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Abstract. In this work the non-linear vibrations of a simply supported viscoelastic fluid-filled 

circular cylindrical shells subjected to lateral harmonic load is studied. Donnell's non-linear 

shallow shell theory is used to model the shell, assumed to be made of a Kelvin-Voigt material 

type, and a modal solution with six degrees of freedom is used to describe the lateral 

displacements. The Galerkin method is applied to derive a set of coupled non-linear ordinary 

differential equations of motion. The influence of shell geometry, flow velocity and dissipation 

parameter are studied and special attention is given to resonance curves. Obtained results 

show that the viscoelastic dissipation parameter, flow velocity and geometry have significant 

influence on the nonlinear behavior of the shells as displayed in instability loads and 

resonance curves. 

Keywords: Cylindrical shells, Viscoelastic material, Fluid-structure interaction, Nonlinear 

vibrations  
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1  INTRODUCTION 

Viscoelastic materials are frequently used in sandwich structures such as beams, plates 

and shells where damping is desired for a wide range of frequencies. However, in spite of a 

large number of studies on cylindrical shell dynamics, just a small number of these works is 

related to the analysis of viscoelastic shells. 

Cheng and Zhang (2001) and Cederbaum and Touati (2002) studied the nonlinear 

dynamic behavior of viscoelastic cylindrical shells subjected to axial loads using the Von 

Kármán-Donnell non-linear shell theory. Seeking to observe the effect of lateral pressures, 

Antman and Lacarbonara (2009) studied the radial motions of compressible non-linearly 

viscoelastic cylindrical and spherical shells under time-dependent pressures. Also, Shina et al 

(2009) applied the finite element method to study the thermal post-buckled characteristics of 

cylindrical composite shells with viscoelastic layers, considering transversal shear 

deformation and variable in-plane displacements through the thickness of the shell.  

In a series of papers Eshmatov (2007a, 2007b, 2007c, 2007d, 2008, 2009) studied the 

vibrations and dynamic stability of viscoelastic cylindrical shells and cylindrical panels with 

and without concentrated masses using the Kirchhoff-Love hypothesis and Timoshenko 

theories by taking into account shear deformation and rotary inertia. The influence of 

viscoelastic material properties and the critical loads were evaluated. 

Lacarbonara and Antman (2012) analyzed the radial motions of cylindrical and spherical 

shells under pulsating pressures considering non-linear viscoelasticity. In this study a rich 

non-linear dynamic behavior was observed with softening and hardening curves on the 

primary region of resonance depending on the constitutive functions and external loads.  

Mohammadi and Sedaghati (2012) analyzed the vibration of sandwich cylindrical shells 

with thin or thick core layer based on a new higher-order expansion of transverse and in-plane 

displacement fields in the thickness direction of the core layer. Recently, Alijani and Amabili 

(2013) wrote a detailed literature review of current studies on non-linear vibrations of shells 

where the reduced number of studies dedicated to the analysis of viscoelastic cylindrical 

shells can be confirmed. 

In the present paper, the influence of load and material properties on the non-linear 

vibrations and dynamic instability of a simply supported viscoelastic circular fluid-filled 

cylindrical shells subjected to lateral harmonic load is studied. Donnell’s non-linear shallow 

shell theory is used to model the shell, which is assumed to be made of a Kelvin-Voigt 

material type, and a modal solution with six and eight degrees of freedom which takes into 

account the essential modal couplings and interactions is used to describe the lateral 

displacements of the shell. The Galerkin method is applied to derive a set of coupled non-

linear ordinary differential equations of motion that are, in turn, solved by the Runge-Kutta 

method. The obtained results show that the viscoelastic dissipation parameter has a very 

significant influence on the instability loads and resonance of the viscoelastic shells and, 

depending on the applied load and dissipation parameter. 
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2  MATHEMATICAL FORMULATION 

Consider a perfect thin-walled fluid-filled simply supported circular cylindrical shell of 

radius R, length L and thickness h. The axial, circumferential and radial coordinates are 

denoted by x, y = R and z, respectively, and the corresponding displacements of the shell 

middle surface are denoted by u, v and w, as shown in Figure 1. The shell is assumed to be 

made of a Kelvin-Voigt viscoelastic material with initial Young’s modulus E, Poisson ratio , 

and density .  
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Figure 1. Shell characteristics. (a) Shell geometry; (b) Harmonic lateral pressure f. 

