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Abstract. The stress and displacement analysis is necessary to design and build efficiently any 

structure. In general, the current accepted procedures to design steel beams admit the linear-

elastic material behavior and are based on the assumptions adopted by the Euler-Bernoulli 

beam theory. However, it is critical to predict the behavior of the structural elements under 

plastic deformation, in order to understand the failure modes and the plastic hinges formation 

in steel beams. Accordingly, this paper proposes a theoretical procedure to evaluate stresses 

and displacements in steel beams under elastoplastic deformation, assuming the kinematic 

assumptions of the Euler-Bernoulli beam theory. Moreover, an iterative-incremental 

procedure based on the reformulated Prandtl-Reuss equations proposed by Mendelson is 

employed to compute the plastic strains, in the context of a secant or total elastoplastic 

formulation. In order to verify the proposed approach, its results are compared with those 

ones obtained by the finite element method analysis. This comparison demonstrates the 

effectiveness of the proposed model, and shows the possibility to realize more realistic and 

sophisticated analysis of steel beams using this approach.  

Key-words: Steel beams, Euler-Bernoulli beam theory, Elastoplastic analysis, Theory of 

plasticity, Reformulated Prandtl-Reuss equations. 
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1   INTRODUCTION 

The majority of the current procedures for designing structures assume that the applied 

external load will lead to a linear-elastic material behavior, which means that strains are 

admitted to be reversible and the linear stress-strain relationship is valid. However, the last 

decades have produced significant improvements in the analysis and understanding of 

structural behavior of bodies under plastic deformation (see, for instance, Baker and Heyman 

(1969); Horne (1979); Moy (1981); Neal (1977)). In addition, Baker (1949) has shown that 

the most economical projects of continuous beams were achieved when the design made use 

of the plastic range. 

In fact, in the civil construction field, engineers have to design structures in the linear-

elastic range to avoid excessive deformations, but in others kind of structures, for instance 

some parts of vehicles, the elastoplastic range has to be put into account to increase the 

capacity of the element to absorb the strain energy. Along those lines, it becomes clear that 

the understanding of structural behavior of bodies under elastoplastic deformation plays an 

important role for structural engineering.  

Accordingly, Mendelson (1968) points out that the theory of plasticity falls into two 

categories: physical theories and mathematical theories. The former intends to explain why 

some solid bodies flow plastically, looking microscopically to the material to understand what 

happens to the atoms, crystals and grains when plastic flows occurs. The later, on the other 

hand, are systematic and provide one with the necessary tools to formulate and solve 

engineering problems. Therefore, this paper focus on the mathematical theories of plastic 

flows while proposes a systematic semi-analytical approach for elastoplastic analysis of steel 

beams. 

Provided that, the proposed model assumes the kinematic assumptions of the Euler-

Bernoulli beam theory in the formulation process and makes use of an interactive-incremental 

procedure based on the reformulated Prandtl-Reuss equations proposed by Mendelson to 

compute the plastic strains. Consequently, this approach enables one to realize more realistic 

and sophisticated analysis of steel beams as its numerical results agree with those ones 

obtained by finite element method analysis.  

2  SEMI-ANALYTICAL APPROACH FOR ELASTOPLASTIC 

ANALYSIS OF BEAMS 

As follows, this paper describes the method employed to achieve the proposed model. 

Firstly, an analytical formulation to evaluate stress components has been developed and 

derived assuming the kinematic assumptions of the Euler-Bernoulli beam theory. Secondly, 

for plastic strain evaluation, this work made use of an iterative-incremental procedure based 

on the reformulated Prandtl-Reuss equations proposed by Mendelson. Finally, three numerical 

methods were applied: the central finite difference method to approximate derivatives, the 

trapezoidal method for numerical integrations and the improved Euler method to evaluate the 

deflections. Those numerical methods will be further explained in section 2.3. 

2.1 Formulation of Stress Components  

In this section, this work derives a formulation for the moment-curvature relationship, the 

normal stresses (σxx) and the shear stresses (𝜏) for an elastoplastic deformation. First of all, for 
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the case of a member subjected to a bending moment applied perpendicularly to its 

longitudinal axis, the kinematic assumptions of the Euler-Bernoulli beam theory are the 

following:  

i. The longitudinal axis (x), which lies within the neutral surface, does not 

experience any change in length.  

ii. All plane cross sections remain plane and orthogonal to the deformed axis. 

iii. Any deformation of the cross section within its own plane will be neglected. 

