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Abstract. Structural Health Monitoring is based on the development of reliable and robust 

indicators capable to detect, locate, quantify and predict damage. Studies related to damage 

detection in civil engineering structures have a noticeable interest for researchers in this 

area. Indeed, the detection of structural changes likely to become critical can avoid the 

occurrence of major dysfunctions associated with social, economic and environmental 

consequences. Recently, many researchers have focused on dynamic assessment as part of 

structural diagnosis. Most of the studied techniques are based on time or frequency domain 

analyses to extract compressed information from modal characteristics or based on 

indicators built from these parameters. This work has as its main interest the use of high-

order statistics (HOS) coupled with clustering techniques i.e. the k-means algorithm to detect 

structural modification (damage). The approach is applied directly to dynamic measurements 

(accelerations) obtained on site. In order to attest the efficiency of the proposed methodology, 

two investigations are carried out: a numerical model of a simply supported beam and a real 

case railway bridge, in France. It is shown that HOS coupled with clustering methods is able 

to distinguish structural conditions with adequate rates. 
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1  INTRODUCTION 

Structural Health Monitoring (SHM) is of great importance to Civil Engineering, once it 

allows the detection of modifications in the physical properties of structures. SHM permits, if 

possible and/or necessary, the use of recovery procedures in suitable time. These procedures 

are often based on evidence collected from tests performed on the structure that would ideally 

allow ‘detecting, locating, quantifying and even predicting damages’. Recently, researches 

have focused on the dynamic evaluation as part of structural diagnoses (Cury et al. 2012 & 

Alves, 2015), by the extraction of modal parameters or data built from these parameters that, 

so far, have provided promising results. However, some problems remain unsolved, such as 

the sensitivity of the damage identification methods, their need of a reference state and their 

reliability when it comes to the detection of false alarms (Alves, 2015 & Cury et al. 2010).  

Traditional methods of damage detection and health monitoring are often based on the 

variation of structural vibration characteristics, i.e. natural frequencies, damping ratios and 

mode shapes. These modal parameters are directly affected by changes in the physical 

properties of the structure including its mass and stiffness. Nevertheless, modal parameters 

identification is a sort of filtering process, leading to a loss of information compared to the 

raw data. This compression process can erase any small changes due to a structural 

modification. In turn, using raw dynamic measurements (especially if high sampling 

frequencies are used) leads to the storage of large set of data. However, several damage 

detection methods exist in the literature based on signature principles, but they usually fail 

when making them practical (Santos et al., 2013). In this sense, despite the current computers’ 

processing power, the necessary computational effort to manipulate large data sets remains a 

problem. Furthermore, and this is certainly the major drawback when using modal 

parameters, is that modal components are essentially describing an equivalent linear behavior, 

a feature which may be not exact for the analysis of specific degraded systems. 

In general, data acquisition campaigns in civil engineering structures gather thousands of 

accelerations values measured by several sensors. Consequently, analyzing all of these data 

directly may usually be time-consuming or even prohibitive. In this sense, transforming this 

massive quantity of data into a compact but also rich descriptive type of data becomes an 

attractive approach. In statistics, the term Higher-Order Statistics (HOS) refer to functions 

which use the third and higher powers of a sample, as opposed to more conventional 

techniques of lower-order statistics, which use constant, linear, and quadratic terms (zeroth, 

first, and second powers). The third and higher moments, as used in the skewness and 

kurtosis, are examples of HOS, whereas the first and second moments i.e. arithmetic mean 

and variance are examples of low-order statistics.  

In this paper, raw data obtained from dynamic tests (acceleration measurements) are 

transformed into a more compact arrangement by computing HOS for each sensor e.g. 

accelerometer used. Then, these quantities are applied to a clustering algorithm in order to 

discriminate different structural states or, in other words, to detect damage. This paper is 

based on the conjecture that the HOSs are sensitive to damage, meaning that they can provide 

information regarding variations on the physical properties of structures that could indicate 

the existence of damage. Thus, the clustering algorithm would be able to eventually identify 

different structural scenarios. 

The main objective of this study is to develop a methodology capable of detecting 

structural damage by clearly differentiating physical states that correspond to an “undamaged” 

configuration from a “damaged” configuration. It is important to emphasize that such a 
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methodology is original, since it uses HOS coupled with clustering techniques. However, it 

must also be reminded that this is a rather complex problem, since the proposed methodology 

is applied directly to the raw data i.e. the raw dynamic measurements.  