The shell is subjected to the following harmonic lateral pressure: 
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where FL is the nondimensional coefficient of the amplitude of the load, o is the natural 

frequency of the shell, m ,the number of axial half-waves, n , the circumferential wave 

number, L , the frequency of the load and t the time. 

Based on Donnell shallow-shell theory, the middle surface kinematic relations are given, 

in terms of the three displacement components, by: 
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where x,0 and  are the strains in the axial and circumferential directions, x is the 

shearing strain component at a point on the shell middle surface, xx and  are the curvature 

changes and x is the twist.  

The strain components εxx, εθθ and γxθ at an arbitrary point of the shell are related to the 

middle surface strains εx,0, εθ,0 and γxθ,0 and to the changes in the curvature by the following 

relations: 

.,, 0,0,0,   xxxxxxxx zzz   (3) 
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In this analysis, the viscoelastic behavior of the material is modeled in the base of the 

Kelvin-Voigt viscoelastic theory. This viscoelastic model can be represented by a viscous 

damper element and an elastic spring element connected in parallel as illustrated in Fig. 2. 

Considering the plane stress problem and the Kelvin-Voigt constitutive model of a 

viscoelastic material, the stress-strain relations can be written as (Esmailzade, 1999): 
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where E is the Young’s modulus,  is the Poisson coefficient, t is the time and  is the 

coefficient of the viscoelastic dissipation parameter, also named retardation time, and it is 

measured in seconds. 

Using the stress function F, the forces in the axial, circumferential and tangential 

directions are 
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The non-linear equation of motion, based on the Donnell shallow shell theory, in terms of 

a stress function F, the lateral displacement w is given by: 
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where c = 2o (kg/m
3
 s) is the viscous damping coefficient,  is the viscous damping 

ratio of the shell, Ph is the perturbation pressure due to steady internal fluid  and f is the radial 

pressure applied to the surface of the shell due to external force. In equation (8) a global 

viscous damping has been introduced in addition to the viscoelasticity of the shell material.  

The compatibility equation is given by 
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(9) 

The simply supported out-of-plane (Eq. 10) and the in-plane (Eq. 11) boundary 

conditions are respectively given by: 

0,0  xMw     at x = 0, L, 

0,0  vNx        at x = 0, L. 

(10) 

(11) 

For a formulation based on a stress function, the in-plane boundary conditions are 

satisfied on the average by introducing the following conditions, as justified, for example, in 

(Amabili, 2008; Amabili et al, 1999; Stavridis, 1988; Breslavsky and Avramov, 2013; Del 

Prado et al, 2014)  
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Equation (12) assures a zero axial force Nx on the average, while Eq. (13) is satisfied 

when u and w are continuous in  on average, and v=0 on average at both ends (Amabili et al, 

1999). 

To determine the perturbation pressure on the shell wall, the Païdoussis and Denise 

(Paidoussis, 2004) model will be adopted. In this model, linear potential theory is used to 

describe the effect of the internal axially flowing fluid. The fluid is assumed to be 

incompressible and non-viscous and the flow to be isentropic and irrotational. The 

irrotationality property is the condition for the existence of a scalar potential function , from 

which the velocity may be written as 

V . (19) 

This potential function is equal to  xU , where the first term is associated with 

the undisturbed mean flow velocity U, and the second term, the unsteady component  is 

associated with shell motion. The function  must satisfy the Laplace equation and the 

impenetrability condition at the shell-fluid interface. 

The potential function satisfies the continuity equation. Following the procedure 

presented in previous studies (Amabili et al, 2000; Paidoussis, 2004), the perturbation 

pressure on the shell wall is found to be 
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Where F is the fluid density nI  is the nth order modified Bessel function and 'In  is its 

derivative with respect to its argument. 

In this work, two modal expansions for the lateral displacements w(x,,t), satisfing the 

out-of-plane boundary conditions (10) in terms of the circumferential and axial variables were 

adopted (Amabili et al, 1999), one for the empty cylindrical shells and other for the fluid-

filled shell. 

