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Nonlinear Dynamic Damage Evolution of a Highway Bridge due to its Dynamic Interaction with Random Forms
of Irregularities and Moving Vehicles

Abstract. The effects of vehicle-structure interaction have a significant importance on the
dynamic responses of both systems with several applications within the highways field. If the
vehicle-irregularities-bridge dynamic interaction is capable to produce accumulated strains
that cause damage to the structure, the dynamic responses are affected. By crossing a highway
bridge with any speed, the vehicle is subjected to the highway irregularities. The movement
of a vehicle on a bridge is already a dynamic action on the structure. However, the highway
irregularities tend to excite the vehicle dynamically which in turns triggers additional vibrations
in the highway bridge structure apart from those produced by their own movement, increasing
the bridge’s damage evolution. This modifies the dynamic responses of the structure, increasing
the magnitude and the oscillations particularly at critical speeds of the vehicle, capable to
provoke some resonance. Apart from changing the displacements, velocities and accelerations
responses, the damage alters the structural natural frequencies of vibration. Such effects are not
possible to be analysed with linear dynamic models. The nonlinearities occur by the fact that
the forces no longer linearly depend from the displacements when damage occurs. This work
aims to evaluate the nonlinear dynamic damage evolution of a reinforced concrete highway
bridge through the Finite Element Method, on which the degree of damage is altered over time
by the dynamic interaction with random irregularities and moving vehicles due to the stiffness
loss of the structure by Damage Mechanics. The highway irregularities are represented by
random functions. Euler-Bernoulli beam elements with Hermite cubic interpolation functions
are used for the bridge model. The Mazars Damage Constitutive Model is implemented with the
condition of stress inversion due to vibration. The continuum damage mechanics is considered
dynamically. Therefore, the damage is evaluated in each layer of the structure cross section for
each iteration within each time step. The structural damping is defined by the Rayleigh method
with updated coefficients due to damage. The equations of motion are obtained by nonlinear
dynamic equilibrium and numerically integrated in time using the Newmark Method together
with the Newton-Raphson iterative Method. This proposal seeks to contribute to the study of the
health monitoring and the structural integrity of damaged highway bridges structures.

Keywords: Damage Mechanics, Dynamic Interaction, Finite Element Method, Nonlinear Dy-
namics, Computational Modeling
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1 INTRODUCTION

The problem of dynamic interaction between vehicles and bridges structures has been stud-
ied by researchers in the last 150 years. This problem is among the oldest problems of structural
dynamics. Earlier on, analytical methods were applied to simple models varying the boundary
conditions of problem. The development of computers and numerical methods such as the finite
element method allows for complex and refined models to produce accurate results, which can
be verified through experimental measurements (Beghetto & Abdalla Filho, 2010).

The increase in road and railroad transport cargo, especially in Brazil, with increased inten-
sity values of loads on the roads, has been producing degradation in many bridges throughout
the countries. This is an issue of paramount importance, as is related to the structural health of
bridges and with the matter of the conservation of highways and railways structures.

To contribute with this theme, the problems of dynamic interaction between vehicle and
bridge considering the track irregularities are being studied. There are numerous references in
the literature dealing with this topic and the modeling of vehicle-irregularities-bridge systems
has been studied by researchers around the world in the last thirty years.

The emergence of new and complex structural systems, subjected to preponderantly dy-
namic actions is another important factor. This is the case, for example, for offshore structures,
oil exploration and exploitation in the continental offshore. The dynamic analysis of these struc-
tures is fundamental because one of the most important loads to be considered in the project is
due to wave action (Machado, 1983).

This work seeks to contribute to these studies by analyzing the nonlinear dynamic damage
evolution of a highway bridge due to its dynamic interaction with vehicles coupled with random
forms of irregularities.

2 MATHEMATICAL MODELS FOR MATERIALS SCIENCE

This session presents the structural steel constitutive model, the Mazars’ damage constitu-
tive model and the equivalent stiffness model that couple both materials.

2.1 Structural Steel Constitutive Model

A simple bilinear elastoplastic model with strain hardening is adopted for the structural
steel as this material has the same behavior when subjected to traction and compression.