2  METHODOLOGY 

This section presents the main concepts within the framework of this paper. First, a brief 

description of HOS is presented. Then, a short explanation about the k-means clustering 

algorithm is given (more details can be found in reference Madhulatha, 2012). 

2.1 High-Order Statistics 

As previously explained, HOS refer to functions which use the third and higher powers 

of a given sample. The HOS used in this paper are summarized in Table 1 where the variable 

“yi” represents each sensor (accelerometer) measuring “n” acceleration values for each 

dynamic test.  

 

Table 1. High order statistics used as damage sensitive characteristics. Adapted from (Farrar 

& Worden, 2013). 
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2.2 k-means clustering algorithm 

This clustering method is based on a generalization of the classical dynamic clusters 

method. Clustering of a dataset is the partition of that data into groups, named clusters, so that 

the data inside a cluster has the highest degree of similarity among all possible combinations. 

What defines this ‘similarity’ is the clustering algorithm. In this paper, the chosen algorithm - 

k-means - uses the spatial distance between a data point (a dynamic test) to the centroid of the 

cluster. The idea is to identify the best combination of data that produces the clusters with the 

highest degree of similarity, that is, the smallest data-centroid sum of distances. The k-means 

algorithm has several metrics to calculate those spatial distances. In this paper, the metrics 

used are the square Euclidean and the cityblock, shown in Equations 1 and 2, respectively: 
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Once the statistics were extracted, the resulting datasets were analyzed through clustering 

algorithm k-means.  

3  RESULTS 

Before presenting the numerical and experimental applications explored in this paper, it 

must be kept in mind that the aforementioned clustering method was already applied to modal 

parameters (natural frequencies and mode shapes) obtaining very good results (Alves, 2015). 

Now, the authors want to further explore the potentialities of the proposed approach using 

uniquely raw data i.e. accelerations measured directly in situ.  

The procedure conducted henceforth in this paper follows these steps:  

1. Evaluate the HOS of each accelerometer as explained in section 2.1;  

2. Use HOS (step 1) as inputs for the clustering technique (k-means). 

Finally, it is important to emphasize that this entire procedure strongly depends on the 

quality of the input data. In this case, if accelerations measurements present any type of 

problem (bad sampling, missing data, incorrect measurement, etc.), the results obtained from 
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the clustering methods will be compromised. Thus, it is imperative to assure, in first hand, 

that the data used in the analysis is adequate. 

Two sets of data were used for the validation of the proposed methodology. In both cases, 

it was previously known which data corresponded to the ‘undamaged’ and ‘damaged’ states. 

Therefore, the goal of the k-means algorithm was to allocate the ‘undamaged’ tests into one 

cluster and the ‘damaged’ tests into another. Thus, it would show that this technique is able to 

distinguish between two groups related to two different physical structural conditions. 

3.1 Numerical application – Simply supported beam 

The first dataset corresponds to a numerical simulation of the vibration response of a 6-

meter simply supported steel beam. The beam is discretized into 200 finite elements using 

Matlab. A random force is applied at 0,69m from the right support as shown in Figure 1. The 

beam has the following physical and geometric properties:  

 Elastic modulus – 210 GPa; 

 Volumetric mass – 7850 kg/m³; 

 Cross-sectional area – 31081,2  m²; 

 Moment of inertia – 81081,2  4m . 

 

Figure 1 – Discretized beam. 

 

Dynamic measurements are taken at 10 equidistant points of the beam during 100s. The 

sampling frequency is 0.01 Hz, which corresponds to 10.000 acceleration measurements per 

sensor.  

Damage is simulated as the reduction of the elastic modulus of the beam in three 

progressive states, yielding three damage levels:  

 Undamaged (D0): unaffected beam; 

 Level 1 (D1): reduction of 20% in the elastic modulus of elements 96-105; 

 Level 2 (D2): same as level 1 + reduction of 10% in the elastic modulus of 

elements 146-155.  

Additionally, three levels of white noise (0, 5% and 10%) are added to the data.  

The main objective here is to separate two different damage levels at a time (D0 from D1 

and D0 from D2) for each noise level. Each dataset of the numerical simulations contains 
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measurements from 10 accelerometers and, for each accelerometer, 10 HOSs are calculated 

(as shown in Table 1). Thus, each dataset yields a 20x100 matrix (20 tests by 100 HOS).   

