
 

BUCKLING OF ANISOTROPIC PLATES BY
THE RITZ METHOD

Lucas Nobumichi Yshii

Rafael Christovão Santana

Francisco Alex Correia Monteiro

Eliseu Lucena Neto

lucasyshii@gmail.com

rafael.feg@gmail.com

facm@ita.br

eliseu@ita.br

Instituto Tecnológico de Aeronáutica

Praça Marechal Eduardo Gomes, 50, 12228-900, São José dos Campos, SP, Brazil

Abstract. The Ritz method is used in the buckling analysis of anisotropic plates under
several combinations of in-plane loads and boundary conditions. Ritz bases are generated
from modi�ed Legendre polynomials, and the plate rigidities are carefully chosen to provide
thermodynamically admissible materials. The accuracy of the proposed approach is assessed
by means of several examples solved by �nite element models.
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Buckling of Anisotropic Plates by the Ritz Method

1 INTRODUCTION

For certain edge and loading conditions, the exact solution for the linear buckling
problem of isotropic or orthotropic plates can be assessed by means of classical approaches,
such as the Lévy method (Reddy, 2004). For anisotropic plates, however, the presence
of bending-twisting coupling signi�cantly increases the complexity of the analysis which
requires approximate solutions. High gradients of the buckling mode and nonsatisfaction
of some boundary conditions in a strict pointwise sense has brought numerical di¢culties
to the analysis of anisotropic plates using powerful tools like the Ritz method: a larger
number of terms in the approximating function is required to obtain accurate solutions
than is required for similar accuracy when dealing with isotropic or orthotropic plates.

The Ritz method can pose low-grade convergence or numerical instability depending
on the function basis selected, no matter whether anisotropy is involved or not. For
instance, the use of beam functions over constrains plates with free edges (Bassily and
Dickinson, 1975; Dickinson and Di Blasio, 1986), and high-order polynomials can trigger
numerical instabilities for being too much alike (Hjelmstad, 2005) or evaluated with round-
o¤ errors (Beslin and Nicolas, 1997). Anisotropic plates with simply supported edges are
also over-constrained by beam functions (Nallim and Grossi, 2003; Gawandi et al., 2008).

Herein an extension of our previous formulation (Monteiro et al., 2014) is presented
where the plate is now anisotropic. The Ritz bases are generated from modi�ed Legendre
polynomials proposed by Zhu (1986) (see also Bardell (1991)) and the plate rigidities
are carefully chosen to provide thermodynamically admissible materials. All results are
obtained by a discretization scheme that treats each plate as it were a single �nite element,
with re�nement carried out by adding hierarchic modes of higher order. The accuracy of
the proposed approach is assessed by means of several examples solved by �nite element
models.

2 RITZ EQUATIONS

The homogeneous anisotropic rectangular plate shown in Fig. 1, of length  and width
, is subjected to uniform in-plane loads , ,  and has the midsurface in the -plane
of the Cartesian coordinate system . According to the Kirchho¤ theory, the plate
buckling is described by

11 + 2 (12 + 266) +22 + 416 + 426

+ + 2 +  = 0 (1)

where  is the displacement in the  direction, subscripts  and  preceded by commas
denote di¤erentiation with respect to  or , and  are the bending sti¤nesses of the
plate. A laminated plate composed of layers that are symmetrically disposed, both from
material and geometric properties standpoint, about the midsurface has also the buckling
described by (1) for which  depend now on the material properties, layer thicknesses
and the lamination scheme (Reddy, 2004; Whitney, 1987).

The solution of Eq (1) should satisfy prescribed values of

 or   or  on  = 0,  = 

 or   or  on  = 0,  =  (2)
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Figure 1: Rectangular anisotropic plate subjected to uniform in-plane loads , , 

where ,  are the e¤ective shear forces and ,  are the bending moments. One
element of each pair (, ), (, ), (, ) and (, ) (but not both elements of
the same pair) may be speci�ed. Moreover, the displacement  or the twisting moment
 (but not both) should be speci�ed at the plate corners. A boundary condition is
called geometric when ,  or  are speci�ed and is called mechanical when , ,
,  or  are speci�ed.

Equation (1) and homogeneous form of the mechanical boundary conditions ( = 0
or  = 0 on  = 0,  = ;  = 0 or  = 0 on  = 0,  = ;  = 0 at the plate
corners) can be stated as the stationary condition ¦ = 0 of the potential energy

¦ =
1
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0

¡
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2
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with respect to  (Washizu, 1982).

It is convenient to nondimensionalize the potential energy by adopting the coordinates
 = (2¡ )  and  = (2 ¡ )  to obtain
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The solution of the buckling problem is approximately sought by the Ritz method in the
form

 ( ) ¼
X
=1

X
=1

 () () , (5)

whose coe¢cients  are determined from ¦ = 0. The approximation Eq. (5) should
satisfy the geometric boundary conditions.
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Substitution of Eq. (5) into Eq. (4) leads to
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where
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Since  are arbitrary and independent, the discretized version of the buckling prob-
lem is given by·
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with
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Equation (8) can be written simbolically as the linear eigenvalue problem

([]¡  []) fg = f0g , (10)

with the constitutive sti¤ness matrix
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and the geometric sti¤ness matrix [] expressed according to the loading type. For
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instance,
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3 NUMERICAL RESULTS

The mode functions  () and  () in Eq. (5) are taken as the hierarchical polynomial
set
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(2¡ 2¡ 7)!!