As in reinforced concrete structures the steel bars resist fundamentally the axial forces, it
is used an uniaxial model to describe the behavior of the reinforcement.

Although very simplistic, the structural steel model is more reasonable than the linear elas-
tic normative calculation models used in the majority of structural design offices for considering
the hardening by plastic deformation. The Fig. 1 represents this model.

Thus, in this model, if the structural steel is unloaded at the second section of the diagram
shown in Fig. 1, the model has a permanent strain associated.

The stress acting on the structural steel is determined by (Tiago et al., 2002)
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Figure 1: Bilinear elastoplastic model with strain hardening for the structural steel

σ =

 Esε ,−εsy ≤ ε ≤ εsy

σsy + Esy(ε− εsy) , otherwise
(1)

where Es is the initial elastic modulus of the structural steel, σsy is the yield stress, εsy is the
yield extension and Esy is the longitudinal elastic modulus after the yield of the steel defined by

Esy = ksEs (2)

where ks is the relation between the longitudinal elastic modulus after the yield of the steel Esy

and the longitudinal elastic modulus of the steel Es.

2.2 Mazars’ Damage Constitutive Model

Rabotnov et al. (1970) proposed to consider the loss of material stiffness as a result of
cracking. Posteriorly, the continuum damage mechanics was formalized based on thermody-
namics of irreversible processes by Lemaitre & Chaboche (1985).

The damage evolution in the concrete is simulated with the damage constitutive model
proposed by Mazars (1984). This model is based on some experimental evidences observed in
uniaxial experiments in concrete, having the fundamental hypotheses (Pituba, 1998):

– the damage is represented by a scalar variable D (0 ≤ D ≤ 1) whose evolution occurs
when a reference value for the ’equivalent stretching’ is exceeded;

– locally the damage comes from the existence of stretching deformations;
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– its considered, that the damage is isotropic, although experimental tests show that the
damage leads, in general, to an anisotropy of concrete, which may initially be considered as
isotropic; and

– the damaged concrete behaves as an elastic medium, therefore the permanent deformation
evidenced experimentally in a situation of unloading is neglected.

The square of the equivalent strain is equal to the sum of the squares of the main compo-
nents of the positive principal strain

ε̃2 =
∑
i

〈ε2
i 〉+ (3)

where εi are the principal strain components and its positive parts defined by

〈εi〉+ =
1

2
[εi + |εi|] (4)

The extension state is locally characterized by a stretching or an equivalent strain, expressed
as (Pituba, 1998)

ε̃ =
√
〈ε1〉2+ + 〈ε2〉2+ + 〈ε3〉2+ (5)

It is adopted that the damage starts when the equivalent strain ε̃ reaches a value of the
reference strain εd0 determined in uniaxial traction tests in correspondence to the maximum
stress, as shown in Fig. 2.

The constitutive relation, for the particular case of one-dimensional stress state, is given by
(Tiago et al., 2002)

σ = (1−D(ε))Ec0ε (6)

The damage variable D is defined by a linear combination of the basic damage variables
DT and DC through the combination coefficients αT and αC by

D(ε) = αTDT + αCDC , αT + αC = 1 (7)

in which the value of the coefficients αT and αC are contained in the closed interval [0, 1], and
seek to represent the contribution of the mechanical requests to traction and compression for
the extension local state, respectively (Pituba & Proença, 2005).

The basic damage variables are given by

DT (ε̃) = 1− εd0 (1− AT )

ε̃
− AT

eBT (ε̃−εd0)
(8)
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Figure 2: Stress-strain diagram for the Mazars’ damage model

and

DC(ε̃) = 1− εd0 (1− AC)

ε̃
− AC

eBC(ε̃−εd0)
(9)

where AT , BT , AC and BT are the characteristic parameters of the material in uniaxial traction
and uniaxial compression, respectively, ε̃ the equivalent strain below which no damage occurs
and εd0 the parameter of the limit elastic deformation. The subscripts T and C refer to traction
and compression, respectively. Therefore, if the equivalent strain is lesser than the reference
strain (ε̃ ≤ εd0), then there is no damage at all (D = 0).