In other words, the axial, torsion and shear effects are neglected and, thus, the bending 

moment is the critical internal force. With this in mind, it can be verified that, for elastic strain 

states, the neutral axis is the same of the horizontal centroidal axis, however for elastoplastic 

strain states, it will not be always true. Figure 1 illustrates the difference between the strain 

diagrams for those aforementioned strain states and it also shows the variable 𝑦̅, which 

represents the distance from the horizontal centroidal axis to the neutral surface.  

 

 

 

 

 

 

 

               

Figure 1: (a) – Strain diagram for an elastic strain state; (b) – Strain diagram for an elastoplastic 

strain state. 

Besides, Eq. (1) represents the total strain (𝜀𝑥𝑥) and it comes straightly from assumption 

(i). In addition, from the additive decomposition principle of the strain, 𝜀𝑥𝑥 can be also 

expressed as shown in Eq. (2).  

𝜀𝑥𝑥 =  −𝐾(𝑥)(𝑦 − 𝑦̅)                                                                                                                                                     (1)                                                                                                             

𝜀𝑥𝑥 = (𝜀𝑥𝑥
𝑒 + 𝜀𝑥𝑥

𝑝)                                                                                                                                                        (2)                                                                                                            

Where 𝐾(𝑥) represents the curvature, 𝜀𝑥𝑥
𝑒 represents the elastic strain and 𝜀𝑥𝑥

𝑝 

corresponds to the plastic strain. Satisfying the condition that the resultant force produced by 

the stress distribution over the cross-sectional area must be equal to zero and combining Eq. 

(1) and Eq. (2), 𝑦̅ can be derived as follows:  

𝐹𝑥 = ∫ 𝜎𝑥𝑥  𝑑𝐴 = 0  →  ∫ [−𝐾(𝑥)(𝑦 − 𝑦̅) − 𝜀𝑥𝑥
𝑝]𝐸 𝑑𝐴 = 0

𝐴𝐴

                                                                                   (3) 

Solving this equation for 𝑦̅ and making the adequate operations: 

𝑦̅ =
𝜀𝑥𝑥

𝑝̅̅ ̅̅ ̅̅

𝑘(𝑥)
                                                                                                                                                                                     (4) 

Where 𝜀𝑥𝑥
𝑝̅̅ ̅̅ ̅̅ =

1

𝐴
∫ 𝜀𝑥𝑥

𝑝𝑑𝐴
𝐴

. Now, it is possible to develop a formula for the moment-

curvature relationship. 
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𝑀(𝑥) = ∫ −𝑦𝜎𝑥𝑥  𝑑𝐴  →  𝑀(𝑥) = 𝐸[𝐾(𝑥) ∫ 𝑦2 𝑑𝐴 −
𝐴𝐴

𝐾(𝑥)𝑦̅ ∫ 𝑦 𝑑𝐴
𝐴

+ ∫ 𝑦 𝜀𝑥𝑥
𝑝 𝑑𝐴

𝐴

                                   (5) 

Solving Eq. (5) for 𝐾(𝑥), replacing 𝑦̅ with Eq. (4) and making the adequate algebraic 

simplifications, 𝐾(𝑥) can be written as:   

𝐾(𝑥) =
𝑀(𝑥)

𝐸𝐼
−

1

𝐼
∫ 𝑦 𝜀𝑥𝑥

𝑝 𝑑𝐴
𝐴

                                                                                                                                           (6) 

Here, 𝑀(𝑥) is the resultant internal moment, 𝐸 represents the modulus of elasticity of the 

material and 𝐼 corresponds to the moment of inertia of the cross-sectional area about the 

neutral axis.  

Similarly, the flexure formula for an elastoplastic strain state is derived using the additive 

decomposition principle of the strain and the moment-curvature relationship.   

