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Abstract. Mesh-free methods use nodes to establish a system of algebraic equations. One of
the advantages of mesh free methods is their independency of element connectivity, allowing
some freedom in dealing with complex problems, such as large deformation, crack propaga-
tion, complex geometry, fluid flow, among others. The Element Free Galerkin is an example of
such methods. As some mesh-free methods, its shape functions do not present the Kronecker
Delta property, which is one of the reasons that the imposition of essential boundary condi-
tions is not trivial as it is in FEM, for instance. There is a large effort to finding an efficient
strategy for imposition of essential boundary conditions in mesh-free methods, besides the well
known Lagrange multipliers, penalty and FEM coupling methods. As an alternative, Nitsche’s
method presents a consistent variational formulation and renders a better conditioned system
matrix as it requires a smaller scalar factor to be used, in comparison to the penalty method.
It also maintains the size of the original algebraic system of equations as opposed to the La-
grange multiplier method. However, the generalization and implementation of this method is
not straightforward and is problem dependent in contrast to the methods aforementioned. The
aim of this paper is to show the results of an implementation of the Nitsche’s method in INSANE
and compare the results of different methods for imposition of essential boundary conditions
against it.
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1 INTRODUCTION

Mesh Free Methods are attractive to represent phenomena that have some interface prob-
lems, as different materials, fluid analysis and elaborated geometry. These methods do not
require an initial point interconnection, a mesh, between the nodes. This is one of the reasons
such methods are used in elaborated geometry problems. However, the shape functions of these
methods, usually, do not have the Delta Kronecker property. Thus, the imposition of essential
boundary conditions is not straightforward, as it is compared to the Finite Element Method. The
aim of this work is to show the results of an implementation in INSANE (INteractive Structural
ANalysis Environment) of the Nitsche’s method for imposition of essential boundary condi-
tions. This paper presents the Element Free Galerkin, a meshless method implemented in this
software. Following a section about the boundary conditions methods used in this paper to com-
pare the results with the ones obtained using Nitsche’s method. Then it’s presented a numerical
example. Finally, a conclusion is drawn.

2 ELEMENT FREE GALERKIN

The Element Free Galerkin (EFG) (Belytschko et al. (1994)) is based on the Diffuse Ele-
ment Method of Nayroles et al. (1992), and it is based in a functional interpolation of the form
given a number of particles, xj in the domain, Ω, as written in Eq. 1.

u(x) ' up(x) =
∑

u(xj)Nj(x) (1)

where

Nj(x) =
∑̀
i=1

pi(x)
[
M−1(x) B(x)

]
ij

= pT M−1 Bj, (2)

recalling that ` is the number of terms of the polynomial basis p(x), Nj the EFG shape func-
tions, M the moment matrix given by Eq. 3, Bj = φj(x) p(xj) is an auxiliary variable, and
φ(·) is the weighting function.

M(x) =
n∑
j

φj(x) p(xj) pT (xj) (3)

The discrete system of equations is based on the Galerkin Weak Form of the Eq. 4. It can be
understood as a meshless method, however it is necessary a set of background cells to perform
the numerical integration of the discrete system, Liu (2009).

The partial different equations of a solid mechanics problem can be written:

LTσ + b = 0 Equilibrium in the domain Ω

u = ud on the essential boundary Γd

nTσ = t on the natural boundary Γn

(4)

where L is the differential operator, σ is the stress vector, u is the displacement vector, b is the
body force vector, t is a vector of the prescribed force in the boundary, ud is the prescribed dis-
placement on the essential boundary, and finally, n is the unit normal outward on the boundary.
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3 BOUNDARY CONDITIONS
As it was mentioned earlier, it is not so trivial, as it is in the Finite Element Method,

to imposing the essential boundary conditions. There are some techniques which modify the
shape functions, as coupling with finite elements, Silva (2012), or those that modify the weak
Galerkin form, as the penalty and the Lagrange multipliers methods. Besides these methods
there is the Nitsche’s method, which is similar to the penalty method, but employs a smaller
scalar, rendering a better conditioned system of equations. In the following, the weak form
of problem (4) is depicted for each of the later methods to imposing the essential boundary
conditions.