In order to consider the Poisson effect in the concrete, the equivalent strain is given by

ε̃ =

 ε , if ε ≥ 0

−υ
√

2ε , otherwise
(10)

where υ is the Poisson’s ratio of the concrete.

Mazars (1984) proposed the following ranges of variation for the parameters AT , BT , AC

and BT , obtained from the calibration with experimental results as (Pituba, 1998)

0.7 ≤ AT ≤ 1 104 ≤ BT ≤ 105

1 ≤ AC ≤ 1.5 103 ≤ BC ≤ 2.103

10−5 ≤ εd0 ≤ 10−4

(11)

The behavior of the Mazars’ damage model when the material is subjected to traction and
compression is shown, respectively, in the Fig. 3.
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Figure 3: Uniaxial response: (a) traction, (b) compression, adapted from (Pituba, 1998)

A more rigorous way to define the damage is through the fourth order damage tensorDijrs
considering the operator that transforms the initial elasticity tensor of the intact material Eijkl
in the current elasticity tensor of the material softened by damage Ẽijkl by

Ẽijkl = (Iijrs −Dijrs)Erskl (12)

From a purely theoretical point of view, the relationship shown above in Eq. (12) does
not produce a true state variable because it requires knowledge of a particular behavior of the
material, such as elasticity (Lemaitre & Desmorat, 2005). However, this relationship allows to
indirectly determining the damage variable for elastic materials from Young’s modulus mea-
surements performed in tests with loading and unloading cycles.

In the case of uniaxial isotropic damage without the effect of micro cracks closure in com-
pression, the average value of micro stresses is obtained from the equilibrium of forces (Rabot-
nov et al., 1970). Thus, the effective stress can be written as

σ̃ =
F

S̃
=

F

S(1−D)
=

σ

(1−D)
(13)

where F is the applied force in the representative volume element, S̃ is the effective area which
is the intact area S subtracted by the defects area SD , and σ is the stress acting on the intact
area.

The state of deformation one-dimensional or three-dimensional of a damaged material is
obtained by the behaviour of the intact material where the stress is replaced by the effective
stress (Lemaitre & Chaboche, 1985). Thus the equivalent deformation εe can be defined by

εe =
σ̃

E
=

σ

(1−D)E
(14)

where E is the Young’s modulus of the intact material.
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Consequently, the Young’s modulus of the damaged material Ẽ for a continuous medium
with equivalent response to the material with imperfections is obtained by

Ẽ = (1−D)E (15)

Albeit this model neglects the permanent deformation in unloading situations, the damage
is irreversible and cumulative. Therefore, if a damaged material has its load removed, the
Young’s modulus E is updated to the damaged Young’s modulus Ẽ and does not return to its
initial state. It is only possible to cause more damage to the material, reducing the Young’s
modulus even more.

2.3 Equivalent Stiffness Model

The rectangular cross section of the bridge’s elements are divided in n layers as laminated
composite beams in order to be able to determine the equivalent stiffness of each element. The
Fig. 4 shows this division.
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Figure 4: Bridge’s cross section divided in n layers

For the particular case of symmetric laminated composite beam with bwidth, the equivalent
stiffness EIeqv is determined by
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EIeqv =
1

3

n∑
i=1

Ei(y
3
i − y3

i−1) (16)

where n is the number of layers, b is the constant width of the rectangular cross section, Ei is the
elastic modulus of the ith layer, in the case Ec for the concrete layers and Es for the structural
steel layers, yi and yi−1 are the y axis coordinate values of the division points of the ith which
subtracted result in the height of the layer.

When the concrete or structural steel, present nonlinear physical behavior, the position of
the neutral axis varies and is recalculated at each numerical iteration according to the deteriora-
tion of any layer by

yNA =

∑(yi−yi−1

2

)
EiAi∑

EiAi

(17)

in which Ai is the area of the layer and yNA is the recalculated position of the neutral axis.

As the continuum damage mechanics is calculated dynamically, in order to consider these
effects, it is required to evaluate the damage in each cross section of the bridge’s elements for
each iteration within each time steps.