The modal expansion for the empty shell containing six degrees of freedom, containing 

the basic vibration mode, the companion mode and four axi-symmetric modes is given by: 
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Where 1(t), 2(t), 3(t), 4(t), 5(t) and 6(t) are the time-dependent non-dimensional 

modal amplitudes, where the shell thickness h has been used as non-dimensionalization 

parameter. 

The modal expansion for the empty shell containing eight degrees of freedom, containing 

the basic vibration mode, the companion mode, two gyroscopic modes and four axi-

symmetric modes is given by: 
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(15) 

where 1(t), 2(t), 3(t), 4(t), 5(t), 6(t), 7(t) and 8(t) are the time-dependent non-

dimensional modal amplitudes, where the shell thickness h has been used as non-

dimensionalization parameter.  

The solution for the stress function may be written as F = Fh + Fp, where Fh is the 

homogeneous solution and Fp, the particular solution. The particular solution Fp is obtained 

analytically by substituting the assumed form of the lateral displacement, Eq. (14) or Eq. (15), 

on the right-hand side of the compatibility equation, Eq. (9), and by solving the resulting 

partial differential equation together with the relevant boundary and continuity conditions. 
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The homogeneous part of the stress function can be written as [22]: 
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where  xx NNN
~

and
~

,
~

 are the in-plane restrain stresses at the ends of the shell. 

Upon substituting the modal expressions for F and w(x, , t) into the equation of motion, 

Eq. (8), and applying the Galerkin method, a set of six non-linear ordinary differential 

equations is obtained in terms of the time-dependent modal amplitudes, i(t). 

In analysis, the following non-dimensional parameters are used for time and shell 

frequency: 

to  , (16) 

oLL  . (17) 

3  NUMERICAL RESULTS 

Consider a simply supported viscoelastic cylindrical shell with the following physical and 

geometrical properties: R = 0.2 m, L = 0.4 m, h = 0.002 m,  = 1340.0 kg/m
3
, 

F = 1000.0 kg/m
3
,  = 0.195, E = 45.5e9 N/m

2 
[26],  = 0.001. Thus one has the geometrical 

ratios: L/R = 2.0 and R/h = 100.0. For this shell the lowest natural frequencies are 

o = 3165.03 rad/sec (empty shell) and o = 897.59 rad/sec (fluid-filled shell) which are 

associated to a mode shape with m = 1 longitudinal half-wave and n = 5 circumferential 

waves. 

To try to understand the influence of both the viscoelastic dissipation parameter and the 

lateral load on the non-linear dynamic behavior of the shell, several resonance curves, for 

empty and fluid-filled shell, have been computed. The bifurcation diagrams were obtained 

using both force brute and continuation techniques and considering the excitation frequency 

as control parameter. The nondimensional coefficient of the amplitude of the lateral load FL 

was varied with the following values: 0.2 and 0.5. For the coefficient of the viscoelastic 

dissipation parameter of the Kelvin-Voigt model , the following values were assumed: 0.0, 

1.0e-5, 2.0e-5, 3.0e-5 and 1.0e-4 s. In diagrams black curves represent stable oscillations and 

gray curves represent unstable oscillations. 

Figure 2 displays the resonance curves of driven mode for an empty shell considering an 

excitation level of FL = 0.2. As it can be observed in Fig. 2(a), for a shell without 

viscoelasticity ( = 0.0), as the frequency parameter L is increased the shell displays small 

amplitude period one oscillations (1T). At an excitation frequency near L = 0.90 the shell 

displays a jump from small to very large amplitude oscillations displaying softening behavior. 

Here it must be observed that the vibration amplitude is so large as to be outside the accuracy 

limit of the Donnell shallow-shell theory. As the value of L is increased, the shell shows a 

reduction of the vibration amplitude. 
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Figure 2 – Resonance curves of the empty shell for drive mode considering FL = 0.2. (a)  = 0.0 s; (b)  = 

1.0e-5 s; (c)  = 2.0e-5 s; (d)  = 3.0e-5 s; (e)  = 5.0e-5 s; (e)  = 1.0e-4 s. 