• Penalty Method: This method uses a scalar parameter, β, to imposing the essential
boundary condition. This parameter is usually large, and it can lead to ill conditioned
system matrices.(∫

Ω

BTDB dΩ + β

∫
Γd

NTN dΓ

)
u =

∫
Ω

NTb dΩ+

∫
Γn

NT t dΓ +β

∫
Γd

NTud dΓ

(5)

where B is the strain matrix, D the constitutive matrix, N are the EFG shape functions
and u is the unknown MLS parameters vector.

• Lagrange Multipliers: The Lagrange multiplier method is well known and largely used
in a variety of problems. However, it implies in adding more variables in the system of
equations, which renders to a semi-positive definite system matrix.(∫

Ω

BTDB dΩ −
∫
Γd

ΦTN dΓ

)
u =

∫
Ω

NTb dΩ +

∫
Γn

NT t dΓ (6)(∫
Γd

NTΦ dΓ

)
λ = −

∫
Γd

ΦTud dΓ

Here, Φ are the Lagrange multipliers shape functions and λ is the Lagrange multipliers
unknown vector.

• Nitsche’s Method: The Nitsche’s method is similar to the penalty method since it also
uses a scalar β, however not as large as the one used in penalty method, which leads to a
better conditioned system matrix as mentioned by Fernández-Méndez and Huerta (2004).

According to Huerta et al. (2004) this method maintains the consistency of the weak form
of problem (4). For futher details see Hah et al. (2014) and Embar et al. (2010).

(∫
Ω

BTDB dΩ −
∫
Γd

NT (nTDB) dΓ −
∫
Γd

(nTDB)TN dΓ + β

∫
Γd

NTN dΓ

)
u =∫

Ω

NTb dΩ −
∫
Γn

NT t dΓ −
∫
Γd

(nTDB)Tud dΓ + β

∫
Γd

NTud dΓ (7)

4 NUMERICAL EXAMPLE
Figure 1 depicts a cantilever of length 8 ul, height 2 ul and unit thickness, subjected to

a parabolic load totalizing 2 uf acting on its right edge. On it’s left edge displacements were
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imposed according to the analytical solution of this problem. The elastic material has E =
1000 uf/ua and ν = 0, 25. Four discrete models were considered, namely, 5× 17, 9× 33, 17×
65, 33×128, where ny×nx are the number of nodes in the y− and x− directions, respectively.
Also, 4 values of β were adopted, i.e., β = {103, 104, 105, 106}. Plane stress conditions are
assumed. The EFG employed a cubic spline as weight function, and linear approximation with
dilation parameter ρx = ρy = 1, 05h, where h is the distance between nodes.

Figure 1: Cantilever: in blue the ux(0; y) pattern and in purple the uy(0; y) pattern

In Fig. 2 it is shown the relative error, using the L2-norm, of the displacements on the
essential boundary for the 3 methods against the distance between nodes h. It is quite noticiable
that the error in the penalty method does not diminish as the discretization is refined for a fixed
β, whereas the other two methods shown an improvement.
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Figure 2: Nitsche vs Penalty vs Lagrange: Relative error on the essential boundary

Figure 3 shows the horizontal displacement at the left edge for the three methods of the
model 9 × 33. As it can be seen, for a small value of β (103), the penalty method is unable
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to reproduce the essential boundary condition for the horizontal displacement, whereas for the
Lagrange and Nitsche methods the performace was satisfactory.
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Figure 3: Model 9× 33 ux(0; y) with β = 103 (left) and β = 106 (right)

5 CONCLUSION

The results of this work show that the Nitsche’s method is an excelent option to impos-
ing essential boundary conditions, is variationally consistent and gives similar results when
compared to the Lagrange Multipliers method, however using a smaller scalar parameter. One
disadvantage, though, is that its formulation is not straightforward and problem dependent. As
expected, for a given accuracy, the penalty method demands a larger value for the scalar param-
eter, which sometimes may ruin the conditioning of the system of equations. However, this is
still a work in progress, and an implementation considering a physically nonlinear analysis is
being carried on.
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