3 MATHEMATICAL MODELS OF VEHICLES COUPLED WITH IR-
REGULARITIES

The computational model implemented considers the passage of the vehicle with one de-
gree of freedom in the different forms of track irregularities and transmits the stresses generated
between the vehicle and irregularities to the railway bridge, in uncoupled way, for its dynamic
linear or nonlinear analysis. In other words, the dynamic responses of the bridge do not af-
fect the forces caused by the coupling between the passing vehicle and irregularities. Thus,
this computational routine firstly analyzes the forces generated by the coupling between ve-
hicle and irregularities and transmits them to the bridge for the desired analysis. Therefore,
it is a model coupled between vehicle and irregularities and uncoupled between the coupled
vehicle-irregularities and the bridge.

The model with 1 degree of freedom consists of a wheel mass m1 in contact with the
irregularities, a suspended vehicle mass m2, a spring with stiffness coefficient k and a damper
with damping coefficient c, as showed in Fig. 5.

When crossing a bridge with speed v, the vehicle is subjected to the effects of track irreg-
ularities, represented by y(t). Considering the wheel mass undeformable, this is similar to a
case of base excitation. It is merely necessary to consider the vehicle stationary subjected to a
harmonic base excitation y(t). The spring and the dumper masses are neglected throughout the
analysis. Assuming a linear elastic behavior for the spring and a linear viscous damping for the
damper throughout the analysis, the elastic force acting on the spring and the damping force are

fM = k[uv(t)− y(t)] (18)
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m2

m1

v

Figure 5: Vehicle-irregularities theoretical model

fA = k[u̇v(t)− ẏ(t)] (19)

Thus, the governing equation of motion of the problem can be written as

m2üv(t) + c[u̇v(t)− ẏ(t)] + k[uv(t)− y(t)] = 0 (20)

3.1 Forms of Track Irregularities

In this paper random shapes of irregularities are used, which may have portions of rectan-
gular, triangular, sinusoidal, as periodic or pulses, or any functions form representing the track
irregularities of the highway bridge. Although the irregularities are dealt randomly, the linear
or nonlinear dynamic solutions of the problem are not solved by probabilistic but deterministic
models. This is the case of mapping the unknown irregularities of a road through mechanical
instrumentations and to determine the dynamic responses of the structure.

For each random forms of irregularity obtained are determined the different vehicle-irregularities
coupled models. In each base excitation function y(t) that represents each type of track irreg-
ularities, the function is derivate with respect to time to obtain the portion ẏ(t) related to the
resistive force due to damping as

ẏ(t) =
dy(t)

dt
(21)

The numerical differentiation is used analyzing the accuracy.

Considering v as the vehicle speed, l the wave length of the irregularities, t the time and A
the amplitude, in order to exemplify a case of irregularities represented by sinusoidal harmonic
functions which may be partially or fully obtained from a mechanical instrumentation measure,
the irregularities functions can be expressed as
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y(t) = A sin

(
2πv

l
t

)
(22)

Equation (22) represents the irregularities of the track in the form of a sinusoidal harmonic
function correlated with the vehicle speed. If deriving Eq. (22) with respect to time, one has

ẏ =
2πAv

l
cos

(
2πv

l
t

)
(23)

By replacing the equations Eq. (22) and Eq. (23) in Eq. (20), one obtains

m2üv + cu̇v + kuv = c

[
2πAv

l
cos

(
2πv

l
t

)]
(24)

The dynamic responses of displacements, velocities and accelerations of the vehicle are
obtained by numerically integrating the Eq. (24) in time using the Newmark method and solving
the system using the Gaussian elimination method.

Finally, the force produced by the base excitation generated by the coupling between vehi-
cle and track irregularities is defined by

FEB(t) = (m1 +m2)g + c[u̇v(t)− ẏv(t)] + k[uv(t)− y(t)] (25)

where g is the gravitational acceleration.

4 BRIDGE’S MATHEMATICAL MODELS

This section and subsequent subsections will treat about the dynamic mathematical models
of the bridge. The focus of this paper is to study the damage evolution of a highway bridge’s
structure. In this sense, this work focus on the nonlinear dynamic mathematical model which,
differently from the linear dynamic model, it can analyze physical nonlinearities, as the dynamic
damage evolution case.