𝜎𝑥𝑥(𝑥, 𝑦) = 𝐸(𝜀𝑥𝑥 − 𝜀𝑥𝑥
𝑝)  → 

𝜎𝑥𝑥(𝑥, 𝑦) =  −
𝑀(𝑥)

𝐸𝐼
(𝑦 − 𝑦̅) +

𝐸

𝐼
(𝑦 − 𝑦̅) ∫ 𝑦 𝜀𝑥𝑥

𝑝 𝑑𝐴
𝐴

− 𝐸𝜀𝑥𝑥
𝑝                                                                               (7) 

Finally, the transverse shear formula will be developed considering the horizontal force 

equilibrium of an element as show in Fig. 2. Hence, applying the equation of horizontal force 

equilibrium and using Eq. (7):  

∑ 𝐹𝑥 = 0 → ∫ 𝜎′𝑑𝐴′

𝐴′
− ∫ 𝜎 𝑑𝐴′

𝐴′
− 𝜏(𝑥, 𝑦)(𝑡𝑑𝑥) = 0  →  

∫ {−
𝑀(𝑥 + 𝛥𝑥)

𝐼
[𝑦 − 𝑦̅(𝑥 + 𝛥𝑥)] +

𝐸

𝐼
[𝑦 − 𝑦̅(𝑥 + 𝛥𝑥)] ∫ 𝑦 𝜀𝑥𝑥

𝑝(𝑥 + 𝛥𝑥, 𝑦) 𝑑𝐴
𝐴

− 𝐸𝜀𝑥𝑥
𝑝(𝑥 + 𝛥𝑥, 𝑦)}  𝑑𝐴′

𝐴′
 

− ∫ {−
𝑀(𝑥)

𝐼
[𝑦 − 𝑦̅(𝑥)] +

𝐸

𝐼
[𝑦 − 𝑦̅(𝑥)] ∫ 𝑦 𝜀𝑥𝑥

𝑝(𝑥, 𝑦) 𝑑𝐴
𝐴

− 𝐸𝜀𝑥𝑥
𝑝(𝑥, 𝑦)}  𝑑𝐴′

𝐴′
= 𝜏(𝑥, 𝑦)𝑡𝛥𝑥                    (8) 

After an exhaustive algebraic manipulation and making 𝛥𝑥 tending to zero, the transverse 

shear formula can be written as: 

𝜏(𝑥, 𝑦) =  [−𝑄(𝑥) + 𝐸 ∫ 𝑦 
𝜕𝜀𝑥𝑥

𝑝

𝜕𝑥𝐴

𝑑𝐴]
𝑦̅′ − 𝑦̅

𝐼𝑡
𝐴′ + [𝑀(𝑥) − 𝐸 ∫ 𝑦 𝜀𝑥𝑥

𝑝 𝑑𝐴
𝐴

]
1

𝐼𝑡

𝑑𝑦̅

𝑑𝑥
𝐴′ −

𝐸

𝑡
 ∫

𝜕𝜀𝑥𝑥
𝑝

𝜕𝑥𝐴′
𝑑𝐴′  (9) 

Where 𝑦̅′ = 1

𝐴′
∫ 𝑦 𝑑𝐴′𝐴′ .  

 

 

 

 

 

 

 

 

 

Figure 2: Three-dimensional and profile view. Source: Hibeller (2011). 
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2.2 Plastic Strain Evaluation 

This section is based on Mendelson (1968) which proposes an iterative-incremental 

procedure to compute the plastic strain increments from the total strains without resource to 

the stresses. Firstly, assume a general external load path to a given state of stress and total 

plastic strains 𝜀𝑖𝑗
𝑝. Now, an increment of plastic strain (𝑑𝜀𝑖𝑗

𝑝) is produced by an increment of 

load, so the total strain can be written as: 

𝜀𝑖𝑗  =  𝜀𝑖𝑗
𝑒 + 𝜀𝑖𝑗

𝑝 + 𝑑𝜀𝑖𝑗
𝑝                                                                                                                                          (10) 

Where 𝜀𝑖𝑗
𝑒 is the elastic component of the total strain, 𝜀𝑖𝑗

𝑝 is the accumulated plastic 

strain up to the current increment of load, 𝑑𝜀𝑖𝑗
𝑝
 is the increment of plastic strain due to the 

increment of load and the equation is written in indicial notation. Furthermore, Eq. (11) 

defines the modified total strains as follows:  