Now, when the viscoelastic dissipation parameter is considered ( ≠ 0), the non-linear 

behavior of the shell is strongly influenced. Figure 2(b) shows the resonance curve for 

 = 1.0e-5 s and as the frequency parameter L is increased, the shell displays small 

amplitude 1T period oscillations. Again at a value close to L = 0.90, the shell displays a 

jump to large amplitude oscillations with strong softening behavior. It is also possible to 

observe that the softening region of the response has complicated non-linear unstable paths 

while a stable path displaying hardening behavior is observed for large amplitude oscillations. 

Then, for L between 0.72 and 0.77, the shell displays three different stable equilibrium 

points, which means that there will be three stable attractors. At large amplitude a folding of 

the backbone curve (turning point) associated with large bending effects occurs. 

When  is increased to 2.0e-5 s as shown if Fig. 2(c), the resonance curve is again 

affected and it shows softening behavior but with smaller vibration amplitudes than for the 

previous case. Also, in Figs. 2(b) and 2(c) for L=1.0 the shell displays a bifurcation point 

where the unstable path is linked to the large vibrations amplitudes path. 

When  is increased to 3.0e-5 s, 5.0e-5 s or to 1.0e-4 s, as the frequency parameter is 

increased, the shell displays only small amplitude vibrations with no softening behavior, as 

observed in Fig. 2(d), Fig. 2(e) and 2(f). 

Now, when the steady internal fluid is considered, Fig. 3 displays the resonance curves of 

the driven mode considering an excitation level of FL = 0.2 and increasing values of the 

excitation frequency.  

Figure 3(a) depicts the resonance curve for  = 0.0 s and as can be observed, as the 

frequency parameter L is increased the shell displays small amplitude period one oscillations 

(1T). At an excitation frequency near L = 0.90 the shell shows a jump from small to large 

amplitude oscillations displaying a kind of softening behavior, if Fig. 3(a) is compared with 

Fig. 2(a) it is possible to observe the strong influence of internal fluid where the global 

dynamic behavior is completely changed. The fluid reduced the jump of the shell as well as 

the altered the softening behavior. 

Now, Fig. 3(b) and Fig. 3(c) display the resonance curve for  = 1.0e-5 s and  = 2.0e-5 s 

and as can be observed, there is a small jump near L = 0.90 with no softening behavior in 

both cases. When the viscoelastic dissipation parameter is increased, Fig. (d), Fig. (e) and Fig. 

(f) depict only small amplitude oscillations with no softening behavior. If the resonance 

curves of empty and fluid-filled shell are compared, now it is clear the effect of internal fluid 

where the fluid-filled shell shows smaller amplitudes than the empty shell with only small 

jumps for lower values of viscoelastic dissipation parameter. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 3 – Resonance curves of the fluid-filled shell for drive mode considering FL = 0.2. (a)  = 0.0 s; (b)  

= 1.0e-5 s; (c)  = 2.0e-5 s; (d)  = 3.0e-5 s; (e)  = 5.0e-5 s; (e)  = 1.0e-4 s. 
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Figure 4 displays the resonance curves of the empty shell for FL = 0.5.. As it can be 

observed in Fig. 4(a) with  = 0.0, for initial increasing values of L the shell displays 

growing small amplitude oscillations and, at approximately L = 0.78 the shell starts to 

display a window of large amplitude chaotic oscillations until L = 0.87. After this point the 

shell shows decreasing oscillating amplitudes as the frequency parameter is increased. If  

goes up to 1.0e-5 s as observed in Fig 4(b), again the behavior of the shell if strongly affected. 

The shell displays softening behavior with large amplitude oscillations and three stable 

attractors (small, medium and large amplitude oscillations) for L between 0.73 and 0.80. Fig 

4(c) shows the resonance curve for  = 2.0e-5 s; in this case the non-linear behavior of the 

shell is altered and the shell displays complicated softening unstable paths but with smaller 

amplitudes than for  = 1.0e-5 s. If  = 3.0e-5 s, as shown in Fig. 4(d), the shell depicts 

softening behavior with a stable path of large amplitude oscillations for L varying from 0.63 

to 0.75. Also, it is possible to observe the coexistence of a window of quasi-periodic 

oscillations for L varying between 0.71 and 0.77. Figure 4(e) depicts the resonance curve for 