4.1 Linear Dynamic Mathematical Model

Just to describe the linear case in order to understand the nonlinear dynamic mathematical
model, this subsection will simply describes a few particularities of the linear models and its
governing equation.

Differently from the nonlinear dynamic model, on the linear no distinction is made for the
geometry of the bridge cross section and its change of the material behaviors, analyzing the
problem with only the moment of inertia and Young’s modulus, both constants through time.

The governing equation of this problem is shown in Eq. (26)
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[m]{ü}+ [C]{u̇}+ [K]{u} = {F (t)} (26)

where [m], [C] and [K] are the global matrices of mass, damping and stiffness, {ü}, {ü} and
{u} are the global vectors of displacements, velocities and accelerations and, finally, the {F (t)}
represents the external force vector that varies over time.

To solve the Eq. (26), one may use a time integration method, as the Newmark method.
The system, after that, can be solved by the Gaussian elimination method in each time step.

4.2 Nonlinear Dynamic Mathematical Model by Damage Mechanics

In a case of deterioration of the material, the forces are no longer linearly dependent of
the displacements. This model considers that the damage directly affects the stiffness of the
system and consequently the structural damping but not the mass of the system, as a case of
a rocket launch, thus causing the previously fixed stiffness matrix to become instantaneous,
characterizing physical nonlinearity, as shown below (Abeche et al., 2015)

[KB] = [KB ({uB(~x, t)})] (27)

It can be noted that the previously fixed stiffness matrix is now instantaneous. It is depen-
dent of the displacements which are a functional of time and position vector.

The predictive values, or estimates, of velocities and displacements in time t with respect
to time t+ ∆t are respectively defined as (Machado, 1983)

{˜̇uB}t+∆t = {u̇B}t + (1− γ){üB}t∆t (28)

and

{ũB}t+∆t = {uB}t + {u̇B}t∆t+

(
1

2
− β

)
{üB}t∆t2 (29)

where γ and β are the Newmark method parameters determined for the numerical integration
accuracy and stability.

Due to physical nonlinearities, the previous linear global equation of motion presented
in Eq. (30) becomes nonlinear dynamic and must be solved iteratively and incrementally by
combining the iterative Newton-Raphson technique with the implicit time integration operator
of the Newmark method. In this sense, the nonlinear dynamic global equation of motion for the
damaged highway bridge can be written as (Jacob & Ebecken, 1994)

[MB]
(i−1)
t+∆t {üB}

(i)
t+∆t + [CB]

(i−1)
t+∆t {u̇B}

(i)
t+∆t + [KB]

(i−1)
t+∆t {∆u}

(i) = {∆FB} (30)

where

{∆FB} = {F ext
B }t+∆t − {F int

B }
(i−1)
t+∆t (31)
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where i is the present iteration, {F ext
B }t+∆t, {F int

B }t+∆t and {∆FB}t+∆t are, respectively, the
external forces vector, the internal forces vector and the unbalanced forces vector in time t+∆t
and {∆u} is the incremental displacements vector.

It can be observed that by combining the Newton-Raphson iterative technique with the
Newmark method and the predictive values, the internal forces seeks the nonlinear dynamic
equilibrium in each iteration within each time step in order to make the unbalanced forces
vector tend to null vector with respect to a convergence criterion.

Applying Eq. (28) and Eq. (29) in Eq. (30), one obtains (Abeche et al., 2016)

(
[M ]

(i−1)
t+∆t

β∆t2

)
{uB}(i)

t+∆t + [KB]
(i−1)
t+∆t {∆u}

(i) = {F ext
B }t+∆t

+
[M ]

(i−1)
t+∆t

β∆t2
(
{uB}t + {u̇B}t∆t+ (0.5− β){üB}t∆t2

)(i)

+ [C]
(i−1)
t+∆t

(
γ

β∆t
{uB}t +

(
γ

β
− 1

)
{u̇B}t +

(
γ

2β
− 1

)
{üB}t∆t

)
− {F int

b }
(i−1)
t+∆t

(32)