𝜀′𝑖𝑗  =  𝜀𝑖𝑗 − 𝜀𝑖𝑗
𝑝                                                                                                                                                           (11) 

Then, nothing that 𝜀′𝑖𝑗  =  𝜀𝑖𝑗
𝑒 +  𝑑𝜀𝑖𝑗

𝑝  and subtracting the mean strain from the 

diagonal components of both sides results in: 

𝑒′𝑖𝑗  =  𝑒𝑖𝑗
𝑒 + 𝑑𝜀𝑖𝑗

𝑝                                                                                                                                                     (12) 

Where 𝑒𝑖𝑗
𝑒 is the elastic strain deviator tensor and 𝑒′𝑖𝑗 is the modified strain deviator 

tensor. From Hooke’s law and the Prandtl-Reuss equations: 

𝑒′𝑖𝑗  =  (1 +
1

2𝐺𝑑𝜆
) 𝑑𝜀𝑖𝑗

𝑝                                                                                                                                                     (13) 

 Where 𝐺 is the shear modulus and 𝑑𝜆 is a nonnegative constant which may vary 

throughout the loading history. Now, defining an equivalent modified total strain by 𝑒′𝑒  =

 √
2

3
𝑒′𝑖𝑗𝑒′𝑖𝑗 and making the appropriated manipulations: 

𝑑𝜀𝑖𝑗
𝑝 =   

𝑑𝜀𝑒
𝑝

𝑒′𝑒
𝑒′𝑖𝑗                                                                                                                                                          (14) 

Where 𝑑𝜀𝑒
𝑝 = √

2

3
𝑑𝜀𝑖𝑗

𝑝𝑑𝜀𝑖𝑗
𝑝 is the effective plastic strain increments. Equation (14) is 

equivalent to the Prandtl-Reuss equations, however the stresses do not appear in it and the 

increments of plastic strain can be computed from the total strains. In addition, since Eq. (14) 

have been derived by use of the Prandtl-Reuss equations, it implicitly makes use of the von 

Mises yield criterion. Finally, 𝑑𝜀𝑒
𝑝 can be computed making use of the following equation: 

𝑑𝜀𝑒(𝑖)
𝑝

 =  
𝑒′𝑒 −

𝜎𝑒(𝑖−1)

3𝐺

1 +

𝑑𝜎𝑒

𝑑𝜀𝑒
𝑝

(𝑖−1)

3𝐺

                                                                                                                                               (15) 

Where 𝜎𝑒 (𝑖−1) = 𝜎𝑦 +
𝐸𝐻

𝐸−𝐻
𝜀𝑒

𝑝
(𝑖−1)

 considering a plastic with linear hardening material 

behavior. Here, 𝐻 represents the plastic modulus and 𝜀𝑒
𝑝 = ∫ 𝑑𝜀𝑒

𝑝. 

2.3 Numerical Methods  

In order to compute the derivative and integrates on the proposed model, two numerical 

methods were employed; they are, respectively: central finite difference and trapezoidal 
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methods. In addition, to evaluate the deflection of the beam, the improved Euler method was 

used. Accordingly, this paper briefly presents these three numerical methods.  

Firstly, the central finite difference method is one of the simplest finite difference 

approximation of the derivative. It approximates the derivative of a function at a point (‘x=a’) 

using values of the function at different points in the neighborhood of ‘x=a’. This method 

estimates the derivative from values of two points by the value of the slope of the line that 

connects the two points (Amos and Subramaniam (2014)). Furthermore, the central difference 

is computed using Eq. (16).  

𝑑𝑓

𝑑𝑥
(𝑥𝑖) =  

𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖−1)

𝑥𝑖+1 − 𝑥𝑖−1
                                                                                                                                   (16) 

Secondly, the trapezoidal method is based on a refinement over simple rectangle and 

midpoint methods and it makes use of Newton’s form of interpolating polynomials with two 

points (‘x=a’ and ‘x=b’). Succinctly, the numerical integration is made with Eq. (17).  

