 
Shear deformation and inertial rotation for the thickness circular annular plate are 

considered. The inner edge of the plate is clamped and the outer edge is free. Figures 1-3 
show the variation of the first and second eigenfrequencies non-dimensionally with the 
change of the elastic foundation (k from 4.15*10^7 to 1.38*10^8) for K = Kirchhoff and RM 
= Reissner-Mindlin theories, represented with the continuous and dashed line respectively.   

In case of h = 0.20m Figure 1 shows that. as the spring constant k increases, the first and 
second eigenfrequencies also increase. The values of the first and second eigenfrequencies for 
K and RM theories do not differ much.  

The value of the flutter load force is more affected than the static buckling load. For 
example, the relative load value for the K and RM circular annular plate without elastic 
foundation WEF is approximately 6.33 and with elastic foundation EF k=4.15*10^7 is 
approximately 0.33. As the value of k increases, the value of the critical flutter load decreases. 

In the case of h = 0.60m  Figure 2 shows that. as the spring constant k increases, the first 
and second eigenfrequencies also increase but do not increase the value in the same 
proportion that for h = 0.20m. The second frequency is particularly affected because of the 
greater shear deformation content in the second mode. The flutter load is changed little, with 
respect to the static buckling load considered, for example a circular annular plate with elastic 
foundation KCAP_EF for a k=4.15*10ˆ7 is approximately 1.44 times the static buckling load, 
and for the circular annular plate without elastic foundation KCAP_WEF 1.34 times the static 
buckling load. Moreover, the coalescence and consequently the flutter load are considerably 
affected when considering the elastic foundation, the value of the flutter load for  KCAP_EF 
k= 1.38*10ˆ8 is 0.89, k=5.54*10ˆ7 is 1.30 times the static buckling and for KCAP_WEF is 6. 
26 times approximately.  
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Figure 1. The first and second eigenfrequencies for the circular annular plate with h = 0.20m 

 
Figure 2. The first and second eigenfrequencies for the circular annular plate with h = 0.60 m 
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Figure 3. The first and second eigenfrequencies for the circular annular plate with h = 1.40 m 

In the case of h = 1.40m, the second frequency is more affected by the thickness because 
of the higher shear deformation content in the second mode. When considering the RM 
theory. Additionally, increasing the elastic foundation constant k the second frequency 
increases. The ratio of the flutter load with respect to the static buckling load is reduced as the 
foundation constant is increased. For instance, a circular annular plate with elastic foundation 
k=1.38*10ˆ8 and k=4.15*10ˆ7 is approximately 3.50 and 2.19 times the static buckling load 
respectively, and for the circular annular plate without elastic foundation 5.93 times the static 
buckling load. 

In Fig. 4 the continuous line indicates the results obtained considering the presence of an 
elastic foundation, while the dashed line corresponds to the results without elastic foundation. 
The vertical axis corresponds to the flutter load divided by the static critical load, considering 
RM and K theory.  

When the value of the thickness is small for example h = 0.20m, in the absence of elastic 
foundation, the value of the ratio flutter load/static buckling load for the Kirchhoff plate is 
6.33, just a little higher than the RM plate value of 6.28. It is possible to observe that the ratio 
is reduced with the increase of thickness (and, consequently, the effect of shear) and with the 
increase in the foundation constant. 
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Figure 4. The ratio flutter/static buckling load for circular annular thin and thick plate, with different 

elastic foundation values 
CONCLUSIONS 

We have used a simple Rayleigh-Ritz model to study the stability behavior of a circular 
annular plate with and without shear deformation attached to an elastic foundation, under a 
distributed radial follower force. The implication of a number variable of the stiffness of the 
elastic foundation have the influence in the first and second eigenfrequencies. 

The results show that the the presence of an elastic foundation tend to reduce the ratio 
between the flutter load and the static buckling load. This conclusion is not the same as 
expected from the results of Smith and Herrmann for beams, where the flutter load for Euler-
Bernouilli beams on elastic foundation is found to be independent of the foundation constant. 
Further studies are required to completely clarify this subject.   
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