The internal global force seeks the nonlinear dynamic equilibrium configuration. Its com-
ponents are the forces parcels from the stresses acting in each of the layers of the cross section
for each element. These are obtained at each iteration within each time step as (Bathe, 1996)

{F int
B }

(i−1)
t+∆t =

∑
m

∫
V

(m)
t+∆t

[B]
(m)T

t+∆t [σ]
(m)
t+∆t dV (m)

t+∆t (33)

Making use of the Gauss quadrature technique, the internal global force that seeks the
nonlinear dynamic equilibrium configuration in each iteration of the iterative Newton-Raphson
technique, within each time step of the Newmark method is defined as

{F int
B }

(i−1)
t+∆t =

nel∑
m=1

npint∑
p=1

[B]
(p,m)T

t+∆t [σ]
(p,m)
t+∆t J

(m)W p
Gauss (34)

where nel is the number of finite elements, np int is the number of Gaussian integration points,
[B] is the strains matrix, [σ] is stress tensor, WGauss is the weight associated with Gaussian
points, and J is value of the integration that in the case is defined as

J =
L

2
(35)

The convergence criteria utilized is related to an energy criteria that includes both forces
and displacements criteria, defined as (Bathe, 1996)
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{∆u}(i)T
(
{F ext

B }t+∆t − {F int
B }

(i−1)
t+∆t

)
≤ tolE

(
{∆u}(1)T

(
{F ext

B }t+∆t − {F int
B }t

))
(36)

where tolE is the energy convergence tolerance.

When the convergence is achieved, it reaches the end of the iterative process of Newton-
Raphson and the dynamic responses for a given time step correspond to the values obtained in
the last iteration, i.e.:

{uB}t+∆t = {uB}(i+1)
t+∆t (37)

{u̇B}t+∆t = {u̇B}(i+1)
t+∆t (38)

{üB}t+∆t = {üB}(i+1)
t+∆t (39)

After obtaining the nonlinear dynamic responses at the end of the iteration within the re-
quired time step, a further time step is started whenever wished to calculate the displacements,
velocities, accelerations, etc., for a new time until the last time of the analysis is reached, in
which the process is, therefore, terminated.

5 NUMERICAL ANALYSIS

In order to compare the dynamic responses of the bridge’s structure for random but deter-
ministic forms of irregularities, such as the case of a mechanical mapping of a highway, this
section analyze the problem for two similar types y1 and y2. Both are very alike, but the second
one have greater amplitude than the first. This was made with the purpose to compare the non-
linear dynamic damage evolution of the highway bridge perspective due its dynamic interaction
with different forms of irregularities and moving vehicles.

The Table 1 presents the input data for the vehicle-irregularities coupled model.

Table 1: Vehicle-irregularities coupled model input data

Vehicle Irregularities

m1 = 4400 kgf y1and2 = random forms

m2 = 15000 kgf l = variable

k = 9120 kN/m A1
max = 5.2 mm

c = 86 kNs/m A1
min = −5.5 mm

v = 50 km/h A2
max = 20.9 mm

a = 1 m/s2 A2
min = −21.99 mm

6203 Time Steps 6203 Time Steps
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The bridge’s parameters, such as physical, finite element discretization, materials and geo-
metric parameters are illustrated in Table 2.

Table 2: Bridge’s parameters input data

Physical and FE Discretization Materials Geometric

20 Elements Ec = 29.43 GPa b = 0.5 m

2 dof / element νc = 0.2 h = 2 m

tolu = 0.00001 40 Concrete’s Layers Ib = 0.2667 m4

tolF = 0.00001 Es = 210 GPa 42 Layers

tolE = 0.00001 νs = 0.3 Ac = 0.7857792 m2

ζ = 0.025 2 Steel’s Layers As = 0.0142208 m2

γ = 0.5 ks = 0.85 d = 1.81 m

β = 0.25 ρ = 0.0180977% d′ = 0.19 m

dt = 7.2e−4 s m = 1996.792205 kg/m Lb = 72 m

7200 Time Steps

Lastly, it is necessary to present the calibration parameters input for the Mazars’ damage
model, observed in Table 3.