These sets are used as inputs to the k-means method and the results are presented in 

Tables 2 and 3.  

 

Table 2. Percentages of correctly classified data within cluster (levels D0 and D1). 

 

 No noise 5% noise 10% noise 

 sqeuclidian cityblock sqeuclidian cityblock sqeuclidian cityblock 

D0 80% 80% 80% 80% 80% 80% 

D1 70% 70% 70% 70% 70% 70% 

 

Table 3. Percentages of correctly classified data within cluster, (levels D0 and D2). 

 

 No noise 5% noise 10% noise 

 sqeuclidian cityblock sqeuclidian cityblock sqeuclidian cityblock 

D0 80% 80% 80% 80% 80% 80% 

D2 60% 60% 60% 60% 60% 60% 

 

From Tables 2 and 3 it is possible to notice that the proposed methodology is rather 

capable of distinguishing the two damage levels, although the correct rates were lower for the 

second case. However, it is important to remark that this procedure is completely insensitive 

to noise, since all rates remained unchanged throughout the simulations. 

 

3.2 Experimental application – TGV viaduct 

The second application comprehends the measurements taken in the PK 075+317 viaduct 

in Southeast France, between Paris and Lyon, over which passes high-speed rails for TGV 

(Train à Grande Vitesse) trains. The viaduct is 17.5 meters wide (Figure 2).  
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Figure 2 – Side view of the viaduct. 

 

This bridge was built in the early eighties; the increase of the operating speed of TGVs 

has moved the excitation frequency of the trains close to the first natural frequency of the 

bridge. This risk of resonance was furthermore increased by the uncertainties in the mass of 

the ballast disposed on the bridge. The first natural frequency was 5.86 Hz and the excitation 

frequency was around 4.0 Hz. The French railways SNCF considered that this difference was 

not enough and ballast recharging in connection with new operating speeds could reduce it 

even more. This is why SNCF set up a system of rods near the bearings tightened by torque 

wrench (Figure 3); this strengthening brought stiffness and increased the natural frequencies. 

In 2003, a strengthening intervention was scheduled and led to a change in natural 

frequencies. 

 

 

Figure 3 – Tightening procedure. 

 

In order to assess the efficiency of the tightening procedure, eight vertical accelerometers 

were installed under the bridge’s deck, having the sampling frequency fixed at 4096 Hz. 

Twenty-eight dynamic tests were carried out i.e. 15 tests before and 13 after the procedure. 

Thereby, this dataset can be represented by a 28x80 matrix containing 10 HOS for each 

accelerometer. This dataset was inputted to the k-means algorithm and results are shown in 

Table 4. 
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Table 4. Percentages of correctly classified data within cluster. 

 

 sqeuclidian cityblock 

Before 67% 67% 

After 23% 23% 

 

As shown in Table 4, the proposed methodology was not able to differentiate the two 

structural scenarios. Therefore, it was necessary to enhance the analysis. This was achieved 

by performing a series of combinations of the HOS, two at a time, for each accelerometer. 

The goal was to find the best combination i.e. the one that yields the smallest within cluster 

sum of distances. This criterion was adopted, since it is believed to provide the most accurate 

classification. Results are shown in Table 5.  

 

Table 5. Percentages of correctly classified data within cluster. 

 sqeuclidian cityblock 

Before 79% 79% 

After 85% 100% 

 

From Table 5, it is clear to observe a significant improvement in the classification rates. 

Moreover, for the cityblock metric, 100% of the tests after the tightening procedure were 

correctly classified into on cluster. 

 

4 CONCLUSIONS 

This paper introduced a novel approach based on the coupling of High-Order Statistics 

with the k-means clustering algorithm. The main goal was to discriminate different structural 

behaviors using only raw information for feature extraction. 

In order to attest the robustness of the proposed approach, two applications were studied: 

the cases of a FEM beam model and of a real-case railway viaduct. For the first case, different 

damage and noise levels were simulated. It was noticed that although the procedure was 

insensitive to noise, it was not properly capable of distinguishing and separating the structural 

states. For the experimental application, the same methodology was applied, yielding poor 

results. Thus, the combination of the HOS, 2 at a time, proved itself rather suitable for the 

TGV, since it made possible for the k-means algorithm to identify two different states in the 

dataset, as shown in Table 5.  
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It is important to highlight the complexity of such an analysis, since it deals directly with 

raw data measurements. However, the authors are aware that results must be improved before 

using this methodology to untested structures. 
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