𝐼(𝑓) =  
[𝑓(𝑎) + 𝑓(𝑏)]

2
 (𝑏 − 𝑎)                                                                                                                                 (17) 

Lastly, the improved Euler method consists in a discretization of the beam into n points 

(𝑥0, 𝑥1, … , 𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑛−1, 𝑥𝑛) and then the inclination 𝜃𝑖+1 is determined from the previous 

inclination (𝜃𝑖) (Noronha and Cavalcante (2015)). In this process the starting point is a 

previously known boundary condition (𝜃0). Equation (18) is used to evaluate the inclinations: 

𝜃𝑖+1 ≈ 𝜃𝑖 + (𝑥𝑖+1 − 𝑥𝑖)
𝜅𝑖 + 𝜅𝑖+1

2
                                                                                                                   (18) 

Likewise, the deflections can be computed from the inclination values as follow: 

𝑣𝑖+1 ≈ 𝑣𝑖 + (𝑥𝑖+1 − 𝑥𝑖)
𝜃𝑖 + 𝜃𝑖+1

2
                                                                                                                   (18) 

Finally, it is necessary to emphasize that the deflections can only be estimated because 

the curvature (𝜅𝑖) was firstly computed with Eq. (6). 

3  NUMERICAL RESULTS 

The proposed approach was implemented using MatLab® and the numerical results are 

shown in this section. To verify the effectiveness of the method, those numerical results were 

compared with those ones obtained using Abaqus®, which is a software that applies finite 

element methods. Along these lines, the numerical results include: the effective plastic strain 

field, the horizontal stresses field, the transverse shear stresses field, deflections and others 

parameters that will not be shown in this paper due to restrictions on its “length”. In addition, 

it is important to mention that two beams configuration were analyzed: a cantilever beam and 

a simply supported beam.  

3.1 Cantilever Beam 

Material properties: ASTM A36 steel was employed in the analysis and it has an 

Elasticity Modulus (E) of 200 GPa, Poisson’s Ratio (v) of 0.26 and Yield Stress (σy) of 250 

MPa. Additionally, it was assumed a Plastic Modulus (H) of 20 GPa. 

Dimensions of the beam: the beam has a length (L) of 1m, width (b) of 0.05m and 

height (h) of 0.1m. 
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Load pattern: a concentrated vertical load (P) was, transversely, applied at the free end 

of the beam and it has a magnitude of 50 kN. 

After delineating the aforementioned parameters, the analysis could be performed. Figure 

3 evidences the deflection, the effective plastic strain field, the horizontal stresses field and 

the transverse shear stresses field along the length of the beam. The effective plastic strains 

values are dimensionless and the stresses values are in Pa. 

 

 

 

 

 

 

 

 

 

Figure 3: Cantiler beam. (a) deflection of the beam; (b) effective plastic strain field; (c) transverse 

shear stresses field; (d) horizontal stresses field. 

Figure 3(a) represents the deflection of the beam, where can be observed a deflection of 

approximately 65mm at its free end. In the first sight, it may seem exaggerated, but it is in 

accordance with the proportion of the load. Moreover, according to Fig. 3(b) plastic hinges 

formation starts in the fixed end, and increasingly propagates with the increment of load. This 

effective plastic strain pattern was expected since stresses in the fixed end are expressively 

great and they decrease with the distance from the fixed end. Similarly, the transverse shear 

and horizontal stresses fields patterns (Fig. 3(c) and Fig. 3(d)) are physically consistent and 

expected since it is in agreement with Eq. (9) and Eq. (7), respectively.  

3.2 Simply Supported Beam 

Material properties: the material used in the simply supported beam analysis was 

exactly the same of that one described in section 3.1. 

Dimensions of the beam: the beam has a length (L) of 3m, width (b) of 0.15m and 

height (h) of 0.3m. 

Load pattern: a distributed vertical load (P) was, transversely, applied at the upper side 

of the beam and it has a magnitude of 650 kN/m. 

Figure 4 represents the deflection, the effective plastic strain field, the horizontal stresses 

field and the transverse shear stresses field along the length of the beam. The effective plastic 

strains values are dimensionless and the stresses values are in Pa. 
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Figure 4: Simply supported beam. (a) deflection of the beam; (b) effective plastic strain field; (c) 

transverse shear stresses field; (d) horizontal stresses field. 