 = 5.0e-5 s displaying simple softening behavior with stable and unstable paths but, with 

smaller vibration amplitudes than in previous cases. Finally, Fig. 4(e) displays the resonance 

curve for  = 1.0e-4 s. In this case, the shell displays only small amplitude oscillations with 

no unstable paths. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

Figure 4 - Resonance curves of empty shell for driven mode considering FL = 0.5. (a)  = 0.0 s; (b)  = 

1.0e-5 s; (c)  = 2.0e-5 s; (d)  = 3.0e-5 s; (e)  = 5.0e-5 s; (f)  = 1.0e-4 s. 

Finally, Fig. 5 displays the resonance curves of the fluid-filled shell for FL = 0.5 versus 

the frequency parameter L. As it can be observed in Fig. 5(a) with  = 0.0, for initial 

increasing values of L the shell displays growing small amplitude oscillations and, at 

approximately L = 0.80 the shell displays a jump to large amplitude oscillations with 

softening behavior. If  goes up to 1.0e-5 s as observed in Fig 5(b), again the behavior of the 

shell if strongly affected. The shell displays softening behavior with medium amplitude 

oscillations and the coexistence of two stable attractors (small and medium).  

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 

(f ) 

Figure 5 – Resonance curves of fluid-filled shell for driven mode considering FL = 0.5. (a)  = 0.0 s; (b)  = 

1.0e-5 s; (c)  = 2.0e-5 s; (d)  = 3.0e-5 s; (e)  = 5.0e-5 s; (f)  = 1.0e-4 s. 

Now, Fig 5(c) shows the resonance curve for  = 2.0e-5 s; in this case the non-linear 

behavior of the shell is altered and the shell displays complicated softening unstable paths but 

with smaller amplitudes than for  = 1.0e-5 s. If  = 3.0e-5 s, as shown in Fig. 4(d), the shell 

depicts softening behavior with a stable path of large amplitude oscillations for L varying 

from 0.63 to 0.75. Also, it is possible to observe the coexistence of a window of quasi-

periodic oscillations for L varying between 0.71 and 0.77. Figure 4(e) depicts the resonance 

curve for  = 5.0e-5 s displaying simple softening behavior with stable and unstable paths 

but, with smaller vibration amplitudes than in previous cases. Finally, Fig. 4(e) and Fig. 4(f) 

display the resonance curve for  = 5.0e-5 s and  = 1.0e-4 s. In these cases, as can be 

observed, the shell displays only small amplitude oscillations with no unstable paths. 

As can be observed, when comparing Fig. 4 and Fig. 5, there is a great influence of both 

viscosity parameter and internal fluid on the global non-linear dynamic of the shell. If an 

empty shell is considered, it is possible to observe stable, unstable and chaotic oscillations 

and, when a fluid-filled shell is considered, it is possible to observe stable paths and only a 

small window of chaotic oscillations. When the viscosity parameter is increased, only stable 

small amplitude vibrations can be observed for the fluid-filled shell. 
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4  CONCLUDING REMARKS 

In this work, the non-linear vibrations analysis of a viscoelastic Kelvin-Voigt simply 

supported cylindrical empty and fluid- filled shell, subjected to lateral time dependent loads is 

analyzed. To model the shell, the Donnell’s non-linear shallow shell theory is applied and an 

expansion with 6 and 8 degrees of freedom is used to describe the lateral displacements. 

Results show that the inclusion of the viscoelastic dissipation parameter  of the Kelvin-Voigt 

material and internal fluid affect strongly the non-linear response of the shell. 

It is possible to see that the viscoelastic dissipation parameter and fluid influence the 

number of attractors of the non-linear response giving rise to the co-existence of stable, quasi-

periodic and chaotic oscillations. When fluid is considered, the non-linear dynamic response 

is altered and the shell starts to display smaller vibration amplitudes than the empty shell.  

For higher values of the dissipation parameter, the shell only displays small amplitude 

vibrations without jumps, hysteresis and multiple solutions. This illustrates the beneficial 

effect of viscoelasticity in reducing large amplitude unwanted vibrations. 
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