(¡ 2¡ 1)!
¡2¡1  = 5 6    (13)

where !! =  (¡ 2)    (2 or 1), 0!! = (¡1)!! = 1, ( ¡ 1)2 denotes its own integer
part. The �rst four modes are identical to the Hermite cubic polynomials and account
for the geometric boundary conditions (displacement and rotation at  = §1), while the
higher order modes ( = 5 6   ) have been generated from Legendre polynomials by Zhu
(1986) (see also Bardell (1991)) and possess both zero displacement and zero slope at each
end. This features are signi�cant since the higher modes contribute only to the internal
displacement �eld, and all the classical geometric boundary conditions could be matched
just by removing some of the �rst four basis functions. In the same manner as is done
on �nite element procedures, the boundary conditions may be introduced a posteriori into
Eq. (10).

We have written a code in MATLAB language to solve the linear eigenvalue problem
given by Eq. (10). Integrals in Eq. (7) are evaluated by symbolic computing to circumvent
round-o¤ errors and matrix [¢] is generated and stored in advance for  =  = 104 in
Eq. (5). The latter procedure, which reduces computation cost in the evaluation of []
and [] for any plate modeled with  · 104, is only possible because: (a) [¢] is
independent of plate geometry and material; (b) we know that the geometric boundary
conditions are accounted by the �rst four functions  () and  (). In order to run the
following examples with  =  = 20 and introduce the geometric boundary conditions we
have simply removed exceeding lines and columns from the previously stored [¢].

3.1 Example 1

A number of tests are conducted using several combinations of loading and boundary
conditions in order to verify the buckling behavior of anisotropic square plates subject
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to one of the following uniform loading: axial compression  ( =  = 0), biaxial
compression  =  ( = 0), compression  and tension  = ¡ ( = 0), shear
 ( =  = 0). For purpose of description, the boundary conditions at the plate
edges are denoted by: SSSS (all the edges are simply supported), SSCC (edges are simply
supported at  = 0  and clamped at  = 0 ), SSCF (edges are simply supported at
 = 0 , clamped at  = 0 and free at  = ), CCCC (all the edges are clamped).

The adopted bending sti¤nesses, with consistent units, are

11 = 22 = 1 12 = 003 66 = 0735 16 = 26 = ¡05. (14)

Such parameters make the sti¤ness matrix26664
11 12 16

22 26

sym. 66

37775 (15)

positive de�nite, as expected for a thermodynamically admissible material. A suitable
measure of the anisotropy, given by

16

4
p
3

1122

=
26

4
p
113

22

= ¡05 (16)

according to Weaver and Nemeth (2007), indicate that the plates are moderately aniso-
tropic.

Table 1 shows that the results from Ritz solutions are in excellent agreement with
those obtained from a �ne mesh of Nastran CQUAD4 elements (Nx Nastran, 2014) for
any loading and boundary conditions. The di¤erences between the results from both
procedures are not greater than 06%.

3.2 Example 2

Suppose the simply supported square plate subjected to axial compression  ( =
 = 0) shown in Fig. 2 is composed of a single unidirectional lamina of P100/AS3501
prepreg material, with properties

1 = 369 GPa 2 = 503 GPa 12 = 524 GPa 12 = 031. (17)

Young�s moduli 1 and 2 refer to 1 and 2 directions, shear modulus 12 and Poisson�s
ratio 12 refer to 12 plane. Table 2 shows how the plate anisotropy varies with the lamina
rotation. For  = 0± and  = 90± the plate is orthotropic, and around  = 45± it reaches
high anisotropy since 16

4
p
3

1122 and 26
4
p
113

22 are bounded by §1 for simply
supported plates (Weaver and Nemeth, 2007). No matter how severe the anisotropy is, the
results from Ritz and �nite element solutions are in excellent agreement with di¤erences
not greater than 07%. As expected, the maximum di¤erence occurs for  = 40± and
 = 45± when anisotropy is most severe.
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Table 1: Buckling load for square plates

2222 ( = 0) 2222

Type  = 0  =   = ¡ ( =  = 0)

SSSS 3302 1653 7089 3722

0998y 0998 0998 0995

SSCC 5908 3067 9293 5235

0998 0998 1000 0994

SSCF 1574 1144 2297 2466

0999 0998 0999 0997

CCCC 7615 4028 12524 6124

0998 0998 0998 0994

y Ritz/Nastran

4 CONCLUSIONS

A Ritz scheme based on a set of modi�ed Legendre functions has been presented for
buckling analysis of anisotropic plates under several combinations of in-plane loads and
boundary conditions. Very accurate and stable solutions have been obtained for all cases
considered, including plates with severe anisotropy, with reduced computational cost.
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