Table 3: Mazars’ damage model calibration parameters input

Damage Parameters

AT = 0.995 BT = 30000 AC = 1.2 BC = 1050 εd0 = 5e−5

The boundary conditions and the length of the spans can be found in Fig. 6, which illus-
trates the problem in analysis.

m2

m1

v

6 m 20 m 20 m 20 m 6 m

Figure 6: Vehicle-irregularities theoretical model

Both forms of highway random irregularities can be found in Fig. 7. It can be noted that
the random form y2 have an amplitude four times greater than the random form y1.
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Figure 7: Random forms of highway irregularities (y1 and y2)

The dynamic responses of displacement for the midspan and right extremity are shown in
Fig. 8.
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Figure 8: Dynamic responses of displacement (a) midspan (b) right end

The dynamic responses of velocity for both the midspan and right are presented in Fig. 9.
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Figure 9: Dynamic responses of velocity (a) midspan (b) right end

Both nonlinear dynamic responses of displacement and velocity for the different form of
random, but deterministic, forms of irregularities have a similar behavior. In all responses, there
were major amplifications for the second case of random form of irregularities, y2.

As explained before, as both forms of irregularities have a similar form, just varying the
amplitude of each irregularity in about four times, being y1 the minor one, this directly affects
all dynamic responses of the structure. In addition to this, as both forms were computationally
simulated with the nonlinear dynamic mathematical model, described in section 4.2, there is a
mathematical and physical consideration for the physical nonlinearity of the material. In this
sense, the higher amplitudes made the Mazar’s damage model to amplify the damage on the
concrete and even start a damaging process in the surrounding regions of the higher damages.

The damaged configuration of the bridge for both random forms of irregularities, y1 and y2

are illustrated in Fig. 10.

Obviously, there were higher damages on the second form of random irregularities. It is
also very important to notice the interesting Mazar’s damage model different behavior for trac-
tion and compression on the concrete. As traction effect is more detrimental then compression,
some upper regions have suffered a damage by traction due to the strains inversion due to over-
hanging segments and vibrations.
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Figure 10: Damaged configuration (a) y1 (b) y2

The Fig. 11 shows the damage evolution on the cross section of the most affected element
from the bridge with the y1 form of irregularities over time. Each color represents one of the 42
layers.
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Figure 11: Damage evolution of the layers of the 66th element over time (y1)

Similarly, the Fig. 12 shows the damage evolution on the cross section of the most affected
element from the bridge with the y2 form of irregularities over time. Each color also represent
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one of the 42 layers.
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Figure 12: Damage evolution of the layers of the 59th element over time (y2)

6 CONCLUSION

The dynamic responses of displacements and velocities were greater for the y2 case of
random irregularities of the highway bridge. As both random forms were geometrically alike
but the second one have greater amplitude, it can be noted that the dynamic responses are
directly related not only to the form of the irregularity, but also the its amplitude.

It must be noted that linear dynamic models cannot detect the presence of damages and
its effect on the structural responses. Also, the damage evolution can only be detected through
nonlinear dynamic analysis. In nonlinear dynamic analysis of highway structures, alteration oc-
curs on the obtained responses due to the damage effect. This reduces its stiffness and indirectly
modify its structural damping. These alterations can cause further damages to the structure and
in some cases, such as the resonant condition, this process can become cyclical and progressive,
having the risk to cause the structural collapse.

Furthermore, the nonlinear dynamic damage evolution of the bridge, due to this random
forms, were also greater for the second case of irregularities. That noted, it can be observed that
the amplitude of irregularities, not only its form, can specially affect how the damage evolves in
dynamic perspective. Even the second form of irregularities having four times the amplitudes
of the first one, it is still so small that it can surprise structural engineers that does not consider
the irregularities’ influence directly, only following its normative precepts. In a country that
is world renowned for the lack of maintenance and terrible highways, such as Brazil, the bad
planning allied with the disastrous execution of constructions risks safety and does not guarantee
structural health.
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