Figure 4(a) represents the deflection of the beam and its maximum value, which is 10mm, 

lies in the mid-span of the beam as expected in order to agree with Eq. (6). Furthermore, the 

effective plastic strains (Fig. 4(b)) are greater in the mid-span region of the beam as expected, 

since the internal bending moment reach its maximum value at this region. Likewise, the 

transverse shear and horizontal stresses fields patterns (Fig. 4(c) and Fig. 4(d)) are physically 

consistent and expected since it is in agreement with Eq. (9) and Eq. (7), respectively. 

3.3 Results Comparison and Discussions 

In this section, the results are compared with values obtained by the finite element 

method analysis, in order to verify the proposed approach. Figure 5 illustrates a comparison of 

those two methods for the cantilever beam’s case.  

 

 

 

 

 

  

 

           (a)                                                                                            (b)  

Figure 5: (a) horizontal stress diagram at the fixed end section; (b) transverse shear stress diagram at 

the fixed end section. 

Noticeably, the proposed model’s results are very close to those obtained with Abaqus® 

for both horizontal and transverse shear stress diagrams, which testify the effectiveness of the 

proposed model. In addition, Fig. 6 shows a comparison of those two methods for the simply 

supported beam’s case.  
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           (a)                                                                                            (b)  

Figure 6: (a) horizontal stress diagram at the mid-span section; (b) transverse shear stress diagram 

at the end section. 

Again, the proposed model’s results are very close to those obtained with Abaqus® for 

both horizontal and transverse shear stress diagrams. As can be noticed in Fig. 5 and Fig. 6 

the results are not perfectly equal for the proposed approach and the finite element method, 

but their divergences were expected since the proposed model derived makes use of some 

assumptions outlined on section 2.1 while the finite element method is a more accurate 

procedure. 

Besides, the transverse shear stress formula derivation (Eq. 9) made use of some 

assumptions and a very critical one is that the transverse shear stresses are constant 

throughout the width of the beam. Obviously, this assumption plays an important role in the 

results differences between the methods.  

Finally, the maximum deflections obtained by the proposed approach, for the cantilever 

and simply supported beam’s case, were 65 mm and 10 mm, respectively. Likewise, the 

maximum deflections obtained by the finite element method, for the cantilever and simply 

supported beam’s case, were 68 mm and 10.3 mm, respectively. Those values are 

considerably close. 

Therefore, the proposed approach provides a very good level of accuracy and 

effectiveness since the results are noticeably close to the results obtained with Abaqus®.  

4  CONCLUSIONS  

This paper proposes an innovative approach for elastoplastic analysis of steel beams. In 

general, the current accepted procedures to design steel beams admit the linear-elastic 

material behavior and are based on the assumptions adopted by the Euler-Bernoulli beam 

theory. However, it is critical to predict the behavior of the structural elements under plastic 

deformation, in order to understand the failure modes and the plastic hinges formation in steel 

beams. 

To fill this gap, this work developed a semi-analytical approach to compute stresses, 

strains and displacements in steel beams under elastoplastic deformation. To do so, it was 

assumed the kinematic assumptions of the Euler-Bernoulli beam theory and an iterative-

incremental procedure based on the reformulated Prandtl-Reuss equations proposed by 

Mendelson was employed to compute the plastic strains. This approach is certainly useful 

since it provides values for deflections, effective plastic strains, transverse shear stresses and 
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horizontal stresses fields, beyond it gives imagistic resources which contribute to the celerity 

of the interpretation.  

This approach, was verified with a comparison of the results obtained with the proposed 

model and those ones from Abaqus®. This comparison demonstrates the effectiveness of the 

proposed model, and shows the possibility to realize more realistic and sophisticated analysis 

of steel beams using this approach. Besides, this method showed to not only be effective but 

also to be easy to understand and reproduce.  

Finally, this paper might contribute to the expansion of scientific investigations of the 

elastoplastic deformations phenomena and serve as a source for engineer and scientist around 

